scipy.optimize.bisect(f, a, b, args=(), xtol=9.9999999999999998e-13, rtol=4.4408920985006262e-16, maxiter=100, full_output=False, disp=True)

Find root of f in [a,b].

Basic bisection routine to find a zero of the function f between the arguments a and b. f(a) and f(b) can not have the same signs. Slow but sure.

Parameters :

f : function

Python function returning a number. f must be continuous, and f(a) and f(b) must have opposite signs.

a : number

One end of the bracketing interval [a,b].

b : number

The other end of the bracketing interval [a,b].

xtol : number, optional

The routine converges when a root is known to lie within xtol of the value return. Should be >= 0. The routine modifies this to take into account the relative precision of doubles.

maxiter : number, optional

if convergence is not achieved in maxiter iterations, and error is raised. Must be >= 0.

args : tuple, optional

containing extra arguments for the function f. f is called by apply(f, (x)+args).

full_output : bool, optional

If full_output is False, the root is returned. If full_output is True, the return value is (x, r), where x is the root, and r is a RootResults object.

disp : {True, bool} optional

If True, raise RuntimeError if the algorithm didn’t converge.

Returns :

x0 : float

Zero of f between a and b.

r : RootResults (present if full_output = True)

Object containing information about the convergence. In particular, r.converged is True if the routine converged.

See also

scalar fixed-point finder fsolve – n-dimensional root-finding

Previous topic


Next topic


This Page