
SciPy Reference Guide
Release 0.7

Written by the SciPy community

March 17, 2009

CONTENTS

1 SciPy Tutorial 3
1.1 Introduction . 3
1.2 Basic functions in Numpy (and top-level scipy) . 6
1.3 Special functions (scipy.special) . 10
1.4 Integration (scipy.integrate) . 10
1.5 Optimization (optimize) . 14
1.6 Interpolation (scipy.interpolate) . 23
1.7 Signal Processing (signal) . 31
1.8 Linear Algebra . 37
1.9 Statistics . 48
1.10 Multi-dimensional image processing (ndimage) . 48

2 Release Notes 71
2.1 SciPy 0.7.0 Release Notes . 71

3 Reference 77
3.1 Clustering package (scipy.cluster) . 77
3.2 Constants (scipy.constants) . 99
3.3 Fourier transforms (scipy.fftpack) . 106
3.4 Integration and ODEs (scipy.integrate) . 117
3.5 Interpolation (scipy.interpolate) . 125
3.6 Input and output (scipy.io) . 143
3.7 Linear algebra (scipy.linalg) . 148
3.8 Maximum entropy models (scipy.maxentropy) . 174
3.9 Miscellaneous routines (scipy.misc) . 188
3.10 Multi-dimensional image processing (scipy.ndimage) . 192
3.11 Orthogonal distance regression (scipy.odr) . 216
3.12 Optimization and root finding (scipy.optimize) . 222
3.13 Signal processing (scipy.signal) . 247
3.14 Sparse matrices (scipy.sparse) . 270
3.15 Sparse linear algebra (scipy.sparse.linalg) . 285
3.16 Spatial algorithms and data structures (scipy.spatial) . 291
3.17 Special functions (scipy.special) . 311
3.18 Statistical functions (scipy.stats) . 340
3.19 Image Array Manipulation and Convolution (scipy.stsci) . 528
3.20 C/C++ integration (scipy.weave) . 536

Bibliography 537

i

Index 539

ii

SciPy Reference Guide, Release 0.7

Release
0.7

Date
March 17, 2009

SciPy (pronounced “Sigh Pie”) is open-source software for mathematics, science, and engineering.

CONTENTS 1

SciPy Reference Guide, Release 0.7

2 CONTENTS

CHAPTER

ONE

SCIPY TUTORIAL

1.1 Introduction

Contents

• Introduction

– SciPy Organization

– Finding Documentation

SciPy is a collection of mathematical algorithms and convenience functions built on the Numpy extension for Python.
It adds significant power to the interactive Python session by exposing the user to high-level commands and classes
for the manipulation and visualization of data. With SciPy, an interactive Python session becomes a data-processing
and system-prototyping environment rivaling sytems such as Matlab, IDL, Octave, R-Lab, and SciLab.

The additional power of using SciPy within Python, however, is that a powerful programming language is also available
for use in developing sophisticated programs and specialized applications. Scientific applications written in SciPy
benefit from the development of additional modules in numerous niche’s of the software landscape by developers
across the world. Everything from parallel programming to web and data-base subroutines and classes have been
made available to the Python programmer. All of this power is available in addition to the mathematical libraries in
SciPy.

This document provides a tutorial for the first-time user of SciPy to help get started with some of the features available
in this powerful package. It is assumed that the user has already installed the package. Some general Python facility
is also assumed such as could be acquired by working through the Tutorial in the Python distribution. For further
introductory help the user is directed to the Numpy documentation.

For brevity and convenience, we will often assume that the main packages (numpy, scipy, and matplotlib) have been
imported as:

>>> import numpy as np
>>> import scipy as sp
>>> import matplotlib as mpl
>>> import matplotlib.pyplot as plt

These are the import conventions that our community has adopted after discussion on public mailing lists. You will
see these conventions used throughout NumPy and SciPy source code and documentation. While we obviously don’t
require you to follow these conventions in your own code, it is highly recommended.

3

SciPy Reference Guide, Release 0.7

1.1.1 SciPy Organization

SciPy is organized into subpackages covering different scientific computing domains. These are summarized in the
following table:

Subpackage Description
cluster Clustering algorithms
constants Physical and mathematical constants
fftpack Fast Fourier Transform routines
integrate Integration and ordinary differential equation solvers
interpolate Interpolation and smoothing splines
io Input and Output
linalg Linear algebra
maxentropy Maximum entropy methods
ndimage N-dimensional image processing
odr Orthogonal distance regression
optimize Optimization and root-finding routines
signal Signal processing
sparse Sparse matrices and associated routines
spatial Spatial data structures and algorithms
special Special functions
stats Statistical distributions and functions
weave C/C++ integration

Scipy sub-packages need to be imported separately, for example:

>>> from scipy import linalg, optimize

Because of their ubiquitousness, some of the functions in these subpackages are also made available in the scipy
namespace to ease their use in interactive sessions and programs. In addition, many basic array functions from numpy
are also available at the top-level of the scipy package. Before looking at the sub-packages individually, we will first
look at some of these common functions.

1.1.2 Finding Documentation

Scipy and Numpy have HTML and PDF versions of their documentation available at http://docs.scipy.org/, which
currently details nearly all available functionality. However, this documentation is still work-in-progress, and some
parts may be incomplete or sparse. As we are a volunteer organization and depend on the community for growth, your
participation–everything from providing feedback to improving the documentation and code–is welcome and actively
encouraged.

Python also provides the facility of documentation strings. The functions and classes available in SciPy use this method
for on-line documentation. There are two methods for reading these messages and getting help. Python provides the
command help in the pydoc module. Entering this command with no arguments (i.e. >>> help) launches an
interactive help session that allows searching through the keywords and modules available to all of Python. Running
the command help with an object as the argument displays the calling signature, and the documentation string of the
object.

The pydoc method of help is sophisticated but uses a pager to display the text. Sometimes this can interfere with
the terminal you are running the interactive session within. A scipy-specific help system is also available under the
command sp.info. The signature and documentation string for the object passed to the help command are printed
to standard output (or to a writeable object passed as the third argument). The second keyword argument of sp.info
defines the maximum width of the line for printing. If a module is passed as the argument to help than a list of the
functions and classes defined in that module is printed. For example:

4 Chapter 1. SciPy Tutorial

http://docs.python.org/dev/library/io.html#module-io
http://docs.python.org/dev/library/signal.html#module-signal
http://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
http://docs.scipy.org/
http://docs.python.org/dev/library/functions.html#help

SciPy Reference Guide, Release 0.7

>>> sp.info(optimize.fmin)
fmin(func, x0, args=(), xtol=0.0001, ftol=0.0001, maxiter=None, maxfun=None,

full_output=0, disp=1, retall=0, callback=None)

Minimize a function using the downhill simplex algorithm.

:Parameters:

func : callable func(x,*args)
The objective function to be minimized.

x0 : ndarray
Initial guess.

args : tuple
Extra arguments passed to func, i.e. ‘‘f(x,*args)‘‘.

callback : callable
Called after each iteration, as callback(xk), where xk is the
current parameter vector.

:Returns: (xopt, {fopt, iter, funcalls, warnflag})

xopt : ndarray
Parameter that minimizes function.

fopt : float
Value of function at minimum: ‘‘fopt = func(xopt)‘‘.

iter : int
Number of iterations performed.

funcalls : int
Number of function calls made.

warnflag : int
1 : Maximum number of function evaluations made.
2 : Maximum number of iterations reached.

allvecs : list
Solution at each iteration.

Other Parameters:

xtol : float
Relative error in xopt acceptable for convergence.

ftol : number
Relative error in func(xopt) acceptable for convergence.

maxiter : int
Maximum number of iterations to perform.

maxfun : number
Maximum number of function evaluations to make.

full_output : bool
Set to True if fval and warnflag outputs are desired.

disp : bool
Set to True to print convergence messages.

retall : bool
Set to True to return list of solutions at each iteration.

:Notes:

Uses a Nelder-Mead simplex algorithm to find the minimum of
function of one or more variables.

Another useful command is source. When given a function written in Python as an argument, it prints out a listing

1.1. Introduction 5

SciPy Reference Guide, Release 0.7

of the source code for that function. This can be helpful in learning about an algorithm or understanding exactly what
a function is doing with its arguments. Also don’t forget about the Python command dir which can be used to look
at the namespace of a module or package.

1.2 Basic functions in Numpy (and top-level scipy)

Contents

• Basic functions in Numpy (and top-level scipy)

– Interaction with Numpy

– Top-level scipy routines

* Type handling

* Index Tricks

* Shape manipulation

* Polynomials

* Vectorizing functions (vectorize)

* Other useful functions

– Common functions

1.2.1 Interaction with Numpy

To begin with, all of the Numpy functions have been subsumed into the scipy namespace so that all of those func-
tions are available without additionally importing Numpy. In addition, the universal functions (addition, subtraction,
division) have been altered to not raise exceptions if floating-point errors are encountered; instead, NaN’s and Inf’s
are returned in the arrays. To assist in detection of these events, several functions (sp.isnan, sp.isfinite,
sp.isinf) are available.

Finally, some of the basic functions like log, sqrt, and inverse trig functions have been modified to return complex
numbers instead of NaN’s where appropriate (i.e. sp.sqrt(-1) returns 1j).

1.2.2 Top-level scipy routines

The purpose of the top level of scipy is to collect general-purpose routines that the other sub-packages can use and to
provide a simple replacement for Numpy. Anytime you might think to import Numpy, you can import scipy instead
and remove yourself from direct dependence on Numpy. These routines are divided into several files for organizational
purposes, but they are all available under the numpy namespace (and the scipy namespace). There are routines for
type handling and type checking, shape and matrix manipulation, polynomial processing, and other useful functions.
Rather than giving a detailed description of each of these functions (which is available in the Numpy Reference Guide
or by using the help, info and source commands), this tutorial will discuss some of the more useful commands
which require a little introduction to use to their full potential.

Type handling

Note the difference between sp.iscomplex/sp.isreal and sp.iscomplexobj/sp.isrealobj. The for-
mer command is array based and returns byte arrays of ones and zeros providing the result of the element-wise test.
The latter command is object based and returns a scalar describing the result of the test on the entire object.

6 Chapter 1. SciPy Tutorial

http://docs.python.org/dev/library/functions.html#help

SciPy Reference Guide, Release 0.7

Often it is required to get just the real and/or imaginary part of a complex number. While complex numbers and arrays
have attributes that return those values, if one is not sure whether or not the object will be complex-valued, it is better
to use the functional forms sp.real and sp.imag . These functions succeed for anything that can be turned into
a Numpy array. Consider also the function sp.real_if_close which transforms a complex-valued number with
tiny imaginary part into a real number.

Occasionally the need to check whether or not a number is a scalar (Python (long)int, Python float, Python complex,
or rank-0 array) occurs in coding. This functionality is provided in the convenient function sp.isscalar which
returns a 1 or a 0.

Finally, ensuring that objects are a certain Numpy type occurs often enough that it has been given a convenient interface
in SciPy through the use of the sp.cast dictionary. The dictionary is keyed by the type it is desired to cast to and
the dictionary stores functions to perform the casting. Thus, sp.cast[’f’](d) returns an array of sp.float32
from d. This function is also useful as an easy way to get a scalar of a certain type:

>>> sp.cast[’f’](sp.pi)
array(3.1415927410125732, dtype=float32)

Index Tricks

There are some class instances that make special use of the slicing functionality to provide efficient means for array
construction. This part will discuss the operation of sp.mgrid , sp.ogrid , sp.r_ , and sp.c_ for quickly
constructing arrays.

One familiar with Matlab may complain that it is difficult to construct arrays from the interactive session with Python.
Suppose, for example that one wants to construct an array that begins with 3 followed by 5 zeros and then contains 10
numbers spanning the range -1 to 1 (inclusive on both ends). Before SciPy, you would need to enter something like
the following

>>> concatenate(([3],[0]*5,arange(-1,1.002,2/9.0)))

With the r_ command one can enter this as

>>> r_[3,[0]*5,-1:1:10j]

which can ease typing and make for more readable code. Notice how objects are concatenated, and the slicing syntax
is (ab)used to construct ranges. The other term that deserves a little explanation is the use of the complex number
10j as the step size in the slicing syntax. This non-standard use allows the number to be interpreted as the number of
points to produce in the range rather than as a step size (note we would have used the long integer notation, 10L, but
this notation may go away in Python as the integers become unified). This non-standard usage may be unsightly to
some, but it gives the user the ability to quickly construct complicated vectors in a very readable fashion. When the
number of points is specified in this way, the end- point is inclusive.

The “r” stands for row concatenation because if the objects between commas are 2 dimensional arrays, they are stacked
by rows (and thus must have commensurate columns). There is an equivalent command c_ that stacks 2d arrays by
columns but works identically to r_ for 1d arrays.

Another very useful class instance which makes use of extended slicing notation is the function mgrid. In the simplest
case, this function can be used to construct 1d ranges as a convenient substitute for arange. It also allows the use of
complex-numbers in the step-size to indicate the number of points to place between the (inclusive) end-points. The real
purpose of this function however is to produce N, N-d arrays which provide coordinate arrays for an N-dimensional
volume. The easiest way to understand this is with an example of its usage:

>>> mgrid[0:5,0:5]
array([[[0, 0, 0, 0, 0],

1.2. Basic functions in Numpy (and top-level scipy) 7

SciPy Reference Guide, Release 0.7

[1, 1, 1, 1, 1],
[2, 2, 2, 2, 2],
[3, 3, 3, 3, 3],
[4, 4, 4, 4, 4]],

[[0, 1, 2, 3, 4],
[0, 1, 2, 3, 4],
[0, 1, 2, 3, 4],
[0, 1, 2, 3, 4],
[0, 1, 2, 3, 4]]])

>>> mgrid[0:5:4j,0:5:4j]
array([[[0. , 0. , 0. , 0.],

[1.6667, 1.6667, 1.6667, 1.6667],
[3.3333, 3.3333, 3.3333, 3.3333],
[5. , 5. , 5. , 5.]],

[[0. , 1.6667, 3.3333, 5.],
[0. , 1.6667, 3.3333, 5.],
[0. , 1.6667, 3.3333, 5.],
[0. , 1.6667, 3.3333, 5.]]])

Having meshed arrays like this is sometimes very useful. However, it is not always needed just to evaluate some
N-dimensional function over a grid due to the array-broadcasting rules of Numpy and SciPy. If this is the only purpose
for generating a meshgrid, you should instead use the function ogrid which generates an “open “grid using NewAxis
judiciously to create N, N-d arrays where only one dimension in each array has length greater than 1. This will save
memory and create the same result if the only purpose for the meshgrid is to generate sample points for evaluation of
an N-d function.

Shape manipulation

In this category of functions are routines for squeezing out length- one dimensions from N-dimensional arrays, ensur-
ing that an array is at least 1-, 2-, or 3-dimensional, and stacking (concatenating) arrays by rows, columns, and “pages
“(in the third dimension). Routines for splitting arrays (roughly the opposite of stacking arrays) are also available.

Polynomials

There are two (interchangeable) ways to deal with 1-d polynomials in SciPy. The first is to use the poly1d class from
Numpy. This class accepts coefficients or polynomial roots to initialize a polynomial. The polynomial object can then
be manipulated in algebraic expressions, integrated, differentiated, and evaluated. It even prints like a polynomial:

>>> p = poly1d([3,4,5])
>>> print p

2
3 x + 4 x + 5
>>> print p*p

4 3 2
9 x + 24 x + 46 x + 40 x + 25
>>> print p.integ(k=6)
3 2
x + 2 x + 5 x + 6
>>> print p.deriv()
6 x + 4
>>> p([4,5])
array([69, 100])

8 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.7

The other way to handle polynomials is as an array of coefficients with the first element of the array giving the
coefficient of the highest power. There are explicit functions to add, subtract, multiply, divide, integrate, differentiate,
and evaluate polynomials represented as sequences of coefficients.

Vectorizing functions (vectorize)

One of the features that NumPy provides is a class vectorize to convert an ordinary Python function which accepts
scalars and returns scalars into a “vectorized-function” with the same broadcasting rules as other Numpy functions
(i.e. the Universal functions, or ufuncs). For example, suppose you have a Python function named addsubtract
defined as:

>>> def addsubtract(a,b):
... if a > b:
... return a - b
... else:
... return a + b

which defines a function of two scalar variables and returns a scalar result. The class vectorize can be used to “vectorize
“this function so that

>>> vec_addsubtract = vectorize(addsubtract)

returns a function which takes array arguments and returns an array result:

>>> vec_addsubtract([0,3,6,9],[1,3,5,7])
array([1, 6, 1, 2])

This particular function could have been written in vector form without the use of vectorize . But, what if the
function you have written is the result of some optimization or integration routine. Such functions can likely only be
vectorized using vectorize.

Other useful functions

There are several other functions in the scipy_base package including most of the other functions that are also in the
Numpy package. The reason for duplicating these functions is to allow SciPy to potentially alter their original interface
and make it easier for users to know how to get access to functions

>>> from scipy import *

Functions which should be mentioned are mod(x,y) which can replace x % y when it is desired that the re-
sult take the sign of y instead of x . Also included is fix which always rounds to the nearest integer towards
zero. For doing phase processing, the functions angle, and unwrap are also useful. Also, the linspace
and logspace functions return equally spaced samples in a linear or log scale. Finally, it’s useful to be
aware of the indexing capabilities of Numpy.mention should be made of the new function select which ex-
tends the functionality of where to include multiple conditions and multiple choices. The calling convention is
select(condlist,choicelist,default=0). select is a vectorized form of the multiple if-statement.
It allows rapid construction of a function which returns an array of results based on a list of conditions. Each element
of the return array is taken from the array in a choicelist corresponding to the first condition in condlist that
is true. For example

>>> x = r_[-2:3]
>>> x
array([-2, -1, 0, 1, 2])

1.2. Basic functions in Numpy (and top-level scipy) 9

http://docs.python.org/dev/library/select.html#select
http://docs.python.org/dev/library/select.html#select

SciPy Reference Guide, Release 0.7

>>> select([x > 3, x >= 0],[0,x+2])
array([0, 0, 2, 3, 4])

1.2.3 Common functions

Some functions depend on sub-packages of SciPy but should be available from the top-level of SciPy due to their
common use. These are functions that might have been placed in scipy_base except for their dependence on other
sub-packages of SciPy. For example the factorial and comb functions compute n! and n!/k!(n− k)! using either
exact integer arithmetic (thanks to Python’s Long integer object), or by using floating-point precision and the gamma
function. The functions rand and randn are used so often that they warranted a place at the top level. There are
convenience functions for the interactive use: disp (similar to print), and who (returns a list of defined variables and
memory consumption–upper bounded). Another function returns a common image used in image processing: lena.

Finally, two functions are provided that are useful for approximating derivatives of functions using discrete-differences.
The function central_diff_weights returns weighting coefficients for an equally-spaced N -point approxima-
tion to the derivative of order o. These weights must be multiplied by the function corresponding to these points and
the results added to obtain the derivative approximation. This function is intended for use when only samples of the
function are avaiable. When the function is an object that can be handed to a routine and evaluated, the function
derivative can be used to automatically evaluate the object at the correct points to obtain an N-point approxima-
tion to the o-th derivative at a given point.

1.3 Special functions (scipy.special)

The main feature of the scipy.special package is the definition of numerous special functions of mathematical
physics. Available functions include airy, elliptic, bessel, gamma, beta, hypergeometric, parabolic cylinder, mathieu,
spheroidal wave, struve, and kelvin. There are also some low-level stats functions that are not intended for general
use as an easier interface to these functions is provided by the stats module. Most of these functions can take array
arguments and return array results following the same broadcasting rules as other math functions in Numerical Python.
Many of these functions also accept complex-numbers as input. For a complete list of the available functions with a
one-line description type >>> help(special). Each function also has it’s own documentation accessible using
help. If you don’t see a function you need, consider writing it and contributing it to the library. You can write the
function in either C, Fortran, or Python. Look in the source code of the library for examples of each of these kind of
functions.

1.4 Integration (scipy.integrate)

The scipy.integrate sub-package provides several integration techniques including an ordinary differential
equation integrator. An overview of the module is provided by the help command:

>>> help(integrate)
Methods for Integrating Functions given function object.

quad -- General purpose integration.
dblquad -- General purpose double integration.
tplquad -- General purpose triple integration.
fixed_quad -- Integrate func(x) using Gaussian quadrature of order n.
quadrature -- Integrate with given tolerance using Gaussian quadrature.
romberg -- Integrate func using Romberg integration.

Methods for Integrating Functions given fixed samples.

10 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.7

trapz -- Use trapezoidal rule to compute integral from samples.
cumtrapz -- Use trapezoidal rule to cumulatively compute integral.
simps -- Use Simpson’s rule to compute integral from samples.
romb -- Use Romberg Integration to compute integral from

(2**k + 1) evenly-spaced samples.

See the special module’s orthogonal polynomials (special) for Gaussian
quadrature roots and weights for other weighting factors and regions.

Interface to numerical integrators of ODE systems.

odeint -- General integration of ordinary differential equations.
ode -- Integrate ODE using VODE and ZVODE routines.

1.4.1 General integration (quad)

The function quad is provided to integrate a function of one variable between two points. The points can be ±∞ (±
inf) to indicate infinite limits. For example, suppose you wish to integrate a bessel function jv(2.5,x) along the
interval [0, 4.5].

I =
∫ 4.5

0

J2.5 (x) dx.

This could be computed using quad:

>>> result = integrate.quad(lambda x: special.jv(2.5,x), 0, 4.5)
>>> print result
(1.1178179380783249, 7.8663172481899801e-09)

>>> I = sqrt(2/pi)*(18.0/27*sqrt(2)*cos(4.5)-4.0/27*sqrt(2)*sin(4.5)+
sqrt(2*pi)*special.fresnel(3/sqrt(pi))[0])

>>> print I
1.117817938088701

>>> print abs(result[0]-I)
1.03761443881e-11

The first argument to quad is a “callable” Python object (i.e a function, method, or class instance). Notice the use of a
lambda- function in this case as the argument. The next two arguments are the limits of integration. The return value
is a tuple, with the first element holding the estimated value of the integral and the second element holding an upper
bound on the error. Notice, that in this case, the true value of this integral is

I =

√
2
π

(
18
27

√
2 cos (4.5)− 4

27

√
2 sin (4.5) +

√
2πSi

(
3√
π

))
,

where

Si (x) =
∫ x

0

sin
(π

2
t2

)
dt.

is the Fresnel sine integral. Note that the numerically-computed integral is within 1.04× 10−11 of the exact result —
well below the reported error bound.

Infinite inputs are also allowed in quad by using ± inf as one of the arguments. For example, suppose that a
numerical value for the exponential integral:

En (x) =
∫ ∞

1

e−xt

tn
dt.

1.4. Integration (scipy.integrate) 11

SciPy Reference Guide, Release 0.7

is desired (and the fact that this integral can be computed as special.expn(n,x) is forgotten). The functionality
of the function special.expn can be replicated by defining a new function vec_expint based on the routine
quad:

>>> from scipy.integrate import quad
>>> def integrand(t,n,x):
... return exp(-x*t) / t**n

>>> def expint(n,x):
... return quad(integrand, 1, Inf, args=(n, x))[0]

>>> vec_expint = vectorize(expint)

>>> vec_expint(3,arange(1.0,4.0,0.5))
array([0.1097, 0.0567, 0.0301, 0.0163, 0.0089, 0.0049])
>>> special.expn(3,arange(1.0,4.0,0.5))
array([0.1097, 0.0567, 0.0301, 0.0163, 0.0089, 0.0049])

The function which is integrated can even use the quad argument (though the error bound may underestimate the error
due to possible numerical error in the integrand from the use of quad). The integral in this case is

In =
∫ ∞

0

∫ ∞

1

e−xt

tn
dt dx =

1
n

.

>>> result = quad(lambda x: expint(3, x), 0, inf)
>>> print result
(0.33333333324560266, 2.8548934485373678e-09)

>>> I3 = 1.0/3.0
>>> print I3
0.333333333333

>>> print I3 - result[0]
8.77306560731e-11

This last example shows that multiple integration can be handled using repeated calls to quad. The mechanics of this
for double and triple integration have been wrapped up into the functions dblquad and tplquad. The function,
dblquad performs double integration. Use the help function to be sure that the arguments are defined in the correct
order. In addition, the limits on all inner integrals are actually functions which can be constant functions. An example
of using double integration to compute several values of In is shown below:

>>> from scipy.integrate import quad, dblquad
>>> def I(n):
... return dblquad(lambda t, x: exp(-x*t)/t**n, 0, Inf, lambda x: 1, lambda x: Inf)

>>> print I(4)
(0.25000000000435768, 1.0518245707751597e-09)
>>> print I(3)
(0.33333333325010883, 2.8604069919261191e-09)
>>> print I(2)
(0.49999999999857514, 1.8855523253868967e-09)

12 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.7

1.4.2 Gaussian quadrature (integrate.gauss_quadtol)

A few functions are also provided in order to perform simple Gaussian quadrature over a fixed interval. The first
is fixed_quad which performs fixed-order Gaussian quadrature. The second function is quadrature which
performs Gaussian quadrature of multiple orders until the difference in the integral estimate is beneath some tolerance
supplied by the user. These functions both use the module special.orthogonal which can calculate the roots
and quadrature weights of a large variety of orthogonal polynomials (the polynomials themselves are available as
special functions returning instances of the polynomial class — e.g. special.legendre).

1.4.3 Integrating using samples

There are three functions for computing integrals given only samples: trapz , simps, and romb . The first two
functions use Newton-Coates formulas of order 1 and 2 respectively to perform integration. These two functions
can handle, non-equally-spaced samples. The trapezoidal rule approximates the function as a straight line between
adjacent points, while Simpson’s rule approximates the function between three adjacent points as a parabola.

If the samples are equally-spaced and the number of samples available is 2k + 1 for some integer k, then Romberg
integration can be used to obtain high-precision estimates of the integral using the available samples. Romberg in-
tegration uses the trapezoid rule at step-sizes related by a power of two and then performs Richardson extrapolation
on these estimates to approximate the integral with a higher-degree of accuracy. (A different interface to Romberg
integration useful when the function can be provided is also available as romberg).

1.4.4 Ordinary differential equations (odeint)

Integrating a set of ordinary differential equations (ODEs) given initial conditions is another useful example. The
function odeint is available in SciPy for integrating a first-order vector differential equation:

dy
dt

= f (y, t) ,

given initial conditions y (0) = y0, where y is a length N vector and f is a mapping from RN to RN . A higher-order
ordinary differential equation can always be reduced to a differential equation of this type by introducing intermediate
derivatives into the y vector.

For example suppose it is desired to find the solution to the following second-order differential equation:

d2w

dz2
− zw(z) = 0

with initial conditions w (0) = 1
3√

32Γ(2
3)

and dw
dz

∣∣
z=0

= − 1
3√3Γ(1

3)
. It is known that the solution to this differential

equation with these boundary conditions is the Airy function

w = Ai (z) ,

which gives a means to check the integrator using special.airy.

First, convert this ODE into standard form by setting y =
[

dw
dz , w

]
and t = z. Thus, the differential equation becomes

dy
dt

=
[

ty1

y0

]
=

[
0 t
1 0

] [
y0

y1

]
=

[
0 t
1 0

]
y.

In other words,
f (y, t) = A (t)y.

As an interesting reminder, if A (t) commutes with
∫ t

0
A (τ) dτ under matrix multiplication, then this linear differen-

tial equation has an exact solution using the matrix exponential:

y (t) = exp
(∫ t

0

A (τ) dτ

)
y (0) ,

1.4. Integration (scipy.integrate) 13

SciPy Reference Guide, Release 0.7

However, in this case, A (t) and its integral do not commute.

There are many optional inputs and outputs available when using odeint which can help tune the solver. These ad-
ditional inputs and outputs are not needed much of the time, however, and the three required input arguments and
the output solution suffice. The required inputs are the function defining the derivative, fprime, the initial conditions
vector, y0, and the time points to obtain a solution, t, (with the initial value point as the first element of this sequence).
The output to odeint is a matrix where each row contains the solution vector at each requested time point (thus, the
initial conditions are given in the first output row).

The following example illustrates the use of odeint including the usage of the Dfun option which allows the user to
specify a gradient (with respect to y) of the function, f (y, t).

>>> from scipy.integrate import odeint
>>> from scipy.special import gamma, airy
>>> y1_0 = 1.0/3**(2.0/3.0)/gamma(2.0/3.0)
>>> y0_0 = -1.0/3**(1.0/3.0)/gamma(1.0/3.0)
>>> y0 = [y0_0, y1_0]
>>> def func(y, t):
... return [t*y[1],y[0]]

>>> def gradient(y,t):
... return [[0,t],[1,0]]

>>> x = arange(0,4.0, 0.01)
>>> t = x
>>> ychk = airy(x)[0]
>>> y = odeint(func, y0, t)
>>> y2 = odeint(func, y0, t, Dfun=gradient)

>>> print ychk[:36:6]
[0.355028 0.339511 0.324068 0.308763 0.293658 0.278806]

>>> print y[:36:6,1]
[0.355028 0.339511 0.324067 0.308763 0.293658 0.278806]

>>> print y2[:36:6,1]
[0.355028 0.339511 0.324067 0.308763 0.293658 0.278806]

1.5 Optimization (optimize)

There are several classical optimization algorithms provided by SciPy in the scipy.optimize package. An
overview of the module is available using help (or pydoc.help):

from scipy import optimize
>>> info(optimize)
Optimization Tools
==================

A collection of general-purpose optimization routines.

fmin -- Nelder-Mead Simplex algorithm
(uses only function calls)

fmin_powell -- Powell’s (modified) level set method (uses only

14 Chapter 1. SciPy Tutorial

http://docs.python.org/dev/library/functions.html#help

SciPy Reference Guide, Release 0.7

function calls)
fmin_cg -- Non-linear (Polak-Ribiere) conjugate gradient algorithm

(can use function and gradient).
fmin_bfgs -- Quasi-Newton method (Broydon-Fletcher-Goldfarb-Shanno);

(can use function and gradient)
fmin_ncg -- Line-search Newton Conjugate Gradient (can use

function, gradient and Hessian).
leastsq -- Minimize the sum of squares of M equations in

N unknowns given a starting estimate.

Constrained Optimizers (multivariate)

fmin_l_bfgs_b -- Zhu, Byrd, and Nocedal’s L-BFGS-B constrained optimizer
(if you use this please quote their papers -- see help)

fmin_tnc -- Truncated Newton Code originally written by Stephen Nash and
adapted to C by Jean-Sebastien Roy.

fmin_cobyla -- Constrained Optimization BY Linear Approximation

Global Optimizers

anneal -- Simulated Annealing
brute -- Brute force searching optimizer

Scalar function minimizers

fminbound -- Bounded minimization of a scalar function.
brent -- 1-D function minimization using Brent method.
golden -- 1-D function minimization using Golden Section method
bracket -- Bracket a minimum (given two starting points)

Also a collection of general-purpose root-finding routines.

fsolve -- Non-linear multi-variable equation solver.

Scalar function solvers

brentq -- quadratic interpolation Brent method
brenth -- Brent method (modified by Harris with hyperbolic

extrapolation)
ridder -- Ridder’s method
bisect -- Bisection method
newton -- Secant method or Newton’s method

fixed_point -- Single-variable fixed-point solver.

A collection of general-purpose nonlinear multidimensional solvers.

broyden1 -- Broyden’s first method - is a quasi-Newton-Raphson
method for updating an approximate Jacobian and then
inverting it

broyden2 -- Broyden’s second method - the same as broyden1, but

1.5. Optimization (optimize) 15

SciPy Reference Guide, Release 0.7

updates the inverse Jacobian directly
broyden3 -- Broyden’s second method - the same as broyden2, but

instead of directly computing the inverse Jacobian,
it remembers how to construct it using vectors, and
when computing inv(J)*F, it uses those vectors to
compute this product, thus avoding the expensive NxN
matrix multiplication.

broyden_generalized -- Generalized Broyden’s method, the same as broyden2,
but instead of approximating the full NxN Jacobian,
it construct it at every iteration in a way that
avoids the NxN matrix multiplication. This is not
as precise as broyden3.

anderson -- extended Anderson method, the same as the
broyden_generalized, but added w_0^2*I to before
taking inversion to improve the stability

anderson2 -- the Anderson method, the same as anderson, but
formulated differently

Utility Functions

line_search -- Return a step that satisfies the strong Wolfe conditions.
check_grad -- Check the supplied derivative using finite difference

techniques.

The first four algorithms are unconstrained minimization algorithms (fmin: Nelder-Mead simplex, fmin_bfgs:
BFGS, fmin_ncg: Newton Conjugate Gradient, and leastsq: Levenburg-Marquardt). The last algorithm actually
finds the roots of a general function of possibly many variables. It is included in the optimization package because at
the (non-boundary) extreme points of a function, the gradient is equal to zero.

1.5.1 Nelder-Mead Simplex algorithm (fmin)

The simplex algorithm is probably the simplest way to minimize a fairly well-behaved function. The simplex algorithm
requires only function evaluations and is a good choice for simple minimization problems. However, because it does
not use any gradient evaluations, it may take longer to find the minimum. To demonstrate the minimization function
consider the problem of minimizing the Rosenbrock function of N variables:

f (x) =
N−1∑
i=1

100
(
xi − x2

i−1

)2
+ (1− xi−1)

2
.

The minimum value of this function is 0 which is achieved when xi = 1. This minimum can be found using the fmin
routine as shown in the example below:

>>> from scipy.optimize import fmin
>>> def rosen(x):
... """The Rosenbrock function"""
... return sum(100.0*(x[1:]-x[:-1]**2.0)**2.0 + (1-x[:-1])**2.0)

>>> x0 = [1.3, 0.7, 0.8, 1.9, 1.2]
>>> xopt = fmin(rosen, x0, xtol=1e-8)
Optimization terminated successfully.

Current function value: 0.000000
Iterations: 339
Function evaluations: 571

16 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.7

>>> print xopt
[1. 1. 1. 1. 1.]

Another optimization algorithm that needs only function calls to find the minimum is Powell’s method available as
fmin_powell.

1.5.2 Broyden-Fletcher-Goldfarb-Shanno algorithm (fmin_bfgs)

In order to converge more quickly to the solution, this routine uses the gradient of the objective function. If the gradient
is not given by the user, then it is estimated using first-differences. The Broyden-Fletcher-Goldfarb-Shanno (BFGS)
method typically requires fewer function calls than the simplex algorithm even when the gradient must be estimated.

To demonstrate this algorithm, the Rosenbrock function is again used. The gradient of the Rosenbrock function is the
vector:

∂f

∂xj
=

N∑
i=1

200
(
xi − x2

i−1

)
(δi,j − 2xi−1δi−1,j)− 2 (1− xi−1) δi−1,j .

= 200
(
xj − x2

j−1

)
− 400xj

(
xj+1 − x2

j

)
− 2 (1− xj) .

This expression is valid for the interior derivatives. Special cases are

∂f

∂x0
= −400x0

(
x1 − x2

0

)
− 2 (1− x0) ,

∂f

∂xN−1
= 200

(
xN−1 − x2

N−2

)
.

A Python function which computes this gradient is constructed by the code-segment:

>>> def rosen_der(x):
... xm = x[1:-1]
... xm_m1 = x[:-2]
... xm_p1 = x[2:]
... der = zeros_like(x)
... der[1:-1] = 200*(xm-xm_m1**2) - 400*(xm_p1 - xm**2)*xm - 2*(1-xm)
... der[0] = -400*x[0]*(x[1]-x[0]**2) - 2*(1-x[0])
... der[-1] = 200*(x[-1]-x[-2]**2)
... return der

The calling signature for the BFGS minimization algorithm is similar to fmin with the addition of the fprime ar-
gument. An example usage of fmin_bfgs is shown in the following example which minimizes the Rosenbrock
function.

>>> from scipy.optimize import fmin_bfgs

>>> x0 = [1.3, 0.7, 0.8, 1.9, 1.2]
>>> xopt = fmin_bfgs(rosen, x0, fprime=rosen_der)
Optimization terminated successfully.

Current function value: 0.000000
Iterations: 53
Function evaluations: 65
Gradient evaluations: 65

>>> print xopt
[1. 1. 1. 1. 1.]

1.5. Optimization (optimize) 17

SciPy Reference Guide, Release 0.7

1.5.3 Newton-Conjugate-Gradient (fmin_ncg)

The method which requires the fewest function calls and is therefore often the fastest method to minimize functions of
many variables is fmin_ncg. This method is a modified Newton’s method and uses a conjugate gradient algorithm
to (approximately) invert the local Hessian. Newton’s method is based on fitting the function locally to a quadratic
form:

f (x) ≈ f (x0) +∇f (x0) · (x− x0) +
1
2

(x− x0)
T H (x0) (x− x0) .

where H (x0) is a matrix of second-derivatives (the Hessian). If the Hessian is positive definite then the local minimum
of this function can be found by setting the gradient of the quadratic form to zero, resulting in

xopt = x0 −H−1∇f.

The inverse of the Hessian is evaluted using the conjugate-gradient method. An example of employing this method
to minimizing the Rosenbrock function is given below. To take full advantage of the NewtonCG method, a function
which computes the Hessian must be provided. The Hessian matrix itself does not need to be constructed, only a
vector which is the product of the Hessian with an arbitrary vector needs to be available to the minimization routine.
As a result, the user can provide either a function to compute the Hessian matrix, or a function to compute the product
of the Hessian with an arbitrary vector.

Full Hessian example:

The Hessian of the Rosenbrock function is

Hij =
∂2f

∂xi∂xj
= 200 (δi,j − 2xi−1δi−1,j)− 400xi (δi+1,j − 2xiδi,j)− 400δi,j

(
xi+1 − x2

i

)
+ 2δi,j ,

=
(
202 + 1200x2

i − 400xi+1

)
δi,j − 400xiδi+1,j − 400xi−1δi−1,j ,

if i, j ∈ [1, N − 2] with i, j ∈ [0, N − 1] defining the N ×N matrix. Other non-zero entries of the matrix are

∂2f

∂x2
0

= 1200x2
0 − 400x1 + 2,

∂2f

∂x0∂x1
=

∂2f

∂x1∂x0
= −400x0,

∂2f

∂xN−1∂xN−2
=

∂2f

∂xN−2∂xN−1
= −400xN−2,

∂2f

∂x2
N−1

= 200.

For example, the Hessian when N = 5 is

H =

1200x2

0 − 400x1 + 2 −400x0 0 0 0
−400x0 202 + 1200x2

1 − 400x2 −400x1 0 0
0 −400x1 202 + 1200x2

2 − 400x3 −400x2 0
0 −400x2 202 + 1200x2

3 − 400x4 −400x3

0 0 0 −400x3 200

 .

The code which computes this Hessian along with the code to minimize the function using fmin_ncg is shown in
the following example:

>>> from scipy.optimize import fmin_ncg
>>> def rosen_hess(x):
... x = asarray(x)
... H = diag(-400*x[:-1],1) - diag(400*x[:-1],-1)

18 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.7

... diagonal = zeros_like(x)

... diagonal[0] = 1200*x[0]-400*x[1]+2

... diagonal[-1] = 200

... diagonal[1:-1] = 202 + 1200*x[1:-1]**2 - 400*x[2:]

... H = H + diag(diagonal)

... return H

>>> x0 = [1.3, 0.7, 0.8, 1.9, 1.2]
>>> xopt = fmin_ncg(rosen, x0, rosen_der, fhess=rosen_hess, avextol=1e-8)
Optimization terminated successfully.

Current function value: 0.000000
Iterations: 23
Function evaluations: 26
Gradient evaluations: 23
Hessian evaluations: 23

>>> print xopt
[1. 1. 1. 1. 1.]

Hessian product example:

For larger minimization problems, storing the entire Hessian matrix can consume considerable time and memory. The
Newton-CG algorithm only needs the product of the Hessian times an arbitrary vector. As a result, the user can supply
code to compute this product rather than the full Hessian by setting the fhess_p keyword to the desired function.
The fhess_p function should take the minimization vector as the first argument and the arbitrary vector as the second
argument. Any extra arguments passed to the function to be minimized will also be passed to this function. If possible,
using Newton-CG with the hessian product option is probably the fastest way to minimize the function.

In this case, the product of the Rosenbrock Hessian with an arbitrary vector is not difficult to compute. If p is the
arbitrary vector, then H (x)p has elements:

H (x)p =

(
1200x2

0 − 400x1 + 2
)
p0 − 400x0p1

...
−400xi−1pi−1 +

(
202 + 1200x2

i − 400xi+1

)
pi − 400xipi+1

...
−400xN−2pN−2 + 200pN−1

 .

Code which makes use of the fhess_p keyword to minimize the Rosenbrock function using fmin_ncg follows:

>>> from scipy.optimize import fmin_ncg
>>> def rosen_hess_p(x,p):
... x = asarray(x)
... Hp = zeros_like(x)
... Hp[0] = (1200*x[0]**2 - 400*x[1] + 2)*p[0] - 400*x[0]*p[1]
... Hp[1:-1] = -400*x[:-2]*p[:-2]+(202+1200*x[1:-1]**2-400*x[2:])*p[1:-1] \
... -400*x[1:-1]*p[2:]
... Hp[-1] = -400*x[-2]*p[-2] + 200*p[-1]
... return Hp

>>> x0 = [1.3, 0.7, 0.8, 1.9, 1.2]
>>> xopt = fmin_ncg(rosen, x0, rosen_der, fhess_p=rosen_hess_p, avextol=1e-8)
Optimization terminated successfully.

Current function value: 0.000000
Iterations: 22

1.5. Optimization (optimize) 19

SciPy Reference Guide, Release 0.7

Function evaluations: 25
Gradient evaluations: 22
Hessian evaluations: 54

>>> print xopt
[1. 1. 1. 1. 1.]

1.5.4 Least-square fitting (leastsq)

All of the previously-explained minimization procedures can be used to solve a least-squares problem provided the
appropriate objective function is constructed. For example, suppose it is desired to fit a set of data {xi,yi} to a known
model, y = f (x,p) where p is a vector of parameters for the model that need to be found. A common method for
determining which parameter vector gives the best fit to the data is to minimize the sum of squares of the residuals.
The residual is usually defined for each observed data-point as

ei (p,yi,xi) = ‖yi − f (xi,p)‖ .

An objective function to pass to any of the previous minization algorithms to obtain a least-squares fit is.

J (p) =
N−1∑
i=0

e2
i (p) .

The leastsq algorithm performs this squaring and summing of the residuals automatically. It takes as an input
argument the vector function e (p) and returns the value of p which minimizes J (p) = eT e directly. The user is also
encouraged to provide the Jacobian matrix of the function (with derivatives down the columns or across the rows). If
the Jacobian is not provided, it is estimated.

An example should clarify the usage. Suppose it is believed some measured data follow a sinusoidal pattern

yi = A sin (2πkxi + θ)

where the parameters A, k , and θ are unknown. The residual vector is

ei = |yi −A sin (2πkxi + θ)| .

By defining a function to compute the residuals and (selecting an appropriate starting position), the least-squares fit
routine can be used to find the best-fit parameters Â, k̂, θ̂. This is shown in the following example:

>>> from numpy import *
>>> x = arange(0,6e-2,6e-2/30)
>>> A,k,theta = 10, 1.0/3e-2, pi/6
>>> y_true = A*sin(2*pi*k*x+theta)
>>> y_meas = y_true + 2*random.randn(len(x))

>>> def residuals(p, y, x):
... A,k,theta = p
... err = y-A*sin(2*pi*k*x+theta)
... return err

>>> def peval(x, p):
... return p[0]*sin(2*pi*p[1]*x+p[2])

>>> p0 = [8, 1/2.3e-2, pi/3]
>>> print array(p0)
[8. 43.4783 1.0472]

20 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.7

>>> from scipy.optimize import leastsq
>>> plsq = leastsq(residuals, p0, args=(y_meas, x))
>>> print plsq[0]
[10.9437 33.3605 0.5834]

>>> print array([A, k, theta])
[10. 33.3333 0.5236]

>>> import matplotlib.pyplot as plt
>>> plt.plot(x,peval(x,plsq[0]),x,y_meas,’o’,x,y_true)
>>> plt.title(’Least-squares fit to noisy data’)
>>> plt.legend([’Fit’, ’Noisy’, ’True’])
>>> plt.show()

0.00 0.01 0.02 0.03 0.04 0.05 0.06
15

10

5

0

5

10

15
Least-squares fit to noisy data

Fit

Noisy

True

1.5.5 Scalar function minimizers

Often only the minimum of a scalar function is needed (a scalar function is one that takes a scalar as input and returns
a scalar output). In these circumstances, other optimization techniques have been developed that can work faster.

Unconstrained minimization (brent)

There are actually two methods that can be used to minimize a scalar function (brent and golden), but golden is
included only for academic purposes and should rarely be used. The brent method uses Brent’s algorithm for locating
a minimum. Optimally a bracket should be given which contains the minimum desired. A bracket is a triple (a, b, c)
such that f (a) > f (b) < f (c) and a < b < c . If this is not given, then alternatively two starting points can be
chosen and a bracket will be found from these points using a simple marching algorithm. If these two starting points
are not provided 0 and 1 will be used (this may not be the right choice for your function and result in an unexpected
minimum being returned).

1.5. Optimization (optimize) 21

SciPy Reference Guide, Release 0.7

Bounded minimization (fminbound)

Thus far all of the minimization routines described have been unconstrained minimization routines. Very often, how-
ever, there are constraints that can be placed on the solution space before minimization occurs. The fminbound
function is an example of a constrained minimization procedure that provides a rudimentary interval constraint for
scalar functions. The interval constraint allows the minimization to occur only between two fixed endpoints.

For example, to find the minimum of J1 (x) near x = 5 , fminbound can be called using the interval [4, 7] as a
constraint. The result is xmin = 5.3314 :

>>> from scipy.special import j1
>>> from scipy.optimize import fminbound
>>> xmin = fminbound(j1, 4, 7)
>>> print xmin
5.33144184241

1.5.6 Root finding

Sets of equations

To find the roots of a polynomial, the command roots is useful. To find a root of a set of non-linear equations, the
command fsolve is needed. For example, the following example finds the roots of the single-variable transcendental
equation

x + 2 cos (x) = 0,

and the set of non-linear equations

x0 cos (x1) = 4,

x0x1 − x1 = 5.

The results are x = −1.0299 and x0 = 6.5041, x1 = 0.9084 .

>>> def func(x):
... return x + 2*cos(x)

>>> def func2(x):
... out = [x[0]*cos(x[1]) - 4]
... out.append(x[1]*x[0] - x[1] - 5)
... return out

>>> from scipy.optimize import fsolve
>>> x0 = fsolve(func, 0.3)
>>> print x0
-1.02986652932

>>> x02 = fsolve(func2, [1, 1])
>>> print x02
[6.50409711 0.90841421]

22 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.7

Scalar function root finding

If one has a single-variable equation, there are four different root finder algorithms that can be tried. Each of these
root finding algorithms requires the endpoints of an interval where a root is suspected (because the function changes
signs). In general brentq is the best choice, but the other methods may be useful in certain circumstances or for
academic purposes.

Fixed-point solving

A problem closely related to finding the zeros of a function is the problem of finding a fixed-point of a function. A
fixed point of a function is the point at which evaluation of the function returns the point: g (x) = x. Clearly the fixed
point of g is the root of f (x) = g (x) − x. Equivalently, the root of f is the fixed_point of g (x) = f (x) + x. The
routine fixed_point provides a simple iterative method using Aitkens sequence acceleration to estimate the fixed
point of g given a starting point.

1.6 Interpolation (scipy.interpolate)

Contents

• Interpolation (scipy.interpolate)

– Linear 1-d interpolation (interp1d)

– Spline interpolation in 1-d (interpolate.splXXX)

– Two-dimensional spline representation (bisplrep)

– Using radial basis functions for smoothing/interpolation

* 1-d Example

* 2-d Example

There are two general interpolation facilities available in SciPy. The first facility is an interpolation class which
performs linear 1-dimensional interpolation. The second facility is based on the FORTRAN library FITPACK and
provides functions for 1- and 2-dimensional (smoothed) cubic-spline interpolation.

1.6.1 Linear 1-d interpolation (interp1d)

The interp1d class in scipy.interpolate is a convenient method to create a function based on fixed data points which can
be evaluated anywhere within the domain defined by the given data using linear interpolation. An instance of this class
is created by passing the 1-d vectors comprising the data. The instance of this class defines a __call__ method and
can therefore by treated like a function which interpolates between known data values to obtain unknown values (it
also has a docstring for help). Behavior at the boundary can be specified at instantiation time. The following example
demonstrates it’s use.

>>> import numpy as np
>>> from scipy import interpolate

1.6. Interpolation (scipy.interpolate) 23

SciPy Reference Guide, Release 0.7

>>> x = np.arange(0,10)
>>> y = np.exp(-x/3.0)
>>> f = interpolate.interp1d(x, y)

>>> xnew = np.arange(0,9,0.1)
>>> import matplotlib.pyplot as plt
>>> plt.plot(x,y,’o’,xnew,f(xnew),’-’)

0 1 2 3 4 5 6 7 8 9
0.0

0.2

0.4

0.6

0.8

1.0

1.6.2 Spline interpolation in 1-d (interpolate.splXXX)

Spline interpolation requires two essential steps: (1) a spline representation of the curve is computed, and (2) the spline
is evaluated at the desired points. In order to find the spline representation, there are two different was to represent
a curve and obtain (smoothing) spline coefficients: directly and parametrically. The direct method finds the spline
representation of a curve in a two- dimensional plane using the function splrep. The first two arguments are the
only ones required, and these provide the x and y components of the curve. The normal output is a 3-tuple, (t, c, k) ,
containing the knot-points, t , the coefficients c and the order k of the spline. The default spline order is cubic, but this
can be changed with the input keyword, k.

For curves in N -dimensional space the function splprep allows defining the curve parametrically. For this function
only 1 input argument is required. This input is a list of N -arrays representing the curve in N -dimensional space. The
length of each array is the number of curve points, and each array provides one component of the N -dimensional data
point. The parameter variable is given with the keword argument, u, which defaults to an equally-spaced monotonic
sequence between 0 and 1 . The default output consists of two objects: a 3-tuple, (t, c, k) , containing the spline
representation and the parameter variable u.

The keyword argument, s , is used to specify the amount of smoothing to perform during the spline fit. The default
value of s is s = m−

√
2m where m is the number of data-points being fit. Therefore, if no smoothing is desired a

value of s = 0 should be passed to the routines.

Once the spline representation of the data has been determined, functions are available for evaluating the spline
(splev) and its derivatives (splev, splade) at any point and the integral of the spline between any two points
(splint). In addition, for cubic splines (k = 3) with 8 or more knots, the roots of the spline can be estimated (
sproot). These functions are demonstrated in the example that follows.

24 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.7

>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> from scipy import interpolate

Cubic-spline

>>> x = np.arange(0,2*np.pi+np.pi/4,2*np.pi/8)
>>> y = np.sin(x)
>>> tck = interpolate.splrep(x,y,s=0)
>>> xnew = np.arange(0,2*np.pi,np.pi/50)
>>> ynew = interpolate.splev(xnew,tck,der=0)

>>> plt.figure()
>>> plt.plot(x,y,’x’,xnew,ynew,xnew,np.sin(xnew),x,y,’b’)
>>> plt.legend([’Linear’,’Cubic Spline’, ’True’])
>>> plt.axis([-0.05,6.33,-1.05,1.05])
>>> plt.title(’Cubic-spline interpolation’)
>>> plt.show()

Derivative of spline

>>> yder = interpolate.splev(xnew,tck,der=1)
>>> plt.figure()
>>> plt.plot(xnew,yder,xnew,np.cos(xnew),’--’)
>>> plt.legend([’Cubic Spline’, ’True’])
>>> plt.axis([-0.05,6.33,-1.05,1.05])
>>> plt.title(’Derivative estimation from spline’)
>>> plt.show()

Integral of spline

>>> def integ(x,tck,constant=-1):
>>> x = np.atleast_1d(x)
>>> out = np.zeros(x.shape, dtype=x.dtype)
>>> for n in xrange(len(out)):
>>> out[n] = interpolate.splint(0,x[n],tck)
>>> out += constant
>>> return out
>>>
>>> yint = integ(xnew,tck)
>>> plt.figure()
>>> plt.plot(xnew,yint,xnew,-np.cos(xnew),’--’)
>>> plt.legend([’Cubic Spline’, ’True’])
>>> plt.axis([-0.05,6.33,-1.05,1.05])
>>> plt.title(’Integral estimation from spline’)
>>> plt.show()

Roots of spline

>>> print interpolate.sproot(tck)
[0. 3.1416]

Parametric spline

1.6. Interpolation (scipy.interpolate) 25

SciPy Reference Guide, Release 0.7

>>> t = np.arange(0,1.1,.1)
>>> x = np.sin(2*np.pi*t)
>>> y = np.cos(2*np.pi*t)
>>> tck,u = interpolate.splprep([x,y],s=0)
>>> unew = np.arange(0,1.01,0.01)
>>> out = interpolate.splev(unew,tck)
>>> plt.figure()
>>> plt.plot(x,y,’x’,out[0],out[1],np.sin(2*np.pi*unew),np.cos(2*np.pi*unew),x,y,’b’)
>>> plt.legend([’Linear’,’Cubic Spline’, ’True’])
>>> plt.axis([-1.05,1.05,-1.05,1.05])
>>> plt.title(’Spline of parametrically-defined curve’)
>>> plt.show()

0 1 2 3 4 5 6
1.0

0.5

0.0

0.5

1.0

Cubic-spline interpolation

Linear

Cubic Spline

True

0 1 2 3 4 5 6
1.0

0.5

0.0

0.5

1.0

Derivative estimation from spline

Cubic Spline

True

26 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.7

0 1 2 3 4 5 6
1.0

0.5

0.0

0.5

1.0

Integral estimation from spline

Cubic Spline

True

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0

Spline of parametrically-defined curve

Linear

Cubic Spline

True

1.6.3 Two-dimensional spline representation (bisplrep)

For (smooth) spline-fitting to a two dimensional surface, the function bisplrep is available. This function takes as
required inputs the 1-D arrays x, y, and z which represent points on the surface z = f (x, y) . The default output is a
list [tx, ty, c, kx, ky] whose entries represent respectively, the components of the knot positions, the coefficients of the
spline, and the order of the spline in each coordinate. It is convenient to hold this list in a single object, tck, so that
it can be passed easily to the function bisplev. The keyword, s , can be used to change the amount of smoothing
performed on the data while determining the appropriate spline. The default value is s = m −

√
2m where m is the

number of data points in the x, y, and z vectors. As a result, if no smoothing is desired, then s = 0 should be passed to
bisplrep .

To evaluate the two-dimensional spline and it’s partial derivatives (up to the order of the spline), the function bisplev
is required. This function takes as the first two arguments two 1-D arrays whose cross-product specifies the domain
over which to evaluate the spline. The third argument is the tck list returned from bisplrep. If desired, the fourth
and fifth arguments provide the orders of the partial derivative in the x and y direction respectively.

It is important to note that two dimensional interpolation should not be used to find the spline representation of

1.6. Interpolation (scipy.interpolate) 27

SciPy Reference Guide, Release 0.7

images. The algorithm used is not amenable to large numbers of input points. The signal processing toolbox contains
more appropriate algorithms for finding the spline representation of an image. The two dimensional interpolation
commands are intended for use when interpolating a two dimensional function as shown in the example that follows.
This example uses the mgrid command in SciPy which is useful for defining a “mesh-grid “in many dimensions.
(See also the ogrid command if the full-mesh is not needed). The number of output arguments and the number of
dimensions of each argument is determined by the number of indexing objects passed in mgrid.

>>> import numpy as np
>>> from scipy import interpolate
>>> import matplotlib.pyplot as plt

Define function over sparse 20x20 grid

>>> x,y = np.mgrid[-1:1:20j,-1:1:20j]
>>> z = (x+y)*np.exp(-6.0*(x*x+y*y))

>>> plt.figure()
>>> plt.pcolor(x,y,z)
>>> plt.colorbar()
>>> plt.title("Sparsely sampled function.")
>>> plt.show()

Interpolate function over new 70x70 grid

>>> xnew,ynew = np.mgrid[-1:1:70j,-1:1:70j]
>>> tck = interpolate.bisplrep(x,y,z,s=0)
>>> znew = interpolate.bisplev(xnew[:,0],ynew[0,:],tck)

>>> plt.figure()
>>> plt.pcolor(xnew,ynew,znew)
>>> plt.colorbar()
>>> plt.title("Interpolated function.")
>>> plt.show()

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0
Sparsely sampled function.

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

28 Chapter 1. SciPy Tutorial

http://docs.scipy.org/doc/numpy/reference/generated/numpy.mgrid.html#numpy.mgrid
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ogrid.html#numpy.ogrid
http://docs.scipy.org/doc/numpy/reference/generated/numpy.mgrid.html#numpy.mgrid

SciPy Reference Guide, Release 0.7

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0
Interpolated function.

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

1.6.4 Using radial basis functions for smoothing/interpolation

Radial basis functions can be used for smoothing/interpolating scattered data in n-dimensions, but should be used with
caution for extrapolation outside of the observed data range.

1-d Example

This example compares the usage of the Rbf and UnivariateSpline classes from the scipy.interpolate module.

>>> import numpy as np
>>> from scipy.interpolate import Rbf, InterpolatedUnivariateSpline
>>> import matplotlib.pyplot as plt

>>> # setup data
>>> x = np.linspace(0, 10, 9)
>>> y = np.sin(x)
>>> xi = np.linspace(0, 10, 101)

>>> # use fitpack2 method
>>> ius = InterpolatedUnivariateSpline(x, y)
>>> yi = ius(xi)

>>> plt.subplot(2, 1, 1)
>>> plt.plot(x, y, ’bo’)
>>> plt.plot(xi, yi, ’g’)
>>> plt.plot(xi, np.sin(xi), ’r’)
>>> plt.title(’Interpolation using univariate spline’)

>>> # use RBF method
>>> rbf = Rbf(x, y)
>>> fi = rbf(xi)

1.6. Interpolation (scipy.interpolate) 29

SciPy Reference Guide, Release 0.7

>>> plt.subplot(2, 1, 2)
>>> plt.plot(x, y, ’bo’)
>>> plt.plot(xi, yi, ’g’)
>>> plt.plot(xi, np.sin(xi), ’r’)
>>> plt.title(’Interpolation using RBF - multiquadrics’)
>>> plt.show()

0 2 4 6 8 10
1.0

0.5

0.0

0.5

1.0
Interpolation using univariate spline

0 2 4 6 8 10
1.0

0.5

0.0

0.5

1.0
Interpolation using RBF - multiquadrics

2-d Example

This example shows how to interpolate scattered 2d data.

>>> import numpy as np
>>> from scipy.interpolate import Rbf
>>> import matplotlib.pyplot as plt
>>> from matplotlib import cm

>>> # 2-d tests - setup scattered data
>>> x = np.random.rand(100)*4.0-2.0
>>> y = np.random.rand(100)*4.0-2.0
>>> z = x*np.exp(-x**2-y**2)
>>> ti = np.linspace(-2.0, 2.0, 100)
>>> XI, YI = np.meshgrid(ti, ti)

>>> # use RBF
>>> rbf = Rbf(x, y, z, epsilon=2)
>>> ZI = rbf(XI, YI)

>>> # plot the result
>>> n = plt.normalize(-2., 2.)
>>> plt.subplot(1, 1, 1)
>>> plt.pcolor(XI, YI, ZI, cmap=cm.jet)
>>> plt.scatter(x, y, 100, z, cmap=cm.jet)
>>> plt.title(’RBF interpolation - multiquadrics’)

30 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.7

>>> plt.xlim(-2, 2)
>>> plt.ylim(-2, 2)
>>> plt.colorbar()

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
RBF interpolation - multiquadrics

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

1.7 Signal Processing (signal)

The signal processing toolbox currently contains some filtering functions, a limited set of filter design tools, and a few
B-spline interpolation algorithms for one- and two-dimensional data. While the B-spline algorithms could technically
be placed under the interpolation category, they are included here because they only work with equally-spaced data and
make heavy use of filter-theory and transfer-function formalism to provide a fast B-spline transform. To understand
this section you will need to understand that a signal in SciPy is an array of real or complex numbers.

1.7.1 B-splines

A B-spline is an approximation of a continuous function over a finite- domain in terms of B-spline coefficients and knot
points. If the knot- points are equally spaced with spacing ∆x , then the B-spline approximation to a 1-dimensional
function is the finite-basis expansion.

y (x) ≈
∑

j

cjβ
o
(x

∆x
− j

)
.

In two dimensions with knot-spacing ∆x and ∆y , the function representation is

z (x, y) ≈
∑

j

∑
k

cjkβo
(x

∆x
− j

)
βo

(
y

∆y
− k

)
.

In these expressions, βo (·) is the space-limited B-spline basis function of order, o . The requirement of equally-
spaced knot-points and equally-spaced data points, allows the development of fast (inverse-filtering) algorithms for
determining the coefficients, cj , from sample-values, yn . Unlike the general spline interpolation algorithms, these
algorithms can quickly find the spline coefficients for large images.

The advantage of representing a set of samples via B-spline basis functions is that continuous-domain operators
(derivatives, re- sampling, integral, etc.) which assume that the data samples are drawn from an underlying con-
tinuous function can be computed with relative ease from the spline coefficients. For example, the second-derivative

1.7. Signal Processing (signal) 31

SciPy Reference Guide, Release 0.7

of a spline is

y′′ (x) =
1

∆x2

∑
j

cjβ
o′′

(x

∆x
− j

)
.

Using the property of B-splines that

d2βo (w)
dw2

= βo−2 (w + 1)− 2βo−2 (w) + βo−2 (w − 1)

it can be seen that

y′′ (x) =
1

∆x2

∑
j

cj

[
βo−2

(x

∆x
− j + 1

)
− 2βo−2

(x

∆x
− j

)
+ βo−2

(x

∆x
− j − 1

)]
.

If o = 3 , then at the sample points,

∆x2 y′ (x)|x=n∆x =
∑

j

cjδn−j+1 − 2cjδn−j + cjδn−j−1,

= cn+1 − 2cn + cn−1.

Thus, the second-derivative signal can be easily calculated from the spline fit. if desired, smoothing splines can be
found to make the second-derivative less sensitive to random-errors.

The savvy reader will have already noticed that the data samples are related to the knot coefficients via a convolution
operator, so that simple convolution with the sampled B-spline function recovers the original data from the spline coef-
ficients. The output of convolutions can change depending on how boundaries are handled (this becomes increasingly
more important as the number of dimensions in the data- set increases). The algorithms relating to B-splines in the
signal- processing sub package assume mirror-symmetric boundary conditions. Thus, spline coefficients are computed
based on that assumption, and data-samples can be recovered exactly from the spline coefficients by assuming them
to be mirror-symmetric also.

Currently the package provides functions for determining second- and third-order cubic spline coefficients
from equally spaced samples in one- and two-dimensions (signal.qspline1d, signal.qspline2d,
signal.cspline1d, signal.cspline2d). The package also supplies a function (signal.bspline) for
evaluating the bspline basis function, βo (x) for arbitrary order and x. For large o , the B-spline basis function can be
approximated well by a zero-mean Gaussian function with standard-deviation equal to σo = (o + 1) /12 :

βo (x) ≈ 1√
2πσ2

o

exp
(
− x2

2σo

)
.

A function to compute this Gaussian for arbitrary x and o is also available (signal.gauss_spline). The
following code and Figure uses spline-filtering to compute an edge-image (the second-derivative of a smoothed
spline) of Lena’s face which is an array returned by the command lena. The command signal.sepfir2d
was used to apply a separable two-dimensional FIR filter with mirror- symmetric boundary conditions to the spline
coefficients. This function is ideally suited for reconstructing samples from spline coefficients and is faster than
signal.convolve2dwhich convolves arbitrary two-dimensional filters and allows for choosing mirror-symmetric
boundary conditions.

>>> from numpy import *
>>> from scipy import signal, misc
>>> import matplotlib.pyplot as plt

>>> image = misc.lena().astype(float32)
>>> derfilt = array([1.0,-2,1.0],float32)
>>> ck = signal.cspline2d(image,8.0)
>>> deriv = signal.sepfir2d(ck, derfilt, [1]) + \
>>> signal.sepfir2d(ck, [1], derfilt)

32 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.7

Alternatively we could have done:

laplacian = array([[0,1,0],[1,-4,1],[0,1,0]],float32)
deriv2 = signal.convolve2d(ck,laplacian,mode=’same’,boundary=’symm’)

>>> plt.figure()
>>> plt.imshow(image)
>>> plt.gray()
>>> plt.title(’Original image’)
>>> plt.show()

>>> plt.figure()
>>> plt.imshow(deriv)
>>> plt.gray()
>>> plt.title(’Output of spline edge filter’)
>>> plt.show()

0 100 200 300 400 500

0

100

200

300

400

500

Original image

0 100 200 300 400 500

0

100

200

300

400

500

Output of spline edge filter

1.7. Signal Processing (signal) 33

SciPy Reference Guide, Release 0.7

1.7.2 Filtering

Filtering is a generic name for any system that modifies an input signal in some way. In SciPy a signal can be thought
of as a Numpy array. There are different kinds of filters for different kinds of operations. There are two broad kinds
of filtering operations: linear and non-linear. Linear filters can always be reduced to multiplication of the flattened
Numpy array by an appropriate matrix resulting in another flattened Numpy array. Of course, this is not usually the
best way to compute the filter as the matrices and vectors involved may be huge. For example filtering a 512 × 512
image with this method would require multiplication of a 5122x5122 matrix with a 5122 vector. Just trying to store the
5122 × 5122 matrix using a standard Numpy array would require 68, 719, 476, 736 elements. At 4 bytes per element
this would require 256GB of memory. In most applications most of the elements of this matrix are zero and a different
method for computing the output of the filter is employed.

Convolution/Correlation

Many linear filters also have the property of shift-invariance. This means that the filtering operation is the same at
different locations in the signal and it implies that the filtering matrix can be constructed from knowledge of one row
(or column) of the matrix alone. In this case, the matrix multiplication can be accomplished using Fourier transforms.

Let x [n] define a one-dimensional signal indexed by the integer n. Full convolution of two one-dimensional signals
can be expressed as

y [n] =
∞∑

k=−∞

x [k]h [n− k] .

This equation can only be implemented directly if we limit the sequences to finite support sequences that can be stored
in a computer, choose n = 0 to be the starting point of both sequences, let K + 1 be that value for which y [n] = 0
for all n > K + 1 and M + 1 be that value for which x [n] = 0 for all n > M + 1 , then the discrete convolution
expression is

y [n] =
min(n,K)∑

k=max(n−M,0)

x [k]h [n− k] .

For convenience assume K ≥ M. Then, more explicitly the output of this operation is

y [0] = x [0]h [0]
y [1] = x [0]h [1] + x [1]h [0]
y [2] = x [0]h [2] + x [1]h [1] + x [2]h [0]

...
...

...
y [M] = x [0]h [M] + x [1]h [M − 1] + · · ·+ x [M]h [0]

y [M + 1] = x [1]h [M] + x [2]h [M − 1] + · · ·+ x [M + 1]h [0]
...

...
...

y [K] = x [K −M]h [M] + · · ·+ x [K]h [0]
y [K + 1] = x [K + 1−M]h [M] + · · ·+ x [K]h [1]

...
...

...
y [K + M − 1] = x [K − 1]h [M] + x [K]h [M − 1]

y [K + M] = x [K]h [M] .

Thus, the full discrete convolution of two finite sequences of lengths K + 1 and M + 1 respectively results in a finite
sequence of length K + M + 1 = (K + 1) + (M + 1)− 1.

One dimensional convolution is implemented in SciPy with the function signal.convolve . This function takes
as inputs the signals x, h , and an optional flag and returns the signal y. The optional flag allows for specification of

34 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.7

which part of the output signal to return. The default value of ‘full’ returns the entire signal. If the flag has a value of
‘same’ then only the middle K values are returned starting at y

[⌊
M−1

2

⌋]
so that the output has the same length as the

largest input. If the flag has a value of ‘valid’ then only the middle K −M + 1 = (K + 1) − (M + 1) + 1 output
values are returned where z depends on all of the values of the smallest input from h [0] to h [M] . In other words only
the values y [M] to y [K] inclusive are returned.

This same function signal.convolve can actually take N -dimensional arrays as inputs and will return the N
-dimensional convolution of the two arrays. The same input flags are available for that case as well.

Correlation is very similar to convolution except for the minus sign becomes a plus sign. Thus

w [n] =
∞∑

k=−∞

y [k]x [n + k]

is the (cross) correlation of the signals y and x. For finite-length signals with y [n] = 0 outside of the range [0,K] and
x [n] = 0 outside of the range [0,M] , the summation can simplify to

w [n] =
min(K,M−n)∑
k=max(0,−n)

y [k]x [n + k] .

Assuming again that K ≥ M this is

w [−K] = y [K]x [0]
w [−K + 1] = y [K − 1]x [0] + y [K]x [1]

...
...

...
w [M −K] = y [K −M]x [0] + y [K −M + 1]x [1] + · · ·+ y [K]x [M]

w [M −K + 1] = y [K −M − 1]x [0] + · · ·+ y [K − 1]x [M]
...

...
...

w [−1] = y [1]x [0] + y [2]x [1] + · · ·+ y [M + 1]x [M]
w [0] = y [0]x [0] + y [1]x [1] + · · ·+ y [M]x [M]
w [1] = y [0]x [1] + y [1]x [2] + · · ·+ y [M − 1]x [M]
w [2] = y [0]x [2] + y [1]x [3] + · · ·+ y [M − 2]x [M]

...
...

...
w [M − 1] = y [0]x [M − 1] + y [1]x [M]

w [M] = y [0]x [M] .

The SciPy function signal.correlate implements this operation. Equivalent flags are available for this operation
to return the full K+M +1 length sequence (‘full’) or a sequence with the same size as the largest sequence starting at
w

[
−K +

⌊
M−1

2

⌋]
(‘same’) or a sequence where the values depend on all the values of the smallest sequence (‘valid’).

This final option returns the K −M + 1 values w [M −K] to w [0] inclusive.

The function signal.correlate can also take arbitrary N -dimensional arrays as input and return the N -
dimensional convolution of the two arrays on output.

When N = 2, signal.correlate and/or signal.convolve can be used to construct arbitrary image filters
to perform actions such as blurring, enhancing, and edge-detection for an image.

Convolution is mainly used for filtering when one of the signals is much smaller than the other (K � M), otherwise
linear filtering is more easily accomplished in the frequency domain (see Fourier Transforms).

1.7. Signal Processing (signal) 35

SciPy Reference Guide, Release 0.7

Difference-equation filtering

A general class of linear one-dimensional filters (that includes convolution filters) are filters described by the difference
equation

N∑
k=0

aky [n− k] =
M∑

k=0

bkx [n− k]

where x [n] is the input sequence and y [n] is the output sequence. If we assume initial rest so that y [n] = 0 for n < 0
, then this kind of filter can be implemented using convolution. However, the convolution filter sequence h [n] could
be infinite if ak 6= 0 for k ≥ 1. In addition, this general class of linear filter allows initial conditions to be placed on
y [n] for n < 0 resulting in a filter that cannot be expressed using convolution.

The difference equation filter can be thought of as finding y [n] recursively in terms of it’s previous values

a0y [n] = −a1y [n− 1]− · · · − aNy [n−N] + · · ·+ b0x [n] + · · ·+ bMx [n−M] .

Often a0 = 1 is chosen for normalization. The implementation in SciPy of this general difference equation filter is
a little more complicated then would be implied by the previous equation. It is implemented so that only one signal
needs to be delayed. The actual implementation equations are (assuming a0 = 1).

y [n] = b0x [n] + z0 [n− 1]
z0 [n] = b1x [n] + z1 [n− 1]− a1y [n]
z1 [n] = b2x [n] + z2 [n− 1]− a2y [n]

...
...

...
zK−2 [n] = bK−1x [n] + zK−1 [n− 1]− aK−1y [n]
zK−1 [n] = bKx [n]− aKy [n] ,

where K = max (N,M) . Note that bK = 0 if K > M and aK = 0 if K > N. In this way, the output at time n
depends only on the input at time n and the value of z0 at the previous time. This can always be calculated as long as
the K values z0 [n− 1] . . . zK−1 [n− 1] are computed and stored at each time step.

The difference-equation filter is called using the command signal.lfilter in SciPy. This command takes as
inputs the vector b, the vector, a, a signal x and returns the vector y (the same length as x) computed using the
equation given above. If x is N -dimensional, then the filter is computed along the axis provided. If, desired, initial
conditions providing the values of z0 [−1] to zK−1 [−1] can be provided or else it will be assumed that they are all
zero. If initial conditions are provided, then the final conditions on the intermediate variables are also returned. These
could be used, for example, to restart the calculation in the same state.

Sometimes it is more convenient to express the initial conditions in terms of the signals x [n] and y [n] . In other words,
perhaps you have the values of x [−M] to x [−1] and the values of y [−N] to y [−1] and would like to determine what
values of zm [−1] should be delivered as initial conditions to the difference-equation filter. It is not difficult to show
that for 0 ≤ m < K,

zm [n] =
K−m−1∑

p=0

(bm+p+1x [n− p]− am+p+1y [n− p]) .

Using this formula we can find the intial condition vector z0 [−1] to zK−1 [−1] given initial conditions on y (and x).
The command signal.lfiltic performs this function.

Other filters

The signal processing package provides many more filters as well.

36 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.7

Median Filter

A median filter is commonly applied when noise is markedly non- Gaussian or when it is desired to preserve edges. The
median filter works by sorting all of the array pixel values in a rectangular region surrounding the point of interest.
The sample median of this list of neighborhood pixel values is used as the value for the output array. The sample
median is the middle array value in a sorted list of neighborhood values. If there are an even number of elements in the
neighborhood, then the average of the middle two values is used as the median. A general purpose median filter that
works on N-dimensional arrays is signal.medfilt . A specialized version that works only for two-dimensional
arrays is available as signal.medfilt2d .

Order Filter

A median filter is a specific example of a more general class of filters called order filters. To compute the output
at a particular pixel, all order filters use the array values in a region surrounding that pixel. These array values are
sorted and then one of them is selected as the output value. For the median filter, the sample median of the list of
array values is used as the output. A general order filter allows the user to select which of the sorted values will be
used as the output. So, for example one could choose to pick the maximum in the list or the minimum. The order
filter takes an additional argument besides the input array and the region mask that specifies which of the elements
in the sorted list of neighbor array values should be used as the output. The command to perform an order filter is
signal.order_filter .

Wiener filter

The Wiener filter is a simple deblurring filter for denoising images. This is not the Wiener filter commonly described
in image reconstruction problems but instead it is a simple, local-mean filter. Let x be the input signal, then the output
is

y =

{
σ2

σ2
x
mx +

(
1− σ2

σ2
x

)
x σ2

x ≥ σ2,

mx σ2
x < σ2.

Where mx is the local estimate of the mean and σ2
x is the local estimate of the variance. The window for these estimates

is an optional input parameter (default is 3 × 3). The parameter σ2 is a threshold noise parameter. If σ is not given
then it is estimated as the average of the local variances.

Hilbert filter

The Hilbert transform constructs the complex-valued analytic signal from a real signal. For example if x = cos ωn
then y = hilbert (x) would return (except near the edges) y = exp (jωn) . In the frequency domain, the hilbert
transform performs

Y = X ·H

where H is 2 for positive frequencies, 0 for negative frequencies and 1 for zero-frequencies.

1.8 Linear Algebra

When SciPy is built using the optimized ATLAS LAPACK and BLAS libraries, it has very fast linear algebra capabil-
ities. If you dig deep enough, all of the raw lapack and blas libraries are available for your use for even more speed.
In this section, some easier-to-use interfaces to these routines are described.

All of these linear algebra routines expect an object that can be converted into a 2-dimensional array. The output of
these routines is also a two-dimensional array. There is a matrix class defined in Numpy, which you can initialize with
an appropriate Numpy array in order to get objects for which multiplication is matrix-multiplication instead of the
default, element-by-element multiplication.

1.8. Linear Algebra 37

SciPy Reference Guide, Release 0.7

1.8.1 Matrix Class

The matrix class is initialized with the SciPy command mat which is just convenient short-hand for matrix. If you
are going to be doing a lot of matrix-math, it is convenient to convert arrays into matrices using this command. One
advantage of using the mat command is that you can enter two-dimensional matrices using MATLAB-like syntax
with commas or spaces separating columns and semicolons separting rows as long as the matrix is placed in a string
passed to mat .

1.8.2 Basic routines

Finding Inverse

The inverse of a matrix A is the matrix B such that AB = I where I is the identity matrix consisting of ones down
the main diagonal. Usually B is denoted B = A−1 . In SciPy, the matrix inverse of the Numpy array, A, is obtained
using linalg.inv (A) , or using A.I if A is a Matrix. For example, let

A =

 1 3 5
2 5 1
2 3 8

then

A−1 =
1
25

 −37 9 22
14 2 −9
4 −3 1

 =

 −1.48 0.36 0.88
0.56 0.08 −0.36
0.16 −0.12 0.04

 .

The following example demonstrates this computation in SciPy

>>> A = mat(’[1 3 5; 2 5 1; 2 3 8]’)
>>> A
matrix([[1, 3, 5],

[2, 5, 1],
[2, 3, 8]])

>>> A.I
matrix([[-1.48, 0.36, 0.88],

[0.56, 0.08, -0.36],
[0.16, -0.12, 0.04]])

>>> from scipy import linalg
>>> linalg.inv(A)
array([[-1.48, 0.36, 0.88],

[0.56, 0.08, -0.36],
[0.16, -0.12, 0.04]])

Solving linear system

Solving linear systems of equations is straightforward using the scipy command linalg.solve. This command
expects an input matrix and a right-hand-side vector. The solution vector is then computed. An option for entering a
symmetrix matrix is offered which can speed up the processing when applicable. As an example, suppose it is desired
to solve the following simultaneous equations:

x + 3y + 5z = 10
2x + 5y + z = 8

2x + 3y + 8z = 3

38 Chapter 1. SciPy Tutorial

http://docs.scipy.org/doc/numpy/reference/generated/numpy.matrix.html#numpy.matrix

SciPy Reference Guide, Release 0.7

We could find the solution vector using a matrix inverse: x
y
z

 =

 1 3 5
2 5 1
2 3 8

−1 10
8
3

 =
1
25

 −232
129
19

 =

 −9.28
5.16
0.76

 .

However, it is better to use the linalg.solve command which can be faster and more numerically stable. In this case it
however gives the same answer as shown in the following example:

>>> A = mat(’[1 3 5; 2 5 1; 2 3 8]’)
>>> b = mat(’[10;8;3]’)
>>> A.I*b
matrix([[-9.28],

[5.16],
[0.76]])

>>> linalg.solve(A,b)
array([[-9.28],

[5.16],
[0.76]])

Finding Determinant

The determinant of a square matrix A is often denoted |A| and is a quantity often used in linear algebra. Suppose aij

are the elements of the matrix A and let Mij = |Aij | be the determinant of the matrix left by removing the ith row
and jth column from A . Then for any row i,

|A| =
∑

j

(−1)i+j
aijMij .

This is a recursive way to define the determinant where the base case is defined by accepting that the determinant of a
1×1 matrix is the only matrix element. In SciPy the determinant can be calculated with linalg.det . For example,
the determinant of

A =

 1 3 5
2 5 1
2 3 8

is

|A| = 1
∣∣∣∣ 5 1

3 8

∣∣∣∣− 3
∣∣∣∣ 2 1

2 8

∣∣∣∣ + 5
∣∣∣∣ 2 5

2 3

∣∣∣∣
= 1 (5 · 8− 3 · 1)− 3 (2 · 8− 2 · 1) + 5 (2 · 3− 2 · 5) = −25.

In SciPy this is computed as shown in this example:

>>> A = mat(’[1 3 5; 2 5 1; 2 3 8]’)
>>> linalg.det(A)
-25.000000000000004

Computing norms

Matrix and vector norms can also be computed with SciPy. A wide range of norm definitions are available using
different parameters to the order argument of linalg.norm . This function takes a rank-1 (vectors) or a rank-2
(matrices) array and an optional order argument (default is 2). Based on these inputs a vector or matrix norm of the
requested order is computed.

1.8. Linear Algebra 39

SciPy Reference Guide, Release 0.7

For vector x , the order parameter can be any real number including inf or -inf. The computed norm is

‖x‖ =

max |xi| ord = inf
min |xi| ord = −inf(∑
i |xi|ord

)1/ord
|ord| < ∞.

For matrix A the only valid values for norm are ±2,±1, ± inf, and ‘fro’ (or ‘f’) Thus,

‖A‖ =

maxi

∑
j |aij | ord = inf

mini

∑
j |aij | ord = −inf

maxj

∑
i |aij | ord = 1

minj

∑
i |aij | ord = −1

max σi ord = 2
minσi ord = −2√

trace (AHA) ord = ’fro’

where σi are the singular values of A .

Solving linear least-squares problems and pseudo-inverses

Linear least-squares problems occur in many branches of applied mathematics. In this problem a set of linear scaling
coefficients is sought that allow a model to fit data. In particular it is assumed that data yi is related to data xi through
a set of coefficients cj and model functions fj (xi) via the model

yi =
∑

j

cjfj (xi) + εi

where εi represents uncertainty in the data. The strategy of least squares is to pick the coefficients cj to minimize

J (c) =
∑

i

∣∣∣∣∣∣yi −
∑

j

cjfj (xi)

∣∣∣∣∣∣
2

.

Theoretically, a global minimum will occur when

∂J

∂c∗n
= 0 =

∑
i

yi −
∑

j

cjfj (xi)

 (−f∗n (xi))

or ∑
j

cj

∑
i

fj (xi) f∗n (xi) =
∑

i

yif
∗
n (xi)

AHAc = AHy

where
{A}ij = fj (xi) .

When AHA is invertible, then
c =

(
AHA

)−1
AHy = A†y

where A† is called the pseudo-inverse of A. Notice that using this definition of A the model can be written

y = Ac + ε.

The command linalg.lstsq will solve the linear least squares problem for c given A and y . In addition
linalg.pinv or linalg.pinv2 (uses a different method based on singular value decomposition) will find A†

given A.

40 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.7

The following example and figure demonstrate the use of linalg.lstsq and linalg.pinv for solving a data-
fitting problem. The data shown below were generated using the model:

yi = c1e
−xi + c2xi

where xi = 0.1i for i = 1 . . . 10 , c1 = 5 , and c2 = 4. Noise is added to yi and the coefficients c1 and c2 are estimated
using linear least squares.

>>> from numpy import *
>>> from scipy import linalg
>>> import matplotlib.pyplot as plt

>>> c1,c2= 5.0,2.0
>>> i = r_[1:11]
>>> xi = 0.1*i
>>> yi = c1*exp(-xi)+c2*xi
>>> zi = yi + 0.05*max(yi)*random.randn(len(yi))

>>> A = c_[exp(-xi)[:,newaxis],xi[:,newaxis]]
>>> c,resid,rank,sigma = linalg.lstsq(A,zi)

>>> xi2 = r_[0.1:1.0:100j]
>>> yi2 = c[0]*exp(-xi2) + c[1]*xi2

>>> plt.plot(xi,zi,’x’,xi2,yi2)
>>> plt.axis([0,1.1,3.0,5.5])
>>> plt.xlabel(’x_i’)
>>> plt.title(’Data fitting with linalg.lstsq’)
>>> plt.show()

0.0 0.2 0.4 0.6 0.8 1.0
xi

3.0

3.5

4.0

4.5

5.0

5.5
Data fitting with linalg.lstsq

Generalized inverse

The generalized inverse is calculated using the command linalg.pinv or linalg.pinv2. These two commands
differ in how they compute the generalized inverse. The first uses the linalg.lstsq algorithm while the second uses

1.8. Linear Algebra 41

SciPy Reference Guide, Release 0.7

singular value decomposition. Let A be an M ×N matrix, then if M > N the generalized inverse is

A† =
(
AHA

)−1
AH

while if M < N matrix the generalized inverse is

A# = AH
(
AAH

)−1
.

In both cases for M = N , then
A† = A# = A−1

as long as A is invertible.

1.8.3 Decompositions

In many applications it is useful to decompose a matrix using other representations. There are several decompositions
supported by SciPy.

Eigenvalues and eigenvectors

The eigenvalue-eigenvector problem is one of the most commonly employed linear algebra operations. In one popular
form, the eigenvalue-eigenvector problem is to find for some square matrix A scalars λ and corresponding vectors v
such that

Av = λv.

For an N ×N matrix, there are N (not necessarily distinct) eigenvalues — roots of the (characteristic) polynomial

|A− λI| = 0.

The eigenvectors, v , are also sometimes called right eigenvectors to distinguish them from another set of left eigen-
vectors that satisfy

vH
L A = λvH

L

or
AHvL = λ∗vL.

With it’s default optional arguments, the command linalg.eig returns λ and v. However, it can also return vL and
just λ by itself (linalg.eigvals returns just λ as well).

In addtion, linalg.eig can also solve the more general eigenvalue problem

Av = λBv

AHvL = λ∗BHvL

for square matrices A and B. The standard eigenvalue problem is an example of the general eigenvalue problem for
B = I. When a generalized eigenvalue problem can be solved, then it provides a decomposition of A as

A = BVΛV−1

where V is the collection of eigenvectors into columns and Λ is a diagonal matrix of eigenvalues.

By definition, eigenvectors are only defined up to a constant scale factor. In SciPy, the scaling factor for the eigenvec-
tors is chosen so that ‖v‖2 =

∑
i v2

i = 1.

As an example, consider finding the eigenvalues and eigenvectors of the matrix

A =

 1 5 2
2 4 1
3 6 2

 .

42 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.7

The characteristic polynomial is

|A− λI| = (1− λ) [(4− λ) (2− λ)− 6]−
5 [2 (2− λ)− 3] + 2 [12− 3 (4− λ)]

= −λ3 + 7λ2 + 8λ− 3.

The roots of this polynomial are the eigenvalues of A :

λ1 = 7.9579
λ2 = −1.2577
λ3 = 0.2997.

The eigenvectors corresponding to each eigenvalue can be found using the original equation. The eigenvectors associ-
ated with these eigenvalues can then be found.

>>> from scipy import linalg
>>> A = mat(’[1 5 2; 2 4 1; 3 6 2]’)
>>> la,v = linalg.eig(A)
>>> l1,l2,l3 = la
>>> print l1, l2, l3
(7.95791620491+0j) (-1.25766470568+0j) (0.299748500767+0j)

>>> print v[:,0]
[-0.5297175 -0.44941741 -0.71932146]
>>> print v[:,1]
[-0.90730751 0.28662547 0.30763439]
>>> print v[:,2]
[0.28380519 -0.39012063 0.87593408]
>>> print sum(abs(v**2),axis=0)
[1. 1. 1.]

>>> v1 = mat(v[:,0]).T
>>> print max(ravel(abs(A*v1-l1*v1)))
8.881784197e-16

Singular value decomposition

Singular Value Decompostion (SVD) can be thought of as an extension of the eigenvalue problem to matrices that are
not square. Let A be an M ×N matrix with M and N arbitrary. The matrices AHA and AAH are square hermitian
matrices 1 of size N ×N and M ×M respectively. It is known that the eigenvalues of square hermitian matrices are
real and non-negative. In addtion, there are at most min (M,N) identical non-zero eigenvalues of AHA and AAH .
Define these positive eigenvalues as σ2

i . The square-root of these are called singular values of A. The eigenvectors of
AHA are collected by columns into an N × N unitary matrix V while the eigenvectors of AAH are collected by
columns in the unitary matrix U , the singular values are collected in an M × N zero matrix Σ with main diagonal
entries set to the singular values. Then

A = UΣVH

is the singular-value decomposition of A. Every matrix has a singular value decomposition. Sometimes, the singular
values are called the spectrum of A. The command linalg.svd will return U , VH , and σi as an array of the
singular values. To obtain the matrix Σ use linalg.diagsvd. The following example illustrates the use of
linalg.svd .

1 A hermitian matrix D satisfies DH = D.

1.8. Linear Algebra 43

SciPy Reference Guide, Release 0.7

>>> A = mat(’[1 3 2; 1 2 3]’)
>>> M,N = A.shape
>>> U,s,Vh = linalg.svd(A)
>>> Sig = mat(linalg.diagsvd(s,M,N))
>>> U, Vh = mat(U), mat(Vh)
>>> print U
[[-0.70710678 -0.70710678]
[-0.70710678 0.70710678]]
>>> print Sig
[[5.19615242 0. 0.]
[0. 1. 0.]]

>>> print Vh
[[-2.72165527e-01 -6.80413817e-01 -6.80413817e-01]
[-6.18652536e-16 -7.07106781e-01 7.07106781e-01]
[-9.62250449e-01 1.92450090e-01 1.92450090e-01]]

>>> print A
[[1 3 2]
[1 2 3]]

>>> print U*Sig*Vh
[[1. 3. 2.]
[1. 2. 3.]]

A unitary matrix D satisfies DHD = I = DDH so that D−1 = DH .

LU decomposition

The LU decompostion finds a representation for the M ×N matrix A as

A = PLU

where P is an M ×M permutation matrix (a permutation of the rows of the identity matrix), L is in M ×K lower
triangular or trapezoidal matrix (K = min (M,N)) with unit-diagonal, and U is an upper triangular or trapezoidal
matrix. The SciPy command for this decomposition is linalg.lu .

Such a decomposition is often useful for solving many simultaneous equations where the left-hand-side does not
change but the right hand side does. For example, suppose we are going to solve

Axi = bi

for many different bi . The LU decomposition allows this to be written as

PLUxi = bi.

Because L is lower-triangular, the equation can be solved for Uxi and finally xi very rapidly using forward- and
back-substitution. An initial time spent factoring A allows for very rapid solution of similar systems of equa-
tions in the future. If the intent for performing LU decomposition is for solving linear systems then the command
linalg.lu_factor should be used followed by repeated applications of the command linalg.lu_solve to
solve the system for each new right-hand-side.

Cholesky decomposition

Cholesky decomposition is a special case of LU decomposition applicable to Hermitian positive definite matrices.
When A = AH and xHAx ≥ 0 for all x , then decompositions of A can be found so that

A = UHU

A = LLH

44 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.7

where L is lower-triangular and U is upper triangular. Notice that L = UH . The command linagl.cholesky
computes the cholesky factorization. For using cholesky factorization to solve systems of equations there are also
linalg.cho_factor and linalg.cho_solve routines that work similarly to their LU decomposition coun-
terparts.

QR decomposition

The QR decomposition (sometimes called a polar decomposition) works for any M ×N array and finds an M ×M
unitary matrix Q and an M ×N upper-trapezoidal matrix R such that

A = QR.

Notice that if the SVD of A is known then the QR decomposition can be found

A = UΣVH = QR

implies that Q = U and R = ΣVH . Note, however, that in SciPy independent algorithms are used to find QR and
SVD decompositions. The command for QR decomposition is linalg.qr .

Schur decomposition

For a square N ×N matrix, A , the Schur decomposition finds (not-necessarily unique) matrices T and Z such that

A = ZTZH

where Z is a unitary matrix and T is either upper-triangular or quasi-upper triangular depending on whether or not a
real schur form or complex schur form is requested. For a real schur form both T and Z are real-valued when A is
real-valued. When A is a real-valued matrix the real schur form is only quasi-upper triangular because 2 × 2 blocks
extrude from the main diagonal corresponding to any complex- valued eigenvalues. The command linalg.schur
finds the Schur decomposition while the command linalg.rsf2csf converts T and Z from a real Schur form to
a complex Schur form. The Schur form is especially useful in calculating functions of matrices.

The following example illustrates the schur decomposition:

>>> from scipy import linalg
>>> A = mat(’[1 3 2; 1 4 5; 2 3 6]’)
>>> T,Z = linalg.schur(A)
>>> T1,Z1 = linalg.schur(A,’complex’)
>>> T2,Z2 = linalg.rsf2csf(T,Z)
>>> print T
[[9.90012467 1.78947961 -0.65498528]
[0. 0.54993766 -1.57754789]
[0. 0.51260928 0.54993766]]
>>> print T2
[[9.90012467 +0.00000000e+00j -0.32436598 +1.55463542e+00j
-0.88619748 +5.69027615e-01j]
[0.00000000 +0.00000000e+00j 0.54993766 +8.99258408e-01j
1.06493862 +1.37016050e-17j]

[0.00000000 +0.00000000e+00j 0.00000000 +0.00000000e+00j
0.54993766 -8.99258408e-01j]]

>>> print abs(T1-T2) # different
[[1.24357637e-14 2.09205364e+00 6.56028192e-01]
[0.00000000e+00 4.00296604e-16 1.83223097e+00]
[0.00000000e+00 0.00000000e+00 4.57756680e-16]]
>>> print abs(Z1-Z2) # different
[[0.06833781 1.10591375 0.23662249]

1.8. Linear Algebra 45

SciPy Reference Guide, Release 0.7

[0.11857169 0.5585604 0.29617525]
[0.12624999 0.75656818 0.22975038]]
>>> T,Z,T1,Z1,T2,Z2 = map(mat,(T,Z,T1,Z1,T2,Z2))
>>> print abs(A-Z*T*Z.H) # same
[[1.11022302e-16 4.44089210e-16 4.44089210e-16]
[4.44089210e-16 1.33226763e-15 8.88178420e-16]
[8.88178420e-16 4.44089210e-16 2.66453526e-15]]
>>> print abs(A-Z1*T1*Z1.H) # same
[[1.00043248e-15 2.22301403e-15 5.55749485e-15]
[2.88899660e-15 8.44927041e-15 9.77322008e-15]
[3.11291538e-15 1.15463228e-14 1.15464861e-14]]
>>> print abs(A-Z2*T2*Z2.H) # same
[[3.34058710e-16 8.88611201e-16 4.18773089e-18]
[1.48694940e-16 8.95109973e-16 8.92966151e-16]
[1.33228956e-15 1.33582317e-15 3.55373104e-15]]

1.8.4 Matrix Functions

Consider the function f (x) with Taylor series expansion

f (x) =
∞∑

k=0

f (k) (0)
k!

xk.

A matrix function can be defined using this Taylor series for the square matrix A as

f (A) =
∞∑

k=0

f (k) (0)
k!

Ak.

While, this serves as a useful representation of a matrix function, it is rarely the best way to calculate a matrix function.

Exponential and logarithm functions

The matrix exponential is one of the more common matrix functions. It can be defined for square matrices as

eA =
∞∑

k=0

1
k!

Ak.

The command linalg.expm3 uses this Taylor series definition to compute the matrix exponential. Due to poor
convergence properties it is not often used.

Another method to compute the matrix exponential is to find an eigenvalue decomposition of A :

A = VΛV−1

and note that
eA = VeΛV−1

where the matrix exponential of the diagonal matrix Λ is just the exponential of its elements. This method is imple-
mented in linalg.expm2 .

The preferred method for implementing the matrix exponential is to use scaling and a Padé approximation for ex .
This algorithm is implemented as linalg.expm .

The inverse of the matrix exponential is the matrix logarithm defined as the inverse of the matrix exponential.

A ≡ exp (log (A)) .

The matrix logarithm can be obtained with linalg.logm .

46 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.7

Trigonometric functions

The trigonometric functions sin , cos , and tan are implemented for matrices in linalg.sinm, linalg.cosm,
and linalg.tanm respectively. The matrix sin and cosine can be defined using Euler’s identity as

sin (A) =
ejA − e−jA

2j

cos (A) =
ejA + e−jA

2
.

The tangent is

tan (x) =
sin (x)
cos (x)

= [cos (x)]−1 sin (x)

and so the matrix tangent is defined as
[cos (A)]−1 sin (A) .

Hyperbolic trigonometric functions

The hyperbolic trigonemetric functions sinh , cosh , and tanh can also be defined for matrices using the familiar
definitions:

sinh (A) =
eA − e−A

2

cosh (A) =
eA + e−A

2
tanh (A) = [cosh (A)]−1 sinh (A) .

These matrix functions can be found using linalg.sinhm, linalg.coshm , and linalg.tanhm.

Arbitrary function

Finally, any arbitrary function that takes one complex number and returns a complex number can be called as a matrix
function using the command linalg.funm. This command takes the matrix and an arbitrary Python function. It
then implements an algorithm from Golub and Van Loan’s book “Matrix Computations “to compute function applied
to the matrix using a Schur decomposition. Note that the function needs to accept complex numbers as input in order
to work with this algorithm. For example the following code computes the zeroth-order Bessel function applied to a
matrix.

>>> from scipy import special, random, linalg
>>> A = random.rand(3,3)
>>> B = linalg.funm(A,lambda x: special.jv(0,x))
>>> print A
[[0.72578091 0.34105276 0.79570345]
[0.65767207 0.73855618 0.541453]
[0.78397086 0.68043507 0.4837898]]
>>> print B
[[0.72599893 -0.20545711 -0.22721101]
[-0.27426769 0.77255139 -0.23422637]
[-0.27612103 -0.21754832 0.7556849]]
>>> print linalg.eigvals(A)
[1.91262611+0.j 0.21846476+0.j -0.18296399+0.j]
>>> print special.jv(0, linalg.eigvals(A))
[0.27448286+0.j 0.98810383+0.j 0.99164854+0.j]
>>> print linalg.eigvals(B)
[0.27448286+0.j 0.98810383+0.j 0.99164854+0.j]

1.8. Linear Algebra 47

SciPy Reference Guide, Release 0.7

Note how, by virtue of how matrix analytic functions are defined, the Bessel function has acted on the matrix eigen-
values.

1.9 Statistics

SciPy has a tremendous number of basic statistics routines with more easily added by the end user (if you create
one please contribute it). All of the statistics functions are located in the sub-package scipy.stats and a fairly
complete listing of these functions can be had using info(stats).

1.9.1 Random Variables

There are two general distribution classes that have been implemented for encapsulating continuous random variables
and discrete random variables. Over 80 continuous random variables and 10 discrete random variables have been
implemented using these classes. The list of the random variables available is in the docstring for the stats sub-
package. A detailed description of each of them is also located in the files continuous.lyx and discrete.lyx in the stats
sub-directories.

1.10 Multi-dimensional image processing (ndimage)

1.10.1 Introduction

Image processing and analysis are generally seen as operations on two-dimensional arrays of values. There are how-
ever a number of fields where images of higher dimensionality must be analyzed. Good examples of these are medical
imaging and biological imaging. numpy is suited very well for this type of applications due its inherent multi-
dimensional nature. The scipy.ndimage packages provides a number of general image processing and analysis
functions that are designed to operate with arrays of arbitrary dimensionality. The packages currently includes func-
tions for linear and non-linear filtering, binary morphology, B-spline interpolation, and object measurements.

1.10.2 Properties shared by all functions

All functions share some common properties. Notably, all functions allow the specification of an output array with the
output argument. With this argument you can specify an array that will be changed in-place with the result with the
operation. In this case the result is not returned. Usually, using the output argument is more efficient, since an existing
array is used to store the result.

The type of arrays returned is dependent on the type of operation, but it is in most cases equal to the type of the input.
If, however, the output argument is used, the type of the result is equal to the type of the specified output argument.
If no output argument is given, it is still possible to specify what the result of the output should be. This is done by
simply assigning the desired numpy type object to the output argument. For example:

>>> print correlate(arange(10), [1, 2.5])
[0 2 6 9 13 16 20 23 27 30]
>>> print correlate(arange(10), [1, 2.5], output = Float64)
[0. 2.5 6. 9.5 13. 16.5 20. 23.5 27. 30.5]

Note: In previous versions of scipy.ndimage, some functions accepted the output_type argument to achieve the
same effect. This argument is still supported, but its use will generate an deprecation warning. In a future version
all instances of this argument will be removed. The preferred way to specify an output type, is by using the output
argument, either by specifying an output array of the desired type, or by specifying the type of the output that is to be
returned.

48 Chapter 1. SciPy Tutorial

http://docs.scipy.org/doc/numpy/reference/index.html#module-numpy

SciPy Reference Guide, Release 0.7

1.10.3 Filter functions

The functions described in this section all perform some type of spatial filtering of the the input array: the elements
in the output are some function of the values in the neighborhood of the corresponding input element. We refer to
this neighborhood of elements as the filter kernel, which is often rectangular in shape but may also have an arbitrary
footprint. Many of the functions described below allow you to define the footprint of the kernel, by passing a mask
through the footprint parameter. For example a cross shaped kernel can be defined as follows:

>>> footprint = array([[0,1,0],[1,1,1],[0,1,0]])
>>> print footprint
[[0 1 0]
[1 1 1]
[0 1 0]]

Usually the origin of the kernel is at the center calculated by dividing the dimensions of the kernel shape by two.
For instance, the origin of a one-dimensional kernel of length three is at the second element. Take for example the
correlation of a one-dimensional array with a filter of length 3 consisting of ones:

>>> a = [0, 0, 0, 1, 0, 0, 0]
>>> correlate1d(a, [1, 1, 1])
[0 0 1 1 1 0 0]

Sometimes it is convenient to choose a different origin for the kernel. For this reason most functions support the origin
parameter which gives the origin of the filter relative to its center. For example:

>>> a = [0, 0, 0, 1, 0, 0, 0]
>>> print correlate1d(a, [1, 1, 1], origin = -1)
[0 1 1 1 0 0 0]

The effect is a shift of the result towards the left. This feature will not be needed very often, but it may be useful
especially for filters that have an even size. A good example is the calculation of backward and forward differences:

>>> a = [0, 0, 1, 1, 1, 0, 0]
>>> print correlate1d(a, [-1, 1]) ## backward difference
[0 0 1 0 0 -1 0]
>>> print correlate1d(a, [-1, 1], origin = -1) ## forward difference
[0 1 0 0 -1 0 0]

We could also have calculated the forward difference as follows:

>>> print correlate1d(a, [0, -1, 1])
[0 1 0 0 -1 0 0]

however, using the origin parameter instead of a larger kernel is more efficient. For multi-dimensional kernels origin
can be a number, in which case the origin is assumed to be equal along all axes, or a sequence giving the origin along
each axis.

Since the output elements are a function of elements in the neighborhood of the input elements, the borders of the
array need to be dealt with appropriately by providing the values outside the borders. This is done by assuming that
the arrays are extended beyond their boundaries according certain boundary conditions. In the functions described
below, the boundary conditions can be selected using the mode parameter which must be a string with the name of the
boundary condition. Following boundary conditions are currently supported:

1.10. Multi-dimensional image processing (ndimage) 49

SciPy Reference Guide, Release 0.7

“nearest” Use the value at the boundary [1 2 3]->[1 1 2 3 3]
“wrap” Periodically replicate the array [1 2 3]->[3 1 2 3 1]
“reflect” Reflect the array at the boundary [1 2 3]->[1 1 2 3 3]
“constant” Use a constant value, default is 0.0 [1 2 3]->[0 1 2 3 0]

The “constant” mode is special since it needs an additional parameter to specify the constant value that should be used.

Note: The easiest way to implement such boundary conditions would be to copy the data to a larger array and extend
the data at the borders according to the boundary conditions. For large arrays and large filter kernels, this would be
very memory consuming, and the functions described below therefore use a different approach that does not require
allocating large temporary buffers.

Correlation and convolution

The correlate1d function calculates a one-dimensional correlation along the given axis. The lines of
the array along the given axis are correlated with the given weights. The weights parameter must be a
one-dimensional sequences of numbers.

The function correlate implements multi-dimensional correlation of the input array with a given
kernel.

The convolve1d function calculates a one-dimensional convolution along the given axis. The lines of
the array along the given axis are convoluted with the given weights. The weights parameter must be a
one-dimensional sequences of numbers.

Note: A convolution is essentially a correlation after mirroring the kernel. As a result, the origin param-
eter behaves differently than in the case of a correlation: the result is shifted in the opposite directions.

The function convolve implements multi-dimensional convolution of the input array with a given ker-
nel.

Note: A convolution is essentially a correlation after mirroring the kernel. As a result, the origin param-
eter behaves differently than in the case of a correlation: the results is shifted in the opposite direction.

Smoothing filters

The gaussian_filter1d function implements a one-dimensional Gaussian filter. The standard-
deviation of the Gaussian filter is passed through the parameter sigma. Setting order = 0 corresponds
to convolution with a Gaussian kernel. An order of 1, 2, or 3 corresponds to convolution with the first,
second or third derivatives of a Gaussian. Higher order derivatives are not implemented.

The gaussian_filter function implements a multi-dimensional Gaussian filter. The standard-
deviations of the Gaussian filter along each axis are passed through the parameter sigma as a sequence or
numbers. If sigma is not a sequence but a single number, the standard deviation of the filter is equal along
all directions. The order of the filter can be specified separately for each axis. An order of 0 corresponds
to convolution with a Gaussian kernel. An order of 1, 2, or 3 corresponds to convolution with the first,
second or third derivatives of a Gaussian. Higher order derivatives are not implemented. The order pa-
rameter must be a number, to specify the same order for all axes, or a sequence of numbers to specify a
different order for each axis.

Note: The multi-dimensional filter is implemented as a sequence of one-dimensional Gaussian filters.
The intermediate arrays are stored in the same data type as the output. Therefore, for output types with a
lower precision, the results may be imprecise because intermediate results may be stored with insufficient
precision. This can be prevented by specifying a more precise output type.

The uniform_filter1d function calculates a one-dimensional uniform filter of the given size along
the given axis.

50 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.7

The uniform_filter implements a multi-dimensional uniform filter. The sizes of the uniform filter
are given for each axis as a sequence of integers by the size parameter. If size is not a sequence, but a
single number, the sizes along all axis are assumed to be equal.

Note: The multi-dimensional filter is implemented as a sequence of one-dimensional uniform filters.
The intermediate arrays are stored in the same data type as the output. Therefore, for output types with a
lower precision, the results may be imprecise because intermediate results may be stored with insufficient
precision. This can be prevented by specifying a more precise output type.

Filters based on order statistics

The minimum_filter1d function calculates a one-dimensional minimum filter of given size along the
given axis.

The maximum_filter1d function calculates a one-dimensional maximum filter of given size along
the given axis.

The minimum_filter function calculates a multi-dimensional minimum filter. Either the sizes of a
rectangular kernel or the footprint of the kernel must be provided. The size parameter, if provided, must
be a sequence of sizes or a single number in which case the size of the filter is assumed to be equal along
each axis. The footprint, if provided, must be an array that defines the shape of the kernel by its non-zero
elements.

The maximum_filter function calculates a multi-dimensional maximum filter. Either the sizes of a
rectangular kernel or the footprint of the kernel must be provided. The size parameter, if provided, must
be a sequence of sizes or a single number in which case the size of the filter is assumed to be equal along
each axis. The footprint, if provided, must be an array that defines the shape of the kernel by its non-zero
elements.

The rank_filter function calculates a multi-dimensional rank filter. The rank may be less then zero,
i.e., rank = -1 indicates the largest element. Either the sizes of a rectangular kernel or the footprint of the
kernel must be provided. The size parameter, if provided, must be a sequence of sizes or a single number
in which case the size of the filter is assumed to be equal along each axis. The footprint, if provided, must
be an array that defines the shape of the kernel by its non-zero elements.

The percentile_filter function calculates a multi-dimensional percentile filter. The percentile
may be less then zero, i.e., percentile = -20 equals percentile = 80. Either the sizes of a rectangular kernel
or the footprint of the kernel must be provided. The size parameter, if provided, must be a sequence of
sizes or a single number in which case the size of the filter is assumed to be equal along each axis. The
footprint, if provided, must be an array that defines the shape of the kernel by its non-zero elements.

The median_filter function calculates a multi-dimensional median filter. Either the sizes of a rect-
angular kernel or the footprint of the kernel must be provided. The size parameter, if provided, must be
a sequence of sizes or a single number in which case the size of the filter is assumed to be equal along
each axis. The footprint if provided, must be an array that defines the shape of the kernel by its non-zero
elements.

Derivatives

Derivative filters can be constructed in several ways. The function gaussian_filter1d described in Smoothing
filters can be used to calculate derivatives along a given axis using the order parameter. Other derivative filters are the
Prewitt and Sobel filters:

The prewitt function calculates a derivative along the given axis.

The sobel function calculates a derivative along the given axis.

1.10. Multi-dimensional image processing (ndimage) 51

SciPy Reference Guide, Release 0.7

The Laplace filter is calculated by the sum of the second derivatives along all axes. Thus, different Laplace filters
can be constructed using different second derivative functions. Therefore we provide a general function that takes a
function argument to calculate the second derivative along a given direction and to construct the Laplace filter:

The function generic_laplace calculates a laplace filter using the function passed through
derivative2 to calculate second derivatives. The function derivative2 should have the following
signature:

derivative2(input, axis, output, mode, cval, *extra_arguments, **extra_keywords)

It should calculate the second derivative along the dimension axis. If output is not None it should use that
for the output and return None, otherwise it should return the result. mode, cval have the usual meaning.

The extra_arguments and extra_keywords arguments can be used to pass a tuple of extra arguments and a
dictionary of named arguments that are passed to derivative2 at each call.

For example:

>>> def d2(input, axis, output, mode, cval):
... return correlate1d(input, [1, -2, 1], axis, output, mode, cval, 0)
...
>>> a = zeros((5, 5))
>>> a[2, 2] = 1
>>> print generic_laplace(a, d2)
[[0 0 0 0 0]
[0 0 1 0 0]
[0 1 -4 1 0]
[0 0 1 0 0]
[0 0 0 0 0]]

To demonstrate the use of the extra_arguments argument we could do:

>>> def d2(input, axis, output, mode, cval, weights):
... return correlate1d(input, weights, axis, output, mode, cval, 0,)
...
>>> a = zeros((5, 5))
>>> a[2, 2] = 1
>>> print generic_laplace(a, d2, extra_arguments = ([1, -2, 1],))
[[0 0 0 0 0]
[0 0 1 0 0]
[0 1 -4 1 0]
[0 0 1 0 0]
[0 0 0 0 0]]

or:

>>> print generic_laplace(a, d2, extra_keywords = {’weights’: [1, -2, 1]})
[[0 0 0 0 0]
[0 0 1 0 0]
[0 1 -4 1 0]
[0 0 1 0 0]
[0 0 0 0 0]]

The following two functions are implemented using generic_laplace by providing appropriate functions for the
second derivative function:

The function laplace calculates the Laplace using discrete differentiation for the second derivative (i.e.
convolution with [1, -2, 1]).

52 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.7

The function gaussian_laplace calculates the Laplace using gaussian_filter to calculate the
second derivatives. The standard-deviations of the Gaussian filter along each axis are passed through the
parameter sigma as a sequence or numbers. If sigma is not a sequence but a single number, the standard
deviation of the filter is equal along all directions.

The gradient magnitude is defined as the square root of the sum of the squares of the gradients in all directions. Similar
to the generic Laplace function there is a generic_gradient_magnitude function that calculated the gradient
magnitude of an array:

The function generic_gradient_magnitude calculates a gradient magnitude using the function
passed through derivative to calculate first derivatives. The function derivative should have the
following signature:

derivative(input, axis, output, mode, cval, *extra_arguments, **extra_keywords)

It should calculate the derivative along the dimension axis. If output is not None it should use that for the
output and return None, otherwise it should return the result. mode, cval have the usual meaning.

The extra_arguments and extra_keywords arguments can be used to pass a tuple of extra arguments and a
dictionary of named arguments that are passed to derivative at each call.

For example, the sobel function fits the required signature:

>>> a = zeros((5, 5))
>>> a[2, 2] = 1
>>> print generic_gradient_magnitude(a, sobel)
[[0 0 0 0 0]
[0 1 2 1 0]
[0 2 0 2 0]
[0 1 2 1 0]
[0 0 0 0 0]]

See the documentation of generic_laplace for examples of using the extra_arguments and ex-
tra_keywords arguments.

The sobel and prewitt functions fit the required signature and can therefore directly be used with
generic_gradient_magnitude. The following function implements the gradient magnitude using Gaussian
derivatives:

The function gaussian_gradient_magnitude calculates the gradient magnitude using
gaussian_filter to calculate the first derivatives. The standard-deviations of the Gaussian filter
along each axis are passed through the parameter sigma as a sequence or numbers. If sigma is not a
sequence but a single number, the standard deviation of the filter is equal along all directions.

Generic filter functions

To implement filter functions, generic functions can be used that accept a callable object that implements the filtering
operation. The iteration over the input and output arrays is handled by these generic functions, along with such
details as the implementation of the boundary conditions. Only a callable object implementing a callback function
that does the actual filtering work must be provided. The callback function can also be written in C and passed using
a PyCObject (see Extending ndimage in C for more information).

The generic_filter1d function implements a generic one-dimensional filter function, where the
actual filtering operation must be supplied as a python function (or other callable object). The
generic_filter1d function iterates over the lines of an array and calls function at each line.
The arguments that are passed to function are one-dimensional arrays of the tFloat64 type. The

1.10. Multi-dimensional image processing (ndimage) 53

http://docs.python.org/dev/c-api/cobject.html#PyCObject

SciPy Reference Guide, Release 0.7

first contains the values of the current line. It is extended at the beginning end the end, according to
the filter_size and origin arguments. The second array should be modified in-place to provide the output
values of the line. For example consider a correlation along one dimension:

>>> a = arange(12, shape = (3,4))
>>> print correlate1d(a, [1, 2, 3])
[[3 8 14 17]
[27 32 38 41]
[51 56 62 65]]

The same operation can be implemented using generic_filter1d as follows:

>>> def fnc(iline, oline):
... oline[...] = iline[:-2] + 2 * iline[1:-1] + 3 * iline[2:]
...
>>> print generic_filter1d(a, fnc, 3)
[[3 8 14 17]
[27 32 38 41]
[51 56 62 65]]

Here the origin of the kernel was (by default) assumed to be in the middle of the filter of length 3.
Therefore, each input line was extended by one value at the beginning and at the end, before the function
was called.

Optionally extra arguments can be defined and passed to the filter function. The extra_arguments and
extra_keywords arguments can be used to pass a tuple of extra arguments and/or a dictionary of named
arguments that are passed to derivative at each call. For example, we can pass the parameters of our filter
as an argument:

>>> def fnc(iline, oline, a, b):
... oline[...] = iline[:-2] + a * iline[1:-1] + b * iline[2:]
...
>>> print generic_filter1d(a, fnc, 3, extra_arguments = (2, 3))
[[3 8 14 17]
[27 32 38 41]
[51 56 62 65]]

or

>>> print generic_filter1d(a, fnc, 3, extra_keywords = {’a’:2, ’b’:3})
[[3 8 14 17]
[27 32 38 41]
[51 56 62 65]]

The generic_filter function implements a generic filter function, where the actual filtering opera-
tion must be supplied as a python function (or other callable object). The generic_filter function
iterates over the array and calls function at each element. The argument of function is a one-
dimensional array of the tFloat64 type, that contains the values around the current element that are
within the footprint of the filter. The function should return a single value that can be converted to a
double precision number. For example consider a correlation:

>>> a = arange(12, shape = (3,4))
>>> print correlate(a, [[1, 0], [0, 3]])
[[0 3 7 11]
[12 15 19 23]
[28 31 35 39]]

The same operation can be implemented using generic_filter as follows:

54 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.7

>>> def fnc(buffer):
... return (buffer * array([1, 3])).sum()
...
>>> print generic_filter(a, fnc, footprint = [[1, 0], [0, 1]])
[[0 3 7 11]
[12 15 19 23]
[28 31 35 39]]

Here a kernel footprint was specified that contains only two elements. Therefore the filter function receives
a buffer of length equal to two, which was multiplied with the proper weights and the result summed.

When calling generic_filter, either the sizes of a rectangular kernel or the footprint of the kernel
must be provided. The size parameter, if provided, must be a sequence of sizes or a single number in
which case the size of the filter is assumed to be equal along each axis. The footprint, if provided, must
be an array that defines the shape of the kernel by its non-zero elements.

Optionally extra arguments can be defined and passed to the filter function. The extra_arguments and
extra_keywords arguments can be used to pass a tuple of extra arguments and/or a dictionary of named
arguments that are passed to derivative at each call. For example, we can pass the parameters of our filter
as an argument:

>>> def fnc(buffer, weights):
... weights = asarray(weights)
... return (buffer * weights).sum()
...
>>> print generic_filter(a, fnc, footprint = [[1, 0], [0, 1]], extra_arguments = ([1, 3],))
[[0 3 7 11]
[12 15 19 23]
[28 31 35 39]]

or

>>> print generic_filter(a, fnc, footprint = [[1, 0], [0, 1]], extra_keywords= {’weights’: [1, 3]})
[[0 3 7 11]
[12 15 19 23]
[28 31 35 39]]

These functions iterate over the lines or elements starting at the last axis, i.e. the last index changes the fastest. This
order of iteration is guaranteed for the case that it is important to adapt the filter depending on spatial location. Here
is an example of using a class that implements the filter and keeps track of the current coordinates while iterating.
It performs the same filter operation as described above for generic_filter, but additionally prints the current
coordinates:

>>> a = arange(12, shape = (3,4))
>>>
>>> class fnc_class:
... def __init__(self, shape):
... # store the shape:
... self.shape = shape
... # initialize the coordinates:
... self.coordinates = [0] * len(shape)
...
... def filter(self, buffer):
... result = (buffer * array([1, 3])).sum()
... print self.coordinates
... # calculate the next coordinates:
... axes = range(len(self.shape))

1.10. Multi-dimensional image processing (ndimage) 55

SciPy Reference Guide, Release 0.7

... axes.reverse()

... for jj in axes:

... if self.coordinates[jj] < self.shape[jj] - 1:

... self.coordinates[jj] += 1

... break

... else:

... self.coordinates[jj] = 0

... return result

...
>>> fnc = fnc_class(shape = (3,4))
>>> print generic_filter(a, fnc.filter, footprint = [[1, 0], [0, 1]])
[0, 0]
[0, 1]
[0, 2]
[0, 3]
[1, 0]
[1, 1]
[1, 2]
[1, 3]
[2, 0]
[2, 1]
[2, 2]
[2, 3]
[[0 3 7 11]
[12 15 19 23]
[28 31 35 39]]

For the generic_filter1d function the same approach works, except that this function does not iterate over the
axis that is being filtered. The example for generic_filter1d then becomes this:

>>> a = arange(12, shape = (3,4))
>>>
>>> class fnc1d_class:
... def __init__(self, shape, axis = -1):
... # store the filter axis:
... self.axis = axis
... # store the shape:
... self.shape = shape
... # initialize the coordinates:
... self.coordinates = [0] * len(shape)
...
... def filter(self, iline, oline):
... oline[...] = iline[:-2] + 2 * iline[1:-1] + 3 * iline[2:]
... print self.coordinates
... # calculate the next coordinates:
... axes = range(len(self.shape))
... # skip the filter axis:
... del axes[self.axis]
... axes.reverse()
... for jj in axes:
... if self.coordinates[jj] < self.shape[jj] - 1:
... self.coordinates[jj] += 1
... break
... else:
... self.coordinates[jj] = 0
...
>>> fnc = fnc1d_class(shape = (3,4))

56 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.7

>>> print generic_filter1d(a, fnc.filter, 3)
[0, 0]
[1, 0]
[2, 0]
[[3 8 14 17]
[27 32 38 41]
[51 56 62 65]]

Fourier domain filters

The functions described in this section perform filtering operations in the Fourier domain. Thus, the input array
of such a function should be compatible with an inverse Fourier transform function, such as the functions from the
numpy.fft module. We therefore have to deal with arrays that may be the result of a real or a complex Fourier
transform. In the case of a real Fourier transform only half of the of the symmetric complex transform is stored.
Additionally, it needs to be known what the length of the axis was that was transformed by the real fft. The functions
described here provide a parameter n that in the case of a real transform must be equal to the length of the real
transform axis before transformation. If this parameter is less than zero, it is assumed that the input array was the
result of a complex Fourier transform. The parameter axis can be used to indicate along which axis the real transform
was executed.

The fourier_shift function multiplies the input array with the multi-dimensional Fourier transform
of a shift operation for the given shift. The shift parameter is a sequences of shifts for each dimension, or
a single value for all dimensions.

The fourier_gaussian function multiplies the input array with the multi-dimensional Fourier trans-
form of a Gaussian filter with given standard-deviations sigma. The sigma parameter is a sequences of
values for each dimension, or a single value for all dimensions.

The fourier_uniform function multiplies the input array with the multi-dimensional Fourier trans-
form of a uniform filter with given sizes size. The size parameter is a sequences of values for each
dimension, or a single value for all dimensions.

The fourier_ellipsoid function multiplies the input array with the multi-dimensional Fourier
transform of a elliptically shaped filter with given sizes size. The size parameter is a sequences of values
for each dimension, or a single value for all dimensions. This function is only implemented for dimensions
1, 2, and 3.

1.10.4 Interpolation functions

This section describes various interpolation functions that are based on B-spline theory. A good introduction to B-
splines can be found in: M. Unser, “Splines: A Perfect Fit for Signal and Image Processing,” IEEE Signal Processing
Magazine, vol. 16, no. 6, pp. 22-38, November 1999.

Spline pre-filters

Interpolation using splines of an order larger than 1 requires a pre- filtering step. The interpolation functions described
in section Interpolation functions apply pre-filtering by calling spline_filter, but they can be instructed not to
do this by setting the prefilter keyword equal to False. This is useful if more than one interpolation operation is done
on the same array. In this case it is more efficient to do the pre-filtering only once and use a prefiltered array as the
input of the interpolation functions. The following two functions implement the pre-filtering:

The spline_filter1d function calculates a one-dimensional spline filter along the given axis. An
output array can optionally be provided. The order of the spline must be larger then 1 and less than 6.

1.10. Multi-dimensional image processing (ndimage) 57

SciPy Reference Guide, Release 0.7

The spline_filter function calculates a multi-dimensional spline filter.

Note: The multi-dimensional filter is implemented as a sequence of one-dimensional spline filters. The
intermediate arrays are stored in the same data type as the output. Therefore, if an output with a limited
precision is requested, the results may be imprecise because intermediate results may be stored with
insufficient precision. This can be prevented by specifying a output type of high precision.

Interpolation functions

Following functions all employ spline interpolation to effect some type of geometric transformation of the input array.
This requires a mapping of the output coordinates to the input coordinates, and therefore the possibility arises that input
values outside the boundaries are needed. This problem is solved in the same way as described in Filter functions for
the multi-dimensional filter functions. Therefore these functions all support a mode parameter that determines how the
boundaries are handled, and a cval parameter that gives a constant value in case that the ‘constant’ mode is used.

The geometric_transform function applies an arbitrary geometric transform to the input. The given
mapping function is called at each point in the output to find the corresponding coordinates in the input.
mapping must be a callable object that accepts a tuple of length equal to the output array rank and returns
the corresponding input coordinates as a tuple of length equal to the input array rank. The output shape
and output type can optionally be provided. If not given they are equal to the input shape and type.

For example:

>>> a = arange(12, shape=(4,3), type = Float64)
>>> def shift_func(output_coordinates):
... return (output_coordinates[0] - 0.5, output_coordinates[1] - 0.5)
...
>>> print geometric_transform(a, shift_func)
[[0. 0. 0.]
[0. 1.3625 2.7375]
[0. 4.8125 6.1875]
[0. 8.2625 9.6375]]

Optionally extra arguments can be defined and passed to the filter function. The extra_arguments and
extra_keywords arguments can be used to pass a tuple of extra arguments and/or a dictionary of named
arguments that are passed to derivative at each call. For example, we can pass the shifts in our example as
arguments:

>>> def shift_func(output_coordinates, s0, s1):
... return (output_coordinates[0] - s0, output_coordinates[1] - s1)
...
>>> print geometric_transform(a, shift_func, extra_arguments = (0.5, 0.5))
[[0. 0. 0.]
[0. 1.3625 2.7375]
[0. 4.8125 6.1875]
[0. 8.2625 9.6375]]

or

>>> print geometric_transform(a, shift_func, extra_keywords = {’s0’: 0.5, ’s1’: 0.5})
[[0. 0. 0.]
[0. 1.3625 2.7375]
[0. 4.8125 6.1875]
[0. 8.2625 9.6375]]

Note: The mapping function can also be written in C and passed using a PyCObject. See Extending
ndimage in C for more information.

58 Chapter 1. SciPy Tutorial

http://docs.python.org/dev/c-api/cobject.html#PyCObject

SciPy Reference Guide, Release 0.7

The function map_coordinates applies an arbitrary coordinate transformation using the given array
of coordinates. The shape of the output is derived from that of the coordinate array by dropping the first
axis. The parameter coordinates is used to find for each point in the output the corresponding coordinates
in the input. The values of coordinates along the first axis are the coordinates in the input array at which
the output value is found. (See also the numarray coordinates function.) Since the coordinates may be
non- integer coordinates, the value of the input at these coordinates is determined by spline interpolation
of the requested order. Here is an example that interpolates a 2D array at (0.5, 0.5) and (1, 2):

>>> a = arange(12, shape=(4,3), type = numarray.Float64)
>>> print a
[[0. 1. 2.]
[3. 4. 5.]
[6. 7. 8.]
[9. 10. 11.]]

>>> print map_coordinates(a, [[0.5, 2], [0.5, 1]])
[1.3625 7.]

The affine_transform function applies an affine transformation to the input array. The given trans-
formation matrix and offset are used to find for each point in the output the corresponding coordinates
in the input. The value of the input at the calculated coordinates is determined by spline interpolation
of the requested order. The transformation matrix must be two-dimensional or can also be given as a
one-dimensional sequence or array. In the latter case, it is assumed that the matrix is diagonal. A more
efficient interpolation algorithm is then applied that exploits the separability of the problem. The output
shape and output type can optionally be provided. If not given they are equal to the input shape and type.

The shift function returns a shifted version of the input, using spline interpolation of the requested
order.

The zoom function returns a rescaled version of the input, using spline interpolation of the requested
order.

The rotate function returns the input array rotated in the plane defined by the two axes given by the
parameter axes, using spline interpolation of the requested order. The angle must be given in degrees. If
reshape is true, then the size of the output array is adapted to contain the rotated input.

1.10.5 Morphology

Binary morphology

Binary morphology (need something to put here).

The generate_binary_structure functions generates a binary structuring element for use in bi-
nary morphology operations. The rank of the structure must be provided. The size of the structure that
is returned is equal to three in each direction. The value of each element is equal to one if the square of
the Euclidean distance from the element to the center is less or equal to connectivity. For instance, two
dimensional 4-connected and 8-connected structures are generated as follows:

>>> print generate_binary_structure(2, 1)
[[0 1 0]
[1 1 1]
[0 1 0]]

>>> print generate_binary_structure(2, 2)
[[1 1 1]
[1 1 1]
[1 1 1]]

1.10. Multi-dimensional image processing (ndimage) 59

SciPy Reference Guide, Release 0.7

Most binary morphology functions can be expressed in terms of the basic operations erosion and dilation:

The binary_erosion function implements binary erosion of arrays of arbitrary rank with the given
structuring element. The origin parameter controls the placement of the structuring element as described
in Filter functions. If no structuring element is provided, an element with connectivity equal to one is
generated using generate_binary_structure. The border_value parameter gives the value of
the array outside boundaries. The erosion is repeated iterations times. If iterations is less than one, the
erosion is repeated until the result does not change anymore. If a mask array is given, only those elements
with a true value at the corresponding mask element are modified at each iteration.

The binary_dilation function implements binary dilation of arrays of arbitrary rank with the given
structuring element. The origin parameter controls the placement of the structuring element as described
in Filter functions. If no structuring element is provided, an element with connectivity equal to one is
generated using generate_binary_structure. The border_value parameter gives the value of
the array outside boundaries. The dilation is repeated iterations times. If iterations is less than one, the
dilation is repeated until the result does not change anymore. If a mask array is given, only those elements
with a true value at the corresponding mask element are modified at each iteration.

Here is an example of using binary_dilation to find all elements that touch the border, by repeatedly
dilating an empty array from the border using the data array as the mask:

>>> struct = array([[0, 1, 0], [1, 1, 1], [0, 1, 0]])
>>> a = array([[1,0,0,0,0], [1,1,0,1,0], [0,0,1,1,0], [0,0,0,0,0]])
>>> print a
[[1 0 0 0 0]
[1 1 0 1 0]
[0 0 1 1 0]
[0 0 0 0 0]]

>>> print binary_dilation(zeros(a.shape), struct, -1, a, border_value=1)
[[1 0 0 0 0]
[1 1 0 0 0]
[0 0 0 0 0]
[0 0 0 0 0]]

The binary_erosion and binary_dilation functions both have an iterations parameter which allows the
erosion or dilation to be repeated a number of times. Repeating an erosion or a dilation with a given structure n times
is equivalent to an erosion or a dilation with a structure that is n-1 times dilated with itself. A function is provided that
allows the calculation of a structure that is dilated a number of times with itself:

The iterate_structure function returns a structure by dilation of the input structure iteration - 1
times with itself. For instance:

>>> struct = generate_binary_structure(2, 1)
>>> print struct
[[0 1 0]
[1 1 1]
[0 1 0]]

>>> print iterate_structure(struct, 2)
[[0 0 1 0 0]
[0 1 1 1 0]
[1 1 1 1 1]
[0 1 1 1 0]
[0 0 1 0 0]]

If the origin of the original structure is equal to 0, then it is also equal to 0 for the iterated structure. If not,
the origin must also be adapted if the equivalent of the iterations erosions or dilations must be achieved
with the iterated structure. The adapted origin is simply obtained by multiplying with the number of

60 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.7

iterations. For convenience the iterate_structure also returns the adapted origin if the origin
parameter is not None:

>>> print iterate_structure(struct, 2, -1)
(array([[0, 0, 1, 0, 0],

[0, 1, 1, 1, 0],
[1, 1, 1, 1, 1],
[0, 1, 1, 1, 0],
[0, 0, 1, 0, 0]], type=Bool), [-2, -2])

Other morphology operations can be defined in terms of erosion and d dilation. Following functions provide a few of
these operations for convenience:

The binary_opening function implements binary opening of arrays of arbitrary rank with the given
structuring element. Binary opening is equivalent to a binary erosion followed by a binary dilation with
the same structuring element. The origin parameter controls the placement of the structuring element as
described in Filter functions. If no structuring element is provided, an element with connectivity equal to
one is generated using generate_binary_structure. The iterations parameter gives the number
of erosions that is performed followed by the same number of dilations.

The binary_closing function implements binary closing of arrays of arbitrary rank with the given
structuring element. Binary closing is equivalent to a binary dilation followed by a binary erosion with
the same structuring element. The origin parameter controls the placement of the structuring element as
described in Filter functions. If no structuring element is provided, an element with connectivity equal to
one is generated using generate_binary_structure. The iterations parameter gives the number
of dilations that is performed followed by the same number of erosions.

The binary_fill_holes function is used to close holes in objects in a binary image, where the
structure defines the connectivity of the holes. The origin parameter controls the placement of the struc-
turing element as described in Filter functions. If no structuring element is provided, an element with
connectivity equal to one is generated using generate_binary_structure.

The binary_hit_or_miss function implements a binary hit-or-miss transform of arrays of arbitrary
rank with the given structuring elements. The hit-or-miss transform is calculated by erosion of the input
with the first structure, erosion of the logical not of the input with the second structure, followed by the
logical and of these two erosions. The origin parameters control the placement of the structuring elements
as described in Filter functions. If origin2 equals None it is set equal to the origin1 parameter. If the first
structuring element is not provided, a structuring element with connectivity equal to one is generated
using generate_binary_structure, if structure2 is not provided, it is set equal to the logical not
of structure1.

Grey-scale morphology

Grey-scale morphology operations are the equivalents of binary morphology operations that operate on arrays with
arbitrary values. Below we describe the grey-scale equivalents of erosion, dilation, opening and closing. These
operations are implemented in a similar fashion as the filters described in Filter functions, and we refer to this section
for the description of filter kernels and footprints, and the handling of array borders. The grey-scale morphology
operations optionally take a structure parameter that gives the values of the structuring element. If this parameter
is not given the structuring element is assumed to be flat with a value equal to zero. The shape of the structure
can optionally be defined by the footprint parameter. If this parameter is not given, the structure is assumed to be
rectangular, with sizes equal to the dimensions of the structure array, or by the size parameter if structure is not given.
The size parameter is only used if both structure and footprint are not given, in which case the structuring element
is assumed to be rectangular and flat with the dimensions given by size. The size parameter, if provided, must be a
sequence of sizes or a single number in which case the size of the filter is assumed to be equal along each axis. The
footprint parameter, if provided, must be an array that defines the shape of the kernel by its non-zero elements.

1.10. Multi-dimensional image processing (ndimage) 61

SciPy Reference Guide, Release 0.7

Similar to binary erosion and dilation there are operations for grey-scale erosion and dilation:

The grey_erosion function calculates a multi-dimensional grey- scale erosion.

The grey_dilation function calculates a multi-dimensional grey- scale dilation.

Grey-scale opening and closing operations can be defined similar to their binary counterparts:

The grey_opening function implements grey-scale opening of arrays of arbitrary rank. Grey-scale
opening is equivalent to a grey-scale erosion followed by a grey-scale dilation.

The grey_closing function implements grey-scale closing of arrays of arbitrary rank. Grey-scale
opening is equivalent to a grey-scale dilation followed by a grey-scale erosion.

The morphological_gradient function implements a grey-scale morphological gradient of arrays
of arbitrary rank. The grey-scale morphological gradient is equal to the difference of a grey-scale dilation
and a grey-scale erosion.

The morphological_laplace function implements a grey-scale morphological laplace of arrays of
arbitrary rank. The grey-scale morphological laplace is equal to the sum of a grey-scale dilation and a
grey-scale erosion minus twice the input.

The white_tophat function implements a white top-hat filter of arrays of arbitrary rank. The white
top-hat is equal to the difference of the input and a grey-scale opening.

The black_tophat function implements a black top-hat filter of arrays of arbitrary rank. The black
top-hat is equal to the difference of the a grey-scale closing and the input.

1.10.6 Distance transforms

Distance transforms are used to calculate the minimum distance from each element of an object to the background.
The following functions implement distance transforms for three different distance metrics: Euclidean, City Block,
and Chessboard distances.

The function distance_transform_cdt uses a chamfer type algorithm to calculate the distance
transform of the input, by replacing each object element (defined by values larger than zero) with
the shortest distance to the background (all non-object elements). The structure determines the type
of chamfering that is done. If the structure is equal to ‘cityblock’ a structure is generated using
generate_binary_structurewith a squared distance equal to 1. If the structure is equal to ‘chess-
board’, a structure is generated using generate_binary_structure with a squared distance equal
to the rank of the array. These choices correspond to the common interpretations of the cityblock and the
chessboard distancemetrics in two dimensions.

In addition to the distance transform, the feature transform can be calculated. In this case the index of
the closest background element is returned along the first axis of the result. The return_distances, and
return_indices flags can be used to indicate if the distance transform, the feature transform, or both must
be returned.

The distances and indices arguments can be used to give optional output arrays that must be of the correct
size and type (both Int32).

The basics of the algorithm used to implement this function is described in: G. Borgefors, “Distance
transformations in arbitrary dimensions.”, Computer Vision, Graphics, and Image Processing, 27:321-
345, 1984.

The function distance_transform_edt calculates the exact euclidean distance transform of the
input, by replacing each object element (defined by values larger than zero) with the shortest euclidean
distance to the background (all non-object elements).

In addition to the distance transform, the feature transform can be calculated. In this case the index of
the closest background element is returned along the first axis of the result. The return_distances, and

62 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.7

return_indices flags can be used to indicate if the distance transform, the feature transform, or both must
be returned.

Optionally the sampling along each axis can be given by the sampling parameter which should be a
sequence of length equal to the input rank, or a single number in which the sampling is assumed to be
equal along all axes.

The distances and indices arguments can be used to give optional output arrays that must be of the correct
size and type (Float64 and Int32).

The algorithm used to implement this function is described in: C. R. Maurer, Jr., R. Qi, and V. Raghavan,
“A linear time algorithm for computing exact euclidean distance transforms of binary images in arbitrary
dimensions. IEEE Trans. PAMI 25, 265-270, 2003.

The function distance_transform_bf uses a brute-force algorithm to calculate the distance trans-
form of the input, by replacing each object element (defined by values larger than zero) with the shortest
distance to the background (all non-object elements). The metric must be one of “euclidean”, “cityblock”,
or “chessboard”.

In addition to the distance transform, the feature transform can be calculated. In this case the index of
the closest background element is returned along the first axis of the result. The return_distances, and
return_indices flags can be used to indicate if the distance transform, the feature transform, or both must
be returned.

Optionally the sampling along each axis can be given by the sampling parameter which should be a
sequence of length equal to the input rank, or a single number in which the sampling is assumed to be
equal along all axes. This parameter is only used in the case of the euclidean distance transform.

The distances and indices arguments can be used to give optional output arrays that must be of the correct
size and type (Float64 and Int32).

Note: This function uses a slow brute-force algorithm, the function distance_transform_cdt
can be used to more efficiently calculate cityblock and chessboard distance transforms. The function
distance_transform_edt can be used to more efficiently calculate the exact euclidean distance
transform.

1.10.7 Segmentation and labeling

Segmentation is the process of separating objects of interest from the background. The most simple approach is
probably intensity thresholding, which is easily done with numpy functions:

>>> a = array([[1,2,2,1,1,0],
... [0,2,3,1,2,0],
... [1,1,1,3,3,2],
... [1,1,1,1,2,1]])
>>> print where(a > 1, 1, 0)
[[0 1 1 0 0 0]
[0 1 1 0 1 0]
[0 0 0 1 1 1]
[0 0 0 0 1 0]]

The result is a binary image, in which the individual objects still need to be identified and labeled. The function
label generates an array where each object is assigned a unique number:

The label function generates an array where the objects in the input are labeled with an integer index. It
returns a tuple consisting of the array of object labels and the number of objects found, unless the output
parameter is given, in which case only the number of objects is returned. The connectivity of the objects
is defined by a structuring element. For instance, in two dimensions using a four-connected structuring
element gives:

1.10. Multi-dimensional image processing (ndimage) 63

http://docs.scipy.org/doc/numpy/reference/index.html#module-numpy

SciPy Reference Guide, Release 0.7

>>> a = array([[0,1,1,0,0,0],[0,1,1,0,1,0],[0,0,0,1,1,1],[0,0,0,0,1,0]])
>>> s = [[0, 1, 0], [1,1,1], [0,1,0]]
>>> print label(a, s)
(array([[0, 1, 1, 0, 0, 0],

[0, 1, 1, 0, 2, 0],
[0, 0, 0, 2, 2, 2],
[0, 0, 0, 0, 2, 0]]), 2)

These two objects are not connected because there is no way in which we can place the structuring
element such that it overlaps with both objects. However, an 8-connected structuring element results in
only a single object:

>>> a = array([[0,1,1,0,0,0],[0,1,1,0,1,0],[0,0,0,1,1,1],[0,0,0,0,1,0]])
>>> s = [[1,1,1], [1,1,1], [1,1,1]]
>>> print label(a, s)[0]
[[0 1 1 0 0 0]
[0 1 1 0 1 0]
[0 0 0 1 1 1]
[0 0 0 0 1 0]]

If no structuring element is provided, one is generated by calling generate_binary_structure
(see Binary morphology) using a connectivity of one (which in 2D is the 4-connected structure of the first
example). The input can be of any type, any value not equal to zero is taken to be part of an object. This
is useful if you need to ‘re-label’ an array of object indices, for instance after removing unwanted objects.
Just apply the label function again to the index array. For instance:

>>> l, n = label([1, 0, 1, 0, 1])
>>> print l
[1 0 2 0 3]
>>> l = where(l != 2, l, 0)
>>> print l
[1 0 0 0 3]
>>> print label(l)[0]
[1 0 0 0 2]

Note: The structuring element used by label is assumed to be symmetric.

There is a large number of other approaches for segmentation, for instance from an estimation of the borders of
the objects that can be obtained for instance by derivative filters. One such an approach is watershed segmentation.
The function watershed_ift generates an array where each object is assigned a unique label, from an array that
localizes the object borders, generated for instance by a gradient magnitude filter. It uses an array containing initial
markers for the objects:

The watershed_ift function applies a watershed from markers algorithm, using an Iterative Forest
Transform, as described in: P. Felkel, R. Wegenkittl, and M. Bruckschwaiger, “Implementation and Com-
plexity of the Watershed-from-Markers Algorithm Computed as a Minimal Cost Forest.”, Eurographics
2001, pp. C:26-35.

The inputs of this function are the array to which the transform is applied, and an array of markers that
designate the objects by a unique label, where any non-zero value is a marker. For instance:

>>> input = array([[0, 0, 0, 0, 0, 0, 0],
... [0, 1, 1, 1, 1, 1, 0],
... [0, 1, 0, 0, 0, 1, 0],
... [0, 1, 0, 0, 0, 1, 0],
... [0, 1, 0, 0, 0, 1, 0],
... [0, 1, 1, 1, 1, 1, 0],

64 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.7

... [0, 0, 0, 0, 0, 0, 0]], numarray.UInt8)
>>> markers = array([[1, 0, 0, 0, 0, 0, 0],
... [0, 0, 0, 0, 0, 0, 0],
... [0, 0, 0, 0, 0, 0, 0],
... [0, 0, 0, 2, 0, 0, 0],
... [0, 0, 0, 0, 0, 0, 0],
... [0, 0, 0, 0, 0, 0, 0],
... [0, 0, 0, 0, 0, 0, 0]], numarray.Int8)
>>> print watershed_ift(input, markers)
[[1 1 1 1 1 1 1]
[1 1 2 2 2 1 1]
[1 2 2 2 2 2 1]
[1 2 2 2 2 2 1]
[1 2 2 2 2 2 1]
[1 1 2 2 2 1 1]
[1 1 1 1 1 1 1]]

Here two markers were used to designate an object (marker = 2) and the background (marker = 1). The
order in which these are processed is arbitrary: moving the marker for the background to the lower right
corner of the array yields a different result:

>>> markers = array([[0, 0, 0, 0, 0, 0, 0],
... [0, 0, 0, 0, 0, 0, 0],
... [0, 0, 0, 0, 0, 0, 0],
... [0, 0, 0, 2, 0, 0, 0],
... [0, 0, 0, 0, 0, 0, 0],
... [0, 0, 0, 0, 0, 0, 0],
... [0, 0, 0, 0, 0, 0, 1]], numarray.Int8)
>>> print watershed_ift(input, markers)
[[1 1 1 1 1 1 1]
[1 1 1 1 1 1 1]
[1 1 2 2 2 1 1]
[1 1 2 2 2 1 1]
[1 1 2 2 2 1 1]
[1 1 1 1 1 1 1]
[1 1 1 1 1 1 1]]

The result is that the object (marker = 2) is smaller because the second marker was processed earlier. This
may not be the desired effect if the first marker was supposed to designate a background object. Therefore
watershed_ift treats markers with a negative value explicitly as background markers and processes
them after the normal markers. For instance, replacing the first marker by a negative marker gives a result
similar to the first example:

>>> markers = array([[0, 0, 0, 0, 0, 0, 0],
... [0, 0, 0, 0, 0, 0, 0],
... [0, 0, 0, 0, 0, 0, 0],
... [0, 0, 0, 2, 0, 0, 0],
... [0, 0, 0, 0, 0, 0, 0],
... [0, 0, 0, 0, 0, 0, 0],
... [0, 0, 0, 0, 0, 0, -1]], numarray.Int8)
>>> print watershed_ift(input, markers)
[[-1 -1 -1 -1 -1 -1 -1]
[-1 -1 2 2 2 -1 -1]
[-1 2 2 2 2 2 -1]
[-1 2 2 2 2 2 -1]
[-1 2 2 2 2 2 -1]
[-1 -1 2 2 2 -1 -1]
[-1 -1 -1 -1 -1 -1 -1]]

1.10. Multi-dimensional image processing (ndimage) 65

SciPy Reference Guide, Release 0.7

The connectivity of the objects is defined by a structuring element. If no structuring element is provided,
one is generated by calling generate_binary_structure (see Binary morphology) using a con-
nectivity of one (which in 2D is a 4-connected structure.) For example, using an 8-connected structure
with the last example yields a different object:

>>> print watershed_ift(input, markers,
... structure = [[1,1,1], [1,1,1], [1,1,1]])
[[-1 -1 -1 -1 -1 -1 -1]
[-1 2 2 2 2 2 -1]
[-1 2 2 2 2 2 -1]
[-1 2 2 2 2 2 -1]
[-1 2 2 2 2 2 -1]
[-1 2 2 2 2 2 -1]
[-1 -1 -1 -1 -1 -1 -1]]

Note: The implementation of watershed_ift limits the data types of the input to UInt8 and
UInt16.

1.10.8 Object measurements

Given an array of labeled objects, the properties of the individual objects can be measured. The find_objects
function can be used to generate a list of slices that for each object, give the smallest sub-array that fully contains the
object:

The find_objects function finds all objects in a labeled array and returns a list of slices that corre-
spond to the smallest regions in the array that contains the object. For instance:

>>> a = array([[0,1,1,0,0,0],[0,1,1,0,1,0],[0,0,0,1,1,1],[0,0,0,0,1,0]])
>>> l, n = label(a)
>>> f = find_objects(l)
>>> print a[f[0]]
[[1 1]
[1 1]]

>>> print a[f[1]]
[[0 1 0]
[1 1 1]
[0 1 0]]

find_objects returns slices for all objects, unless the max_label parameter is larger then zero, in
which case only the first max_label objects are returned. If an index is missing in the label array, None is
return instead of a slice. For example:

>>> print find_objects([1, 0, 3, 4], max_label = 3)
[(slice(0, 1, None),), None, (slice(2, 3, None),)]

The list of slices generated by find_objects is useful to find the position and dimensions of the objects in the
array, but can also be used to perform measurements on the individual objects. Say we want to find the sum of the
intensities of an object in image:

>>> image = arange(4*6,shape=(4,6))
>>> mask = array([[0,1,1,0,0,0],[0,1,1,0,1,0],[0,0,0,1,1,1],[0,0,0,0,1,0]])
>>> labels = label(mask)[0]
>>> slices = find_objects(labels)

Then we can calculate the sum of the elements in the second object:

66 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.7

>>> print where(labels[slices[1]] == 2, image[slices[1]], 0).sum()
80

That is however not particularly efficient, and may also be more complicated for other types of measurements. There-
fore a few measurements functions are defined that accept the array of object labels and the index of the object to be
measured. For instance calculating the sum of the intensities can be done by:

>>> print sum(image, labels, 2)
80.0

For large arrays and small objects it is more efficient to call the measurement functions after slicing the array:

>>> print sum(image[slices[1]], labels[slices[1]], 2)
80.0

Alternatively, we can do the measurements for a number of labels with a single function call, returning a list of results.
For instance, to measure the sum of the values of the background and the second object in our example we give a list
of labels:

>>> print sum(image, labels, [0, 2])
[178.0, 80.0]

The measurement functions described below all support the index parameter to indicate which object(s) should be
measured. The default value of index is None. This indicates that all elements where the label is larger than zero
should be treated as a single object and measured. Thus, in this case the labels array is treated as a mask defined by
the elements that are larger than zero. If index is a number or a sequence of numbers it gives the labels of the objects
that are measured. If index is a sequence, a list of the results is returned. Functions that return more than one result,
return their result as a tuple if index is a single number, or as a tuple of lists, if index is a sequence.

The sum function calculates the sum of the elements of the object with label(s) given by index, using the
labels array for the object labels. If index is None, all elements with a non-zero label value are treated as
a single object. If label is None, all elements of input are used in the calculation.

The mean function calculates the mean of the elements of the object with label(s) given by index, using
the labels array for the object labels. If index is None, all elements with a non-zero label value are treated
as a single object. If label is None, all elements of input are used in the calculation.

The variance function calculates the variance of the elements of the object with label(s) given by index,
using the labels array for the object labels. If index is None, all elements with a non-zero label value are
treated as a single object. If label is None, all elements of input are used in the calculation.

The standard_deviation function calculates the standard deviation of the elements of the object
with label(s) given by index, using the labels array for the object labels. If index is None, all elements
with a non-zero label value are treated as a single object. If label is None, all elements of input are used
in the calculation.

The minimum function calculates the minimum of the elements of the object with label(s) given by index,
using the labels array for the object labels. If index is None, all elements with a non-zero label value are
treated as a single object. If label is None, all elements of input are used in the calculation.

The maximum function calculates the maximum of the elements of the object with label(s) given by index,
using the labels array for the object labels. If index is None, all elements with a non-zero label value are
treated as a single object. If label is None, all elements of input are used in the calculation.

The minimum_position function calculates the position of the minimum of the elements of the object
with label(s) given by index, using the labels array for the object labels. If index is None, all elements
with a non-zero label value are treated as a single object. If label is None, all elements of input are used
in the calculation.

1.10. Multi-dimensional image processing (ndimage) 67

SciPy Reference Guide, Release 0.7

The maximum_position function calculates the position of the maximum of the elements of the object
with label(s) given by index, using the labels array for the object labels. If index is None, all elements
with a non-zero label value are treated as a single object. If label is None, all elements of input are used
in the calculation.

The extrema function calculates the minimum, the maximum, and their positions, of the elements of
the object with label(s) given by index, using the labels array for the object labels. If index is None, all
elements with a non-zero label value are treated as a single object. If label is None, all elements of input
are used in the calculation. The result is a tuple giving the minimum, the maximum, the position of the
minimum and the postition of the maximum. The result is the same as a tuple formed by the results of the
functions minimum, maximum, minimum_position, and maximum_position that are described above.

The center_of_mass function calculates the center of mass of the of the object with label(s) given
by index, using the labels array for the object labels. If index is None, all elements with a non-zero label
value are treated as a single object. If label is None, all elements of input are used in the calculation.

The histogram function calculates a histogram of the of the object with label(s) given by index, using
the labels array for the object labels. If index is None, all elements with a non-zero label value are treated
as a single object. If label is None, all elements of input are used in the calculation. Histograms are
defined by their minimum (min), maximum (max) and the number of bins (bins). They are returned as
one-dimensional arrays of type Int32.

1.10.9 Extending ndimage in C

A few functions in the scipy.ndimage take a call-back argument. This can be a python function, but also a
PyCObject containing a pointer to a C function. To use this feature, you must write your own C extension that
defines the function, and define a Python function that returns a PyCObject containing a pointer to this function.

An example of a function that supports this is geometric_transform (see Interpolation functions). You can pass
it a python callable object that defines a mapping from all output coordinates to corresponding coordinates in the input
array. This mapping function can also be a C function, which generally will be much more efficient, since the overhead
of calling a python function at each element is avoided.

For example to implement a simple shift function we define the following function:

static int
_shift_function(int *output_coordinates, double* input_coordinates,

int output_rank, int input_rank, void *callback_data)
{
int ii;
/* get the shift from the callback data pointer: */
double shift = *(double*)callback_data;
/* calculate the coordinates: */
for(ii = 0; ii < irank; ii++)
icoor[ii] = ocoor[ii] - shift;

/* return OK status: */
return 1;

}

This function is called at every element of the output array, passing the current coordinates in the output_coordinates
array. On return, the input_coordinates array must contain the coordinates at which the input is interpolated. The ranks
of the input and output array are passed through output_rank and input_rank. The value of the shift is passed through
the callback_data argument, which is a pointer to void. The function returns an error status, in this case always 1,
since no error can occur.

A pointer to this function and a pointer to the shift value must be passed to geometric_transform. Both are
passed by a single PyCObject which is created by the following python extension function:

68 Chapter 1. SciPy Tutorial

http://docs.python.org/dev/c-api/cobject.html#PyCObject
http://docs.python.org/dev/c-api/cobject.html#PyCObject
http://docs.python.org/dev/c-api/cobject.html#PyCObject

SciPy Reference Guide, Release 0.7

static PyObject *
py_shift_function(PyObject *obj, PyObject *args)
{
double shift = 0.0;
if (!PyArg_ParseTuple(args, "d", &shift)) {
PyErr_SetString(PyExc_RuntimeError, "invalid parameters");
return NULL;

} else {
/* assign the shift to a dynamically allocated location: */
double *cdata = (double*)malloc(sizeof(double));

*cdata = shift;
/* wrap function and callback_data in a CObject: */
return PyCObject_FromVoidPtrAndDesc(_shift_function, cdata,

_destructor);
}

}

The value of the shift is obtained and then assigned to a dynamically allocated memory location. Both this data pointer
and the function pointer are then wrapped in a PyCObject, which is returned. Additionally, a pointer to a destructor
function is given, that will free the memory we allocated for the shift value when the PyCObject is destroyed. This
destructor is very simple:

static void
_destructor(void* cobject, void *cdata)
{
if (cdata)
free(cdata);

}

To use these functions, an extension module is built:

static PyMethodDef methods[] = {
{"shift_function", (PyCFunction)py_shift_function, METH_VARARGS, ""},
{NULL, NULL, 0, NULL}

};

void
initexample(void)
{
Py_InitModule("example", methods);

}

This extension can then be used in Python, for example:

>>> import example
>>> array = arange(12, shape=(4,3), type = Float64)
>>> fnc = example.shift_function(0.5)
>>> print geometric_transform(array, fnc)
[[0. 0. 0.]
[0. 1.3625 2.7375]
[0. 4.8125 6.1875]
[0. 8.2625 9.6375]]

C callback functions for use with ndimage functions must all be written according to this scheme. The next section
lists the ndimage functions that acccept a C callback function and gives the prototype of the callback function.

1.10. Multi-dimensional image processing (ndimage) 69

http://docs.python.org/dev/c-api/cobject.html#PyCObject
http://docs.python.org/dev/c-api/cobject.html#PyCObject

SciPy Reference Guide, Release 0.7

1.10.10 Functions that support C callback functions

The ndimage functions that support C callback functions are described here. Obviously, the prototype of the func-
tion that is provided to these functions must match exactly that what they expect. Therefore we give here the pro-
totypes of the callback functions. All these callback functions accept a void callback_data pointer that must be
wrapped in a PyCObject using the Python PyCObject_FromVoidPtrAndDesc function, which can also ac-
cept a pointer to a destructor function to free any memory allocated for callback_data. If callback_data is not needed,
PyCObject_FromVoidPtr may be used instead. The callback functions must return an integer error status that is
equal to zero if something went wrong, or 1 otherwise. If an error occurs, you should normally set the python error
status with an informative message before returning, otherwise, a default error message is set by the calling function.

The function generic_filter (see Generic filter functions) accepts a callback function with the following proto-
type:

The calling function iterates over the elements of the input and output arrays, calling the callback function
at each element. The elements within the footprint of the filter at the current element are passed through
the buffer parameter, and the number of elements within the footprint through filter_size. The calculated
valued should be returned in the return_value argument.

The function generic_filter1d (see Generic filter functions) accepts a callback function with the following
prototype:

The calling function iterates over the lines of the input and output arrays, calling the callback function
at each line. The current line is extended according to the border conditions set by the calling function,
and the result is copied into the array that is passed through the input_line array. The length of the input
line (after extension) is passed through input_length. The callback function should apply the 1D filter and
store the result in the array passed through output_line. The length of the output line is passed through
output_length.

The function geometric_transform (see Interpolation functions) expects a function with the following proto-
type:

The calling function iterates over the elements of the output array, calling the callback function at each
element. The coordinates of the current output element are passed through output_coordinates. The
callback function must return the coordinates at which the input must be interpolated in input_coordinates.
The rank of the input and output arrays are given by input_rank and output_rank respectively.

70 Chapter 1. SciPy Tutorial

http://docs.python.org/dev/c-api/cobject.html#PyCObject
http://docs.python.org/dev/c-api/cobject.html#PyCObject_FromVoidPtrAndDesc
http://docs.python.org/dev/c-api/cobject.html#PyCObject_FromVoidPtr

CHAPTER

TWO

RELEASE NOTES

2.1 SciPy 0.7.0 Release Notes

Contents

• Release Notes

– SciPy 0.7.0 Release Notes

* Python 2.6 and 3.0

* Major documentation improvements

* Running Tests

* Building SciPy

* Sandbox Removed

* Sparse Matrices

* Statistics package

* Reworking of IO package

* New Hierarchical Clustering module

* New Spatial package

* Reworked fftpack package

* New Constants package

* New Radial Basis Function module

* New complex ODE integrator

* New generalized symmetric and hermitian eigenvalue problem solver

* Bug fixes in the interpolation package

* Weave clean up

* Known problems

SciPy 0.7.0 is the culmination of 16 months of hard work. It contains many new features, numerous bug-fixes,
improved test coverage and better documentation. There have been a number of deprecations and API changes in
this release, which are documented below. All users are encouraged to upgrade to this release, as there are a large
number of bug-fixes and optimizations. Moreover, our development attention will now shift to bug-fix releases on
the 0.7.x branch, and on adding new features on the development trunk. This release requires Python 2.4 or 2.5 and
NumPy 1.2 or greater.

Please note that SciPy is still considered to have “Beta” status, as we work toward a SciPy 1.0.0 release. The 1.0.0

71

SciPy Reference Guide, Release 0.7

release will mark a major milestone in the development of SciPy, after which changing the package structure or API
will be much more difficult. Whilst these pre-1.0 releases are considered to have “Beta” status, we are committed to
making them as bug-free as possible. For example, in addition to fixing numerous bugs in this release, we have also
doubled the number of unit tests since the last release.

However, until the 1.0 release, we are aggressively reviewing and refining the functionality, organization, and interface.
This is being done in an effort to make the package as coherent, intuitive, and useful as possible. To achieve this, we
need help from the community of users. Specifically, we need feedback regarding all aspects of the project - everything
- from which algorithms we implement, to details about our function’s call signatures.

Over the last year, we have seen a rapid increase in community involvement, and numerous infrastructure improve-
ments to lower the barrier to contributions (e.g., more explicit coding standards, improved testing infrastructure, better
documentation tools). Over the next year, we hope to see this trend continue and invite everyone to become more
involved.

2.1.1 Python 2.6 and 3.0

A significant amount of work has gone into making SciPy compatible with Python 2.6; however, there are still some
issues in this regard. The main issue with 2.6 support is NumPy. On UNIX (including Mac OS X), NumPy 1.2.1
mostly works, with a few caveats. On Windows, there are problems related to the compilation process. The upcoming
NumPy 1.3 release will fix these problems. Any remaining issues with 2.6 support for SciPy 0.7 will be addressed in
a bug-fix release.

Python 3.0 is not supported at all; it requires NumPy to be ported to Python 3.0. This requires immense effort, since a
lot of C code has to be ported. The transition to 3.0 is still under consideration; currently, we don’t have any timeline
or roadmap for this transition.

2.1.2 Major documentation improvements

SciPy documentation is greatly improved; you can view a HTML reference manual online or download it as a PDF
file. The new reference guide was built using the popular Sphinx tool.

This release also includes an updated tutorial, which hadn’t been available since SciPy was ported to NumPy in
2005. Though not comprehensive, the tutorial shows how to use several essential parts of Scipy. It also includes the
ndimage documentation from the numarray manual.

Nevertheless, more effort is needed on the documentation front. Luckily, contributing to Scipy documentation is now
easier than before: if you find that a part of it requires improvements, and want to help us out, please register a user
name in our web-based documentation editor at http://docs.scipy.org/ and correct the issues.

2.1.3 Running Tests

NumPy 1.2 introduced a new testing framework based on nose. Starting with this release, SciPy now uses the new
NumPy test framework as well. Taking advantage of the new testing framework requires nose version 0.10, or later.
One major advantage of the new framework is that it greatly simplifies writing unit tests - which has all ready paid off,
given the rapid increase in tests. To run the full test suite:

>>> import scipy
>>> scipy.test(’full’)

For more information, please see The NumPy/SciPy Testing Guide.

We have also greatly improved our test coverage. There were just over 2,000 unit tests in the 0.6.0 release; this release
nearly doubles that number, with just over 4,000 unit tests.

72 Chapter 2. Release Notes

http://docs.scipy.org/
http://sphinx.pocoo.org/
http://docs.scipy.org/
http://somethingaboutorange.com/mrl/projects/nose/
http://projects.scipy.org/scipy/numpy/wiki/TestingGuidelines

SciPy Reference Guide, Release 0.7

2.1.4 Building SciPy

Support for NumScons has been added. NumScons is a tentative new build system for NumPy/SciPy, using SCons at
its core.

SCons is a next-generation build system, intended to replace the venerable Make with the integrated functionality
of autoconf/automake and ccache. Scons is written in Python and its configuration files are Python scripts.
NumScons is meant to replace NumPy’s custom version of distutils providing more advanced functionality, such
as autoconf, improved fortran support, more tools, and support for numpy.distutils/scons cooperation.

2.1.5 Sandbox Removed

While porting SciPy to NumPy in 2005, several packages and modules were moved into scipy.sandbox. The
sandbox was a staging ground for packages that were undergoing rapid development and whose APIs were in flux. It
was also a place where broken code could live. The sandbox has served its purpose well, but was starting to create
confusion. Thus scipy.sandbox was removed. Most of the code was moved into scipy, some code was made
into a scikit, and the remaining code was just deleted, as the functionality had been replaced by other code.

2.1.6 Sparse Matrices

Sparse matrices have seen extensive improvements. There is now support for integer dtypes such int8, uint32, etc.
Two new sparse formats were added:

• new class dia_matrix : the sparse DIAgonal format

• new class bsr_matrix : the Block CSR format

Several new sparse matrix construction functions were added:

• sparse.kron : sparse Kronecker product

• sparse.bmat : sparse version of numpy.bmat

• sparse.vstack : sparse version of numpy.vstack

• sparse.hstack : sparse version of numpy.hstack

Extraction of submatrices and nonzero values have been added:

• sparse.tril : extract lower triangle

• sparse.triu : extract upper triangle

• sparse.find : nonzero values and their indices

csr_matrix and csc_matrix now support slicing and fancy indexing (e.g., A[1:3, 4:7] and
A[[3,2,6,8],:]). Conversions among all sparse formats are now possible:

• using member functions such as .tocsr() and .tolil()

• using the .asformat() member function, e.g. A.asformat(’csr’)

• using constructors A = lil_matrix([[1,2]]); B = csr_matrix(A)

All sparse constructors now accept dense matrices and lists of lists. For example:

2.1. SciPy 0.7.0 Release Notes 73

http://www.scons.org/

SciPy Reference Guide, Release 0.7

• A = csr_matrix(rand(3,3)) and B = lil_matrix([[1,2],[3,4]])

The handling of diagonals in the spdiags function has been changed. It now agrees with the MATLAB(TM) function
of the same name.

Numerous efficiency improvements to format conversions and sparse matrix arithmetic have been made. Finally, this
release contains numerous bugfixes.

2.1.7 Statistics package

Statistical functions for masked arrays have been added, and are accessible through scipy.stats.mstats. The
functions are similar to their counterparts in scipy.stats but they have not yet been verified for identical interfaces
and algorithms.

Several bugs were fixed for statistical functions, of those, kstest and percentileofscore gained new keyword
arguments.

Added deprecation warning for mean, median, var, std, cov, and corrcoef. These functions should
be replaced by their numpy counterparts. Note, however, that some of the default options differ between the
scipy.stats and numpy versions of these functions.

Numerous bug fixes to stats.distributions: all generic methods now work correctly, several methods in
individual distributions were corrected. However, a few issues remain with higher moments (skew, kurtosis)
and entropy. The maximum likelihood estimator, fit, does not work out-of-the-box for some distributions - in
some cases, starting values have to be carefully chosen, in other cases, the generic implementation of the maximum
likelihood method might not be the numerically appropriate estimation method.

We expect more bugfixes, increases in numerical precision and enhancements in the next release of scipy.

2.1.8 Reworking of IO package

The IO code in both NumPy and SciPy is being extensively reworked. NumPy will be where basic code for reading
and writing NumPy arrays is located, while SciPy will house file readers and writers for various data formats (data,
audio, video, images, matlab, etc.).

Several functions in scipy.io have been deprecated and will be removed in the 0.8.0 release including
npfile, save, load, create_module, create_shelf, objload, objsave, fopen, read_array,
write_array, fread, fwrite, bswap, packbits, unpackbits, and convert_objectarray. Some
of these functions have been replaced by NumPy’s raw reading and writing capabilities, memory-mapping capabili-
ties, or array methods. Others have been moved from SciPy to NumPy, since basic array reading and writing capability
is now handled by NumPy.

The Matlab (TM) file readers/writers have a number of improvements:

• default version 5

• v5 writers for structures, cell arrays, and objects

• v5 readers/writers for function handles and 64-bit integers

• new struct_as_record keyword argument to loadmat, which loads struct arrays in matlab as record arrays in
numpy

• string arrays have dtype=’U...’ instead of dtype=object

• loadmat no longer squeezes singleton dimensions, i.e. squeeze_me=False by default

74 Chapter 2. Release Notes

SciPy Reference Guide, Release 0.7

2.1.9 New Hierarchical Clustering module

This module adds new hierarchical clustering functionality to the scipy.cluster package. The function inter-
faces are similar to the functions provided MATLAB(TM)’s Statistics Toolbox to help facilitate easier migration to
the NumPy/SciPy framework. Linkage methods implemented include single, complete, average, weighted, centroid,
median, and ward.

In addition, several functions are provided for computing inconsistency statistics, cophenetic distance, and maximum
distance between descendants. The fcluster and fclusterdata functions transform a hierarchical clustering
into a set of flat clusters. Since these flat clusters are generated by cutting the tree into a forest of trees, the leaders
function takes a linkage and a flat clustering, and finds the root of each tree in the forest. The ClusterNode class
represents a hierarchical clusterings as a field-navigable tree object. to_tree converts a matrix-encoded hierarchical
clustering to a ClusterNode object. Routines for converting between MATLAB and SciPy linkage encodings are
provided. Finally, a dendrogram function plots hierarchical clusterings as a dendrogram, using matplotlib.

2.1.10 New Spatial package

The new spatial package contains a collection of spatial algorithms and data structures, useful for spatial statistics and
clustering applications. It includes rapidly compiled code for computing exact and approximate nearest neighbors, as
well as a pure-python kd-tree with the same interface, but that supports annotation and a variety of other algorithms.
The API for both modules may change somewhat, as user requirements become clearer.

It also includes a distance module, containing a collection of distance and dissimilarity functions for computing
distances between vectors, which is useful for spatial statistics, clustering, and kd-trees. Distance and dissimilar-
ity functions provided include Bray-Curtis, Canberra, Chebyshev, City Block, Cosine, Dice, Euclidean, Hamming,
Jaccard, Kulsinski, Mahalanobis, Matching, Minkowski, Rogers-Tanimoto, Russell-Rao, Squared Euclidean, Stan-
dardized Euclidean, Sokal-Michener, Sokal-Sneath, and Yule.

The pdist function computes pairwise distance between all unordered pairs of vectors in a set of vectors. The cdist
computes the distance on all pairs of vectors in the Cartesian product of two sets of vectors. Pairwise distance matrices
are stored in condensed form; only the upper triangular is stored. squareform converts distance matrices between
square and condensed forms.

2.1.11 Reworked fftpack package

FFTW2, FFTW3, MKL and DJBFFT wrappers have been removed. Only (NETLIB) fftpack remains. By focusing on
one backend, we hope to add new features - like float32 support - more easily.

2.1.12 New Constants package

scipy.constants provides a collection of physical constants and conversion factors. These constants are
taken from CODATA Recommended Values of the Fundamental Physical Constants: 2002. They may be found at
physics.nist.gov/constants. The values are stored in the dictionary physical_constants as a tuple containing the value,
the units, and the relative precision - in that order. All constants are in SI units, unless otherwise stated. Several helper
functions are provided.

2.1.13 New Radial Basis Function module

scipy.interpolate now contains a Radial Basis Function module. Radial basis functions can be used for
smoothing/interpolating scattered data in n-dimensions, but should be used with caution for extrapolation outside
of the observed data range.

2.1. SciPy 0.7.0 Release Notes 75

SciPy Reference Guide, Release 0.7

2.1.14 New complex ODE integrator

scipy.integrate.ode now contains a wrapper for the ZVODE complex-valued ordinary differential equation
solver (by Peter N. Brown, Alan C. Hindmarsh, and George D. Byrne).

2.1.15 New generalized symmetric and hermitian eigenvalue problem solver

scipy.linalg.eigh now contains wrappers for more LAPACK symmetric and hermitian eigenvalue problem
solvers. Users can now solve generalized problems, select a range of eigenvalues only, and choose to use a faster algo-
rithm at the expense of increased memory usage. The signature of the scipy.linalg.eigh changed accordingly.

2.1.16 Bug fixes in the interpolation package

The shape of return values from scipy.interpolate.interp1d used to be incorrect, if interpolated data
had more than 2 dimensions and the axis keyword was set to a non-default value. This has been fixed. Moreover,
interp1d returns now a scalar (0D-array) if the input is a scalar. Users of scipy.interpolate.interp1d
may need to revise their code if it relies on the previous behavior.

2.1.17 Weave clean up

There were numerous improvements to scipy.weave. blitz++ was relicensed by the author to be compatible
with the SciPy license. wx_spec.py was removed.

2.1.18 Known problems

Here are known problems with scipy 0.7.0:

• weave test failures on windows: those are known, and are being revised.

• weave test failure with gcc 4.3 (std::labs): this is a gcc 4.3 bug. A workaround is to add #include <cstdlib> in
scipy/weave/blitz/blitz/funcs.h (line 27). You can make the change in the installed scipy (in site-packages).

76 Chapter 2. Release Notes

CHAPTER

THREE

REFERENCE

3.1 Clustering package (scipy.cluster)

3.1.1 Hierarchical clustering (scipy.cluster.hierarchy)

Warning: This documentation is work-in-progress and unorganized.

Function Reference

These functions cut hierarchical clusterings into flat clusterings or find the roots of the forest formed by a cut by
providing the flat cluster ids of each observation.

Function Description
fcluster forms flat clusters from hierarchical clusters.
fclusterdata forms flat clusters directly from data.
leaders singleton root nodes for flat cluster.

These are routines for agglomerative clustering.

Function Description
linkage agglomeratively clusters original observations.
single the single/min/nearest algorithm. (alias)
complete the complete/max/farthest algorithm. (alias)
average the average/UPGMA algorithm. (alias)
weighted the weighted/WPGMA algorithm. (alias)
centroid the centroid/UPGMC algorithm. (alias)
median the median/WPGMC algorithm. (alias)
ward the Ward/incremental algorithm. (alias)

These routines compute statistics on hierarchies.

Function Description
cophenet computes the cophenetic distance between leaves.
from_mlab_linkage converts a linkage produced by MATLAB(TM).
inconsistent the inconsistency coefficients for cluster.
maxinconsts the maximum inconsistency coefficient for each cluster.
maxdists the maximum distance for each cluster.
maxRstat the maximum specific statistic for each cluster.
to_mlab_linkage converts a linkage to one MATLAB(TM) can understand.

Routines for visualizing flat clusters.

77

SciPy Reference Guide, Release 0.7

Function Description
dendrogram visualizes linkages (requires matplotlib).

These are data structures and routines for representing hierarchies as tree objects.

Function Description
ClusterNode represents cluster nodes in a cluster hierarchy.
leaves_list a left-to-right traversal of the leaves.
to_tree represents a linkage matrix as a tree object.

These are predicates for checking the validity of linkage and inconsistency matrices as well as for checking isomor-
phism of two flat cluster assignments.

Function Description
is_valid_im checks for a valid inconsistency matrix.
is_valid_linkage checks for a valid hierarchical clustering.
is_isomorphic checks if two flat clusterings are isomorphic.
is_monotonic checks if a linkage is monotonic.
correspond checks whether a condensed distance matrix corresponds with a linkage
num_obs_linkage the number of observations corresponding to a linkage matrix.

• MATLAB and MathWorks are registered trademarks of The MathWorks, Inc.

• Mathematica is a registered trademark of The Wolfram Research, Inc.

References

Copyright Notice

Copyright (C) Damian Eads, 2007-2008. New BSD License.

class ClusterNode(id, left=None, right=None, dist=0, count=1)
A tree node class for representing a cluster. Leaf nodes correspond to original observations, while non-leaf
nodes correspond to non-singleton clusters.

The to_tree function converts a matrix returned by the linkage function into an easy-to-use tree representation.

Seealso

• to_tree: for converting a linkage matrix Z into a tree object.

get_count()
The number of leaf nodes (original observations) belonging to the cluster node nd. If the target node is a
leaf, 1 is returned.

Returns

c
[int] The number of leaf nodes below the target node.

get_id()
The identifier of the target node. For 0 ≤ i < n, i corresponds to original observation i. For n ≤ i <
2n− 1, i corresponds to non-singleton cluster formed at iteration i− n.

Returns

id
[int] The identifier of the target node.

78 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

get_left()
Returns a reference to the left child tree object. If the node is a leaf, None is returned.

Returns

left
[ClusterNode] The left child of the target node.

get_right()
Returns a reference to the right child tree object. If the node is a leaf, None is returned.

Returns

right
[ClusterNode] The left child of the target node.

is_leaf()
Returns True iff the target node is a leaf.

Returns

leafness
[bool] True if the target node is a leaf node.

pre_order(func=<function <lambda> at 0x461fde8>)
Performs preorder traversal without recursive function calls. When a leaf node is first encountered, func
is called with the leaf node as its argument, and its result is appended to the list.
For example, the statement:

ids = root.pre_order(lambda x: x.id)

returns a list of the node ids corresponding to the leaf nodes of the tree as they appear from left to right.

Parameters

• func : function Applied to each leaf ClusterNode object in the pre-order traversal. Given
the i’th leaf node in the pre-order traversal n[i], the result of func(n[i]) is stored in L[i].
If not provided, the index of the original observation to which the node corresponds is
used.

Returns

• L : list The pre-order traversal.

average(y)
Performs average/UPGMA linkage on the condensed distance matrix y. See linkage for more information
on the return structure and algorithm.

Parameters

y
[ndarray] The upper triangular of the distance matrix. The result of pdist is returned in
this form.

Returns

Z
[ndarray] A linkage matrix containing the hierarchical clustering. See the linkage func-
tion documentation for more information on its structure.

Seealso

3.1. Clustering package (scipy.cluster) 79

SciPy Reference Guide, Release 0.7

• linkage: for advanced creation of hierarchical clusterings.

centroid(y)
Performs centroid/UPGMC linkage. See linkage for more information on the return structure and algorithm.

The following are common calling conventions:

1.Z = centroid(y)

Performs centroid/UPGMC linkage on the condensed distance matrix y. See linkage for more informa-
tion on the return structure and algorithm.

2.Z = centroid(X)

Performs centroid/UPGMC linkage on the observation matrix X using Euclidean distance as the distance
metric. See linkage for more information on the return structure and algorithm.

Parameters

Q
[ndarray] A condensed or redundant distance matrix. A condensed distance matrix is a flat
array containing the upper triangular of the distance matrix. This is the form that pdist
returns. Alternatively, a collection of m observation vectors in n dimensions may be passed
as a m by n array.

Returns

Z
[ndarray] A linkage matrix containing the hierarchical clustering. See the linkage func-
tion documentation for more information on its structure.

Seealso

• linkage: for advanced creation of hierarchical clusterings.

complete(y)
Performs complete complete/max/farthest point linkage on the condensed distance matrix y. See linkage for
more information on the return structure and algorithm.

Parameters

y
[ndarray] The upper triangular of the distance matrix. The result of pdist is returned in
this form.

Returns

Z
[ndarray] A linkage matrix containing the hierarchical clustering. See the linkage func-
tion documentation for more information on its structure.

cophenet(Z, Y=None)
Calculates the cophenetic distances between each observation in the hierarchical clustering defined by the
linkage Z.

Suppose p and q are original observations in disjoint clusters s and t, respectively and s and t are joined by
a direct parent cluster u. The cophenetic distance between observations i and j is simply the distance between
clusters s and t.

Parameters

80 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

• Z : ndarray The hierarchical clustering encoded as an array (see linkage function).
• Y : ndarray (optional) Calculates the cophenetic correlation coefficient c of a hierarchical

clustering defined by the linkage matrix Z of a set of n observations in m dimensions. Y is
the condensed distance matrix from which Z was generated.

Returns
(c, {d}) - c : ndarray

The cophentic correlation distance (if y is passed).
• d : ndarray The cophenetic distance matrix in condensed form. The ij th entry is the cophe-

netic distance between original observations i and j.

correspond(Z, Y)
Checks if a linkage matrix Z and condensed distance matrix Y could possibly correspond to one another.

They must have the same number of original observations for the check to succeed.

This function is useful as a sanity check in algorithms that make extensive use of linkage and distance matrices
that must correspond to the same set of original observations.

Arguments

• Z
[ndarray] The linkage matrix to check for correspondance.

• Y
[ndarray] The condensed distance matrix to check for correspondance.

Returns

• b
[bool] A boolean indicating whether the linkage matrix and distance matrix could possibly
correspond to one another.

dendrogram(Z, p=30, truncate_mode=None, color_threshold=None, get_leaves=True, orienta-
tion=’top’, labels=None, count_sort=False, distance_sort=False, show_leaf_counts=True,
no_plot=False, no_labels=False, color_list=None, leaf_font_size=None, leaf_rotation=None,
leaf_label_func=None, no_leaves=False, show_contracted=False, link_color_func=None)

Plots the hiearchical clustering defined by the linkage Z as a dendrogram. The dendrogram illustrates
how each cluster is composed by drawing a U-shaped link between a non-singleton cluster and its
children. The height of the top of the U-link is the distance between its children clusters. It is also
the cophenetic distance between original observations in the two children clusters. It is expected that
the distances in Z[:,2] be monotonic, otherwise crossings appear in the dendrogram.

Arguments

• Z : ndarray The linkage matrix encoding the hierarchical clustering to render as a
dendrogram. See the linkage function for more information on the format of Z.

• truncate_mode : string The dendrogram can be hard to read when the original ob-
servation matrix from which the linkage is derived is large. Truncation is used to
condense the dendrogram. There are several modes:

– None/’none’: no truncation is performed (Default)
– ‘lastp’: the last p non-singleton formed in the linkage
are the only non-leaf nodes in the linkage; they correspond to to rows
Z[n-p-2:end] in Z. All other non-singleton clusters are contracted into leaf
nodes.
– ‘mlab’: This corresponds to MATLAB(TM) behavior. (not
implemented yet)

3.1. Clustering package (scipy.cluster) 81

SciPy Reference Guide, Release 0.7

– ‘level’/’mtica’: no more than p levels of the
dendrogram tree are displayed. This corresponds to Mathematica(TM) behav-
ior.

• p : int The p parameter for truncate_mode.

‘

• color_threshold : double For brevity, let t be the color_threshold. Colors all the descendent
links below a cluster node k the same color if k is the first node below the cut threshold t. All links
connecting nodes with distances greater than or equal to the threshold are colored blue. If t is less
than or equal to zero, all nodes are colored blue. If color_threshold is None or ‘default’,
corresponding with MATLAB(TM) behavior, the threshold is set to 0.7*max(Z[:,2]).

• get_leaves : bool Includes a list R[’leaves’]=H in the result dictionary. For each i, H[i]
== j, cluster node j appears in the i th position in the left-to-right traversal of the leaves, where
j < 2n− 1 and i < n.

• orientation : string The direction to plot the dendrogram, which can be any of the following strings

– ‘top’: plots the root at the top, and plot descendent
links going downwards. (default).

– ‘bottom’: plots the root at the bottom, and plot descendent
links going upwards.

– ‘left’: plots the root at the left, and plot descendent
links going right.

– ‘right’: plots the root at the right, and plot descendent
links going left.

• labels : ndarray By default labels is None so the index of the original observation is used to label
the leaf nodes.
Otherwise, this is an n -sized list (or tuple). The labels[i] value is the text to put under the i th
leaf node only if it corresponds to an original observation and not a non-singleton cluster.

• count_sort : string/bool For each node n, the order (visually, from left-to-right) n’s two descendent
links are plotted is determined by this parameter, which can be any of the following values:

– False: nothing is done.
– ‘ascending’/True: the child with the minimum number of

original objects in its cluster is plotted first.
– ‘descendent’: the child with the maximum number of

original objects in its cluster is plotted first.

Note distance_sort and count_sort cannot both be True.

• distance_sort : string/bool For each node n, the order (visually, from left-to-right) n’s two descendent
links are plotted is determined by this parameter, which can be any of the following values:

– False: nothing is done.
– ‘ascending’/True: the child with the minimum distance

between its direct descendents is plotted first.
– ‘descending’: the child with the maximum distance

between its direct descendents is plotted first.

Note distance_sort and count_sort cannot both be True.

• show_leaf_counts : bool
When True, leaf nodes representing k > 1 original observation are labeled with the number of
observations they contain in parentheses.

82 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

• no_plot : bool When True, the final rendering is not performed. This is useful if only the data
structures computed for the rendering are needed or if matplotlib is not available.

• no_labels : bool When True, no labels appear next to the leaf nodes in the rendering of the dendro-
gram.

• leaf_label_rotation : double
Specifies the angle (in degrees) to rotate the leaf labels. When unspecified, the rotation based on the
number of nodes in the dendrogram. (Default=0)

• leaf_font_size : int Specifies the font size (in points) of the leaf labels. When unspecified, the size
based on the number of nodes in the dendrogram.

• leaf_label_func : lambda or function
When leaf_label_func is a callable function, for each leaf with cluster index k < 2n − 1. The
function is expected to return a string with the label for the leaf.
Indices k < n correspond to original observations while indices k ≥ n correspond to non-singleton
clusters.
For example, to label singletons with their node id and non-singletons with their id, count, and
inconsistency coefficient, simply do:

First define the leaf label function.
def llf(id):

if id < n:
return str(id)

else:
return ’[%d %d %1.2f]’ % (id, count, R[n-id,3])

The text for the leaf nodes is going to be big so force
a rotation of 90 degrees.
dendrogram(Z, leaf_label_func=llf, leaf_rotation=90)

• show_contracted : bool When True the heights of non-singleton nodes contracted into a leaf node
are plotted as crosses along the link connecting that leaf node. This really is only useful when
truncation is used (see truncate_mode parameter).

• link_color_func : lambda/function When a callable function, link_color_function is called with each
non-singleton id corresponding to each U-shaped link it will paint. The function is expected to return
the color to paint the link, encoded as a matplotlib color string code.
For example:

dendrogram(Z, link_color_func=lambda k: colors[k])

colors the direct links below each untruncated non-singleton node k using colors[k].

Returns

• R : dict A dictionary of data structures computed to render the dendrogram. Its has
the following keys:

– ‘icoords’: a list of lists [I1, I2, ..., Ip] where
Ik is a list of 4 independent variable coordinates corresponding to the line that
represents the k’th link painted.
– ‘dcoords’: a list of lists [I2, I2, ..., Ip] where
Ik is a list of 4 independent variable coordinates corresponding to the line that
represents the k’th link painted.
– ‘ivl’: a list of labels corresponding to the leaf nodes.
– ‘leaves’: for each i, H[i] == j, cluster node

3.1. Clustering package (scipy.cluster) 83

SciPy Reference Guide, Release 0.7

j appears in the i th position in the left-to-right traversal of the leaves, where
j < 2n − 1 and i < n. If j is less than n, the i th leaf node corresponds to an
original observation. Otherwise, it corresponds to a non-singleton cluster.

fcluster(Z, t, criterion=’inconsistent’, depth=2, R=None, monocrit=None)
Forms flat clusters from the hierarchical clustering defined by the linkage matrix Z. The threshold t is a required
parameter.

Arguments

• Z : ndarray The hierarchical clustering encoded with the matrix returned by the linkage
function.

• t : double The threshold to apply when forming flat clusters.
• criterion : string (optional) The criterion to use in forming flat clusters. This can be any

of the following values:
– ‘inconsistent’: If a cluster node and all its
decendents have an inconsistent value less than or equal to t then all its leaf
descendents belong to the same flat cluster. When no non-singleton cluster meets
this criterion, every node is assigned to its own cluster. (Default)
– ‘distance’: Forms flat clusters so that the original
observations in each flat cluster have no greater a cophenetic distance than t.
– ‘maxclust’: Finds a minimum threshold r so that
the cophenetic distance between any two original observations in the same flat
cluster is no more than r and no more than t flat clusters are formed.
– ‘monocrit’: Forms a flat cluster from a cluster node c
with index i when monocrit[j] <= t.
For example, to threshold on the maximum mean distance as computed in the
inconsistency matrix R with a threshold of 0.8 do:

MR = maxRstat(Z, R, 3)
cluster(Z, t=0.8, criterion=’monocrit’, monocrit=MR)

– ‘maxclust_monocrit’: Forms a flat cluster from a
non-singleton cluster node cwhen monocrit[i] <= r for all cluster indices
i below and including c. r is minimized such that no more than t flat clusters
are formed. monocrit must be monotonic. For example, to minimize the thresh-
old t on maximum inconsistency values so that no more than 3 flat clusters are
formed, do:

MI = maxinconsts(Z, R) cluster(Z, t=3, criterion=’maxclust_monocrit’,
monocrit=MI)

• depth : int (optional) The maximum depth to perform the inconsistency calculation. It
has no meaning for the other criteria. (default=2)

• R : ndarray (optional) The inconsistency matrix to use for the ‘inconsistent’ criterion.
This matrix is computed if not provided.

• monocrit : ndarray (optional) A (n-1) numpy vector of doubles. monocrit[i] is
the statistics upon which non-singleton i is thresholded. The monocrit vector must be
monotonic, i.e. given a node c with index i, for all node indices j corresponding to nodes
below c, monocrit[i] >= monocrit[j].

Returns

• T
[ndarray] A vector of length n. T[i] is the flat cluster number to which original
observation i belongs.

84 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

fclusterdata(X, t, criterion=’inconsistent’, metric=’euclidean’, depth=2, method=’single’, R=None)
T = fclusterdata(X, t)

Clusters the original observations in the n by m data matrix X (n observations in m dimensions), using the
euclidean distance metric to calculate distances between original observations, performs hierarchical clustering
using the single linkage algorithm, and forms flat clusters using the inconsistency method with t as the cut-off
threshold.

A one-dimensional numpy array T of length n is returned. T[i] is the index of the flat cluster to which the
original observation i belongs.

Arguments

• Z : ndarray The hierarchical clustering encoded with the matrix returned by the linkage
function.

• t : double The threshold to apply when forming flat clusters.
• criterion : string Specifies the criterion for forming flat clusters. Valid values are ‘in-

consistent’, ‘distance’, or ‘maxclust’ cluster formation algorithms. See fcluster for
descriptions.

• method : string The linkage method to use (single, complete, average, weighted, median
centroid, ward). See linkage for more information.

• metric : string The distance metric for calculating pairwise distances. See distance.pdist
for descriptions and linkage to verify compatibility with the linkage method.

• t : double The cut-off threshold for the cluster function or the maximum number of
clusters (criterion=’maxclust’).

• depth : int The maximum depth for the inconsistency calculation. See inconsistent
for more information.

• R : ndarray The inconsistency matrix. It will be computed if necessary if it is not passed.

Returns

• T : ndarray A vector of length n. T[i] is the flat cluster number to which original
observation i belongs.

Notes

This function is similar to MATLAB(TM) clusterdata function.

from_mlab_linkage(Z)
Converts a linkage matrix generated by MATLAB(TM) to a new linkage matrix compatible with this module.
The conversion does two things:

•the indices are converted from 1..N to 0..(N-1) form, and

•a fourth column Z[:,3] is added where Z[i,3] is represents the number of original observations (leaves) in
the non-singleton cluster i.

This function is useful when loading in linkages from legacy data files generated by MATLAB.

Arguments

• Z
[ndarray] A linkage matrix generated by MATLAB(TM)

Returns

3.1. Clustering package (scipy.cluster) 85

SciPy Reference Guide, Release 0.7

• ZS
[ndarray] A linkage matrix compatible with this library.

inconsistent(Z, d=2)
Calculates inconsistency statistics on a linkage.

Note: This function behaves similarly to the MATLAB(TM) inconsistent function.

Parameters

• d
[int] The number of links up to d levels below each non-singleton cluster

• Z
[ndarray] The (n−1) by 4 matrix encoding the linkage (hierarchical clustering). See
linkage documentation for more information on its form.

Returns

• R
[ndarray] A (n − 1) by 5 matrix where the i‘th row contains the link statistics for
the non-singleton cluster i. The link statistics are computed over the link heights for
links d levels below the cluster i. R[i,0] and R[i,1] are the mean and standard
deviation of the link heights, respectively; R[i,2] is the number of links included
in the calculation; and R[i,3] is the inconsistency coefficient,

Z[i, 2]− R[i, 0]
R[i, 1]

.

is_isomorphic(T1, T2)
Determines if two different cluster assignments T1 and T2 are equivalent.

Arguments

• T1 : ndarray An assignment of singleton cluster ids to flat cluster ids.
• T2 : ndarray An assignment of singleton cluster ids to flat cluster ids.

Returns

• b : boolean Whether the flat cluster assignments T1 and T2 are equivalent.

is_monotonic(Z)
Returns True if the linkage passed is monotonic. The linkage is monotonic if for every cluster s and t joined,
the distance between them is no less than the distance between any previously joined clusters.

Arguments

• Z : ndarray The linkage matrix to check for monotonicity.

Returns

• b : bool A boolean indicating whether the linkage is monotonic.

is_valid_im(R, warning=False, throw=False, name=None)
Returns True if the inconsistency matrix passed is valid. It must be a n by 4 numpy array of doubles. The
standard deviations R[:,1] must be nonnegative. The link counts R[:,2] must be positive and no greater
than n− 1.

86 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

Arguments

• R : ndarray The inconsistency matrix to check for validity.
• warning : bool When True, issues a Python warning if the linkage matrix passed is

invalid.
• throw : bool When True, throws a Python exception if the linkage matrix passed is

invalid.
• name : string This string refers to the variable name of the invalid linkage matrix.

Returns

• b : bool True iff the inconsistency matrix is valid.

is_valid_linkage(Z, warning=False, throw=False, name=None)
Checks the validity of a linkage matrix. A linkage matrix is valid if it is a two dimensional nd-array (type
double) with n rows and 4 columns. The first two columns must contain indices between 0 and 2n − 1. For a
given row i, 0 ≤ Z[i, 0] ≤ i + n − 1 and 0 ≤ Z[i, 1] ≤ i + n − 1 (i.e. a cluster cannot join another cluster
unless the cluster being joined has been generated.)

Arguments

• warning : bool When True, issues a Python warning if the linkage matrix passed is
invalid.

• throw : bool When True, throws a Python exception if the linkage matrix passed is
invalid.

• name : string This string refers to the variable name of the invalid linkage matrix.

Returns

• b
[bool] True iff the inconsistency matrix is valid.

leaders(Z, T)
(L, M) = leaders(Z, T):

Returns the root nodes in a hierarchical clustering corresponding to a cut defined by a flat cluster assignment
vector T. See the fcluster function for more information on the format of T.

For each flat cluster j of the k flat clusters represented in the n-sized flat cluster assignment vector T, this
function finds the lowest cluster node i in the linkage tree Z such that:

•leaf descendents belong only to flat cluster j (i.e. T[p]==j for all p in S(i) where S(i) is the set of leaf
ids of leaf nodes descendent with cluster node i)

•there does not exist a leaf that is not descendent with i that also belongs to cluster j (i.e. T[q]!=j for
all q not in S(i)). If this condition is violated, T is not a valid cluster assignment vector, and an exception
will be thrown.

Arguments

• Z
[ndarray] The hierarchical clustering encoded as a matrix. See linkage for more
information.

• T
[ndarray] The flat cluster assignment vector.

3.1. Clustering package (scipy.cluster) 87

SciPy Reference Guide, Release 0.7

Returns
(L, M)

• L
[ndarray] The leader linkage node id’s stored as a k-element 1D array where k is the
number of flat clusters found in T.
L[j]=i is the linkage cluster node id that is the leader of flat cluster with id M[j].
If i < n, i corresponds to an original observation, otherwise it corresponds to a
non-singleton cluster.
For example: if L[3]=2 and M[3]=8, the flat cluster with id 8’s leader is linkage
node 2.

• M
[ndarray] The leader linkage node id’s stored as a k-element 1D array where k is the
number of flat clusters found in T. This allows the set of flat cluster ids to be any
arbitrary set of k integers.

leaves_list(Z)
Returns a list of leaf node ids (corresponding to observation vector index) as they appear in the tree from left to
right. Z is a linkage matrix.

Arguments

• Z
[ndarray] The hierarchical clustering encoded as a matrix. See linkage for more
information.

Returns

• L
[ndarray] The list of leaf node ids.

linkage(y, method=’single’, metric=’euclidean’)

Performs hierarchical/agglomerative clustering on the condensed distance matrix y. y must be a(
n
2

)
sized vector where n is the number of original observations paired in the distance matrix. The

behavior of this function is very similar to the MATLAB(TM) linkage function.

A 4 by (n−1) matrix Z is returned. At the i-th iteration, clusters with indices Z[i, 0] and Z[i,
1] are combined to form cluster n + i. A cluster with an index less than n corresponds to one of
the n original observations. The distance between clusters Z[i, 0] and Z[i, 1] is given by
Z[i, 2]. The fourth value Z[i, 3] represents the number of original observations in the newly
formed cluster.

The following linkage methods are used to compute the distance d(s, t) between two clusters s and
t. The algorithm begins with a forest of clusters that have yet to be used in the hierarchy being
formed. When two clusters s and t from this forest are combined into a single cluster u, s and t are
removed from the forest, and u is added to the forest. When only one cluster remains in the forest,
the algorithm stops, and this cluster becomes the root.

A distance matrix is maintained at each iteration. The d[i,j] entry corresponds to the distance
between cluster i and j in the original forest.

At each iteration, the algorithm must update the distance matrix to reflect the distance of the newly
formed cluster u with the remaining clusters in the forest.

Suppose there are |u| original observations u[0], . . . , u[|u| − 1] in cluster u and |v| original objects
v[0], . . . , v[|v| − 1] in cluster v. Recall s and t are combined to form cluster u. Let v be any
remaining cluster in the forest that is not u.

88 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

The following are methods for calculating the distance between the newly formed cluster u and
each v.

•method=’single’ assigns

d(u, v) = min(dist(u[i], v[j]))

for all points i in cluster u and j in cluster v. This is also known as the Nearest Point Algo-
rithm.

•method=’complete’ assigns

d(u, v) = max(dist(u[i], v[j]))

for all points i in cluster u and j in cluster v. This is also known by the Farthest Point
Algorithm or Voor Hees Algorithm.

•method=’average’ assigns

d(u, v) =
∑
ij

d(u[i], v[j])
(|u| ∗ |v|)

for all points i and j where |u| and |v| are the cardinalities of clusters u and v, respectively.
This is also called the UPGMA algorithm. This is called UPGMA.

•method=’weighted’ assigns

d(u, v) = (dist(s, v) + dist(t, v))/2

where cluster u was formed with cluster s and t and v is a remaining cluster in the forest. (also
called WPGMA)

•method=’centroid’ assigns

dist(s, t) = ||cs − ct||2

where cs and ct are the centroids of clusters s and t, respectively. When two clusters s and t
are combined into a new cluster u, the new centroid is computed over all the original objects
in clusters s and t. The distance then becomes the Euclidean distance between the centroid of
u and the centroid of a remaining cluster v in the forest. This is also known as the UPGMC
algorithm.

•method=’median’ assigns math:d(s,t) like the centroid method. When two clusters s and
t are combined into a new cluster u, the average of centroids s and t give the new centroid u.
This is also known as the WPGMC algorithm.

•method=’ward’ uses the Ward variance minimization algorithm. The new entry d(u, v) is
computed as follows,

d(u, v) =

√
|v|+ |s|

T
d(v, s)2 +

|v|+ |t|
T

d(v, t)2 +
|v|
T

d(s, t)2

where u is the newly joined cluster consisting of clusters s and t, v is an unused cluster in the
forest, T = |v|+ |s|+ |t|, and | ∗ | is the cardinality of its argument. This is also known as the
incremental algorithm.

3.1. Clustering package (scipy.cluster) 89

SciPy Reference Guide, Release 0.7

Warning: When the minimum distance pair in the forest is chosen, there may be two or more pairs
with the same minimum distance. This implementation may chose a different minimum than the
MATLAB(TM) version.

Parameters

• Q
[ndarray] A condensed or redundant distance matrix. A condensed distance
matrix is a flat array containing the upper triangular of the distance matrix.
This is the form that pdist returns. Alternatively, a collection of m obser-
vation vectors in n dimensions may be passed as a m by n array.

• method
[string] The linkage algorithm to use. See the Linkage Methods section
below for full descriptions.

• metric
[string] The distance metric to use. See the distance.pdist function for
a list of valid distance metrics.

Returns

• Z
[ndarray] The hierarchical clustering encoded as a linkage matrix.

maxRstat(Z, R, i)
Returns the maximum statistic for each non-singleton cluster and its descendents.

Arguments

• Z
[ndarray] The hierarchical clustering encoded as a matrix. See linkage for more
information.

• R
[ndarray] The inconsistency matrix.

• i
[int] The column of R to use as the statistic.

Returns

• MR : ndarray Calculates the maximum statistic for the i’th column of the inconsistency
matrix R for each non-singleton cluster node. MR[j] is the maximum over R[Q(j)-n,
i] where Q(j) the set of all node ids corresponding to nodes below and including j.

maxdists(Z)

Returns the maximum distance between any cluster for each non-singleton cluster.

Arguments

• Z
[ndarray] The hierarchical clustering encoded as a matrix. See linkage for more
information.

90 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

Returns

• MD : ndarray A (n-1) sized numpy array of doubles; MD[i] represents the maximum
distance between any cluster (including singletons) below and including the node with
index i. More specifically, MD[i] = Z[Q(i)-n, 2].max() where Q(i) is the set
of all node indices below and including node i.

maxinconsts(Z, R)
Returns the maximum inconsistency coefficient for each non-singleton cluster and its descendents.

Arguments

• Z
[ndarray] The hierarchical clustering encoded as a matrix. See linkage for more
information.

• R
[ndarray] The inconsistency matrix.

Returns

• MI
[ndarray] A monotonic (n-1)-sized numpy array of doubles.

median(y)
Performs median/WPGMC linkage. See linkage for more information on the return structure and algorithm.

The following are common calling conventions:

1.Z = median(y)

Performs median/WPGMC linkage on the condensed distance matrix y. See linkage for more infor-
mation on the return structure and algorithm.

2.Z = median(X)

Performs median/WPGMC linkage on the observation matrix X using Euclidean distance as the distance
metric. See linkage for more information on the return structure and algorithm.

Parameters

Q
[ndarray] A condensed or redundant distance matrix. A condensed distance matrix is a
flat array containing the upper triangular of the distance matrix. This is the form that
pdist returns. Alternatively, a collection of m observation vectors in n dimensions may
be passed as a m by n array.

Returns

• Z
[ndarray] The hierarchical clustering encoded as a linkage matrix.

Seealso

• linkage: for advanced creation of hierarchical clusterings.

3.1. Clustering package (scipy.cluster) 91

SciPy Reference Guide, Release 0.7

num_obs_linkage(Z)
Returns the number of original observations of the linkage matrix passed.

Arguments

• Z
[ndarray] The linkage matrix on which to perform the operation.

Returns

• n
[int] The number of original observations in the linkage.

set_link_color_palette(palette)
Changes the list of matplotlib color codes to use when coloring links with the dendrogram color_threshold
feature.

Arguments

• palette : A list of matplotlib color codes. The order of

the color codes is the order in which the colors are cycled through when color thresholding in
the dendrogram.

single(y)
Performs single/min/nearest linkage on the condensed distance matrix y. See linkage for more information
on the return structure and algorithm.

Parameters

y
[ndarray] The upper triangular of the distance matrix. The result of pdist is returned in
this form.

Returns

Z
[ndarray] The linkage matrix.

Seealso

• linkage: for advanced creation of hierarchical clusterings.

to_mlab_linkage(Z)
Converts a linkage matrix Z generated by the linkage function of this module to a MATLAB(TM) compatible
one. The return linkage matrix has the last column removed and the cluster indices are converted to 1..N
indexing.

Arguments

• Z
[ndarray] A linkage matrix generated by this library.

Returns

92 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

• ZM
[ndarray] A linkage matrix compatible with MATLAB(TM)’s hierarchical clustering
functions.

to_tree(Z, rd=False)
Converts a hierarchical clustering encoded in the matrix Z (by linkage) into an easy-to-use tree object. The
reference r to the root ClusterNode object is returned.

Each ClusterNode object has a left, right, dist, id, and count attribute. The left and right attributes point to
ClusterNode objects that were combined to generate the cluster. If both are None then the ClusterNode object
is a leaf node, its count must be 1, and its distance is meaningless but set to 0.

Note: This function is provided for the convenience of the library user. ClusterNodes are not used as input to
any of the functions in this library.

Parameters

• Z : ndarray The linkage matrix in proper form (see the linkage function documenta-
tion).

• r : bool When False, a reference to the root ClusterNode object is returned. Otherwise,
a tuple (r,d) is returned. r is a reference to the root node while d is a dictionary mapping
cluster ids to ClusterNode references. If a cluster id is less than n, then it corresponds to
a singleton cluster (leaf node). See linkage for more information on the assignment of
cluster ids to clusters.

Returns

• L : list The pre-order traversal.

ward(y)
Performs Ward’s linkage on a condensed or redundant distance matrix. See linkage for more information on the
return structure and algorithm.

The following are common calling conventions:

1.Z = ward(y) Performs Ward’s linkage on the condensed distance matrix Z. See linkage for more
information on the return structure and algorithm.

2.Z = ward(X) Performs Ward’s linkage on the observation matrix X using Euclidean distance as the
distance metric. See linkage for more information on the return structure and algorithm.

Parameters

Q
[ndarray] A condensed or redundant distance matrix. A condensed distance matrix is a
flat array containing the upper triangular of the distance matrix. This is the form that
pdist returns. Alternatively, a collection of m observation vectors in n dimensions may
be passed as a m by n array.

Returns

• Z
[ndarray] The hierarchical clustering encoded as a linkage matrix.

Seealso

• linkage: for advanced creation of hierarchical clusterings.

3.1. Clustering package (scipy.cluster) 93

SciPy Reference Guide, Release 0.7

weighted(y)
Performs weighted/WPGMA linkage on the condensed distance matrix y. See linkage for more information
on the return structure and algorithm.

Parameters

y
[ndarray] The upper triangular of the distance matrix. The result of pdist is returned in
this form.

Returns

Z
[ndarray] A linkage matrix containing the hierarchical clustering. See the linkage
function documentation for more information on its structure.

Seealso

• linkage: for advanced creation of hierarchical clusterings.

3.1.2 K-means clustering and vector quantization (scipy.cluster.vq)

K-means Clustering and Vector Quantization Module

Provides routines for k-means clustering, generating code books from k-means models, and quantizing vectors by
comparing them with centroids in a code book.

The k-means algorithm takes as input the number of clusters to generate, k, and a set of observation vectors to cluster.
It returns a set of centroids, one for each of the k clusters. An observation vector is classified with the cluster number
or centroid index of the centroid closest to it.

A vector v belongs to cluster i if it is closer to centroid i than any other centroids. If v belongs to i, we say centroid i is
the dominating centroid of v. Common variants of k-means try to minimize distortion, which is defined as the sum of
the distances between each observation vector and its dominating centroid. Each step of the k-means algorithm refines
the choices of centroids to reduce distortion. The change in distortion is often used as a stopping criterion: when the
change is lower than a threshold, the k-means algorithm is not making sufficient progress and terminates.

Since vector quantization is a natural application for k-means, information theory terminology is often used. The
centroid index or cluster index is also referred to as a “code” and the table mapping codes to centroids and vice
versa is often referred as a “code book”. The result of k-means, a set of centroids, can be used to quantize vectors.
Quantization aims to find an encoding of vectors that reduces the expected distortion.

For example, suppose we wish to compress a 24-bit color image (each pixel is represented by one byte for red, one
for blue, and one for green) before sending it over the web. By using a smaller 8-bit encoding, we can reduce the
amount of data by two thirds. Ideally, the colors for each of the 256 possible 8-bit encoding values should be chosen
to minimize distortion of the color. Running k-means with k=256 generates a code book of 256 codes, which fills up
all possible 8-bit sequences. Instead of sending a 3-byte value for each pixel, the 8-bit centroid index (or code word)
of the dominating centroid is transmitted. The code book is also sent over the wire so each 8-bit code can be translated
back to a 24-bit pixel value representation. If the image of interest was of an ocean, we would expect many 24-bit
blues to be represented by 8-bit codes. If it was an image of a human face, more flesh tone colors would be represented
in the code book.

All routines expect obs to be a M by N array where the rows are the observation vectors. The codebook is a k by N
array where the i’th row is the centroid of code word i. The observation vectors and centroids have the same feature
dimension.

whiten(obs) –
Normalize a group of observations so each feature has unit variance.

94 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

vq(obs,code_book) –
Calculate code book membership of a set of observation vectors.

kmeans(obs,k_or_guess,iter=20,thresh=1e-5) –
Clusters a set of observation vectors. Learns centroids with the k-means algorithm, trying to minimize distortion.
A code book is generated that can be used to quantize vectors.

kmeans2 –
A different implementation of k-means with more methods for initializing centroids. Uses maximum number of
iterations as opposed to a distortion threshold as its stopping criterion.

whiten(obs)
Normalize a group of observations on a per feature basis.

Before running k-means, it is beneficial to rescale each feature dimension of the observation set with whitening.
Each feature is divided by its standard deviation across all observations to give it unit variance.

Parameters

obs
[ndarray] Each row of the array is an observation. The columns are the features seen
during each observation.

f0 f1 f2
obs = [[1., 1., 1.], #o0

[2., 2., 2.], #o1
[3., 3., 3.], #o2
[4., 4., 4.]]) #o3

XXX perhaps should have an axis variable here.

Returns

result
[ndarray] Contains the values in obs scaled by the standard devation of each column.

Examples

>>> from numpy import array
>>> from scipy.cluster.vq import whiten
>>> features = array([[1.9,2.3,1.7],
... [1.5,2.5,2.2],
... [0.8,0.6,1.7,]])
>>> whiten(features)
array([[3.41250074, 2.20300046, 5.88897275],

[2.69407953, 2.39456571, 7.62102355],
[1.43684242, 0.57469577, 5.88897275]])

vq(obs, code_book)
Vector Quantization: assign codes from a code book to observations.

Assigns a code from a code book to each observation. Each observation vector in the M by N obs array is
compared with the centroids in the code book and assigned the code of the closest centroid.

The features in obs should have unit variance, which can be acheived by passing them through the whiten
function. The code book can be created with the k-means algorithm or a different encoding algorithm.

Parameters

3.1. Clustering package (scipy.cluster) 95

SciPy Reference Guide, Release 0.7

obs
[ndarray] Each row of the NxM array is an observation. The columns are the “features”
seen during each observation. The features must be whitened first using the whiten func-
tion or something equivalent.

code_book
[ndarray.] The code book is usually generated using the k-means algorithm. Each row of
the array holds a different code, and the columns are the features of the code.

f0 f1 f2 f3
code_book = [[1., 2., 3., 4.], #c0

[1., 2., 3., 4.], #c1
[1., 2., 3., 4.]]) #c2

Returns

code
[ndarray] A length N array holding the code book index for each observation.

dist
[ndarray] The distortion (distance) between the observation and its nearest code.

Notes
This currently forces 32-bit math precision for speed. Anyone know of a situation where this undermines the
accuracy of the algorithm?

Examples

>>> from numpy import array
>>> from scipy.cluster.vq import vq
>>> code_book = array([[1.,1.,1.],
... [2.,2.,2.]])
>>> features = array([[1.9,2.3,1.7],
... [1.5,2.5,2.2],
... [0.8,0.6,1.7]])
>>> vq(features,code_book)
(array([1, 1, 0],’i’), array([0.43588989, 0.73484692, 0.83066239]))

kmeans(obs, k_or_guess, iter=20, thresh=1.0000000000000001e-05)

Performs k-means on a set of observation vectors forming k
clusters. This yields a code book mapping centroids to codes and vice versa. The k-means algorithm
adjusts the centroids until sufficient progress cannot be made, i.e. the change in distortion since the last
iteration is less than some threshold.

Parameters

obs
[ndarray] Each row of the M by N array is an observation vector. The columns are
the features seen during each observation. The features must be whitened first with the
whiten function.

k_or_guess
[int or ndarray] The number of centroids to generate. A code is assigned to each centroid,
which is also the row index of the centroid in the code_book matrix generated.
The initial k centroids are chosen by randomly selecting observations from the observa-
tion matrix. Alternatively, passing a k by N array specifies the initial k centroids.

96 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

iter
[int] The number of times to run k-means, returning the codebook with the lowest dis-
tortion. This argument is ignored if initial centroids are specified with an array for the
k_or_guess paramter. This parameter does not represent the number of iterations of the
k-means algorithm.

thresh
[float] Terminates the k-means algorithm if the change in distortion since the last k-means
iteration is less than thresh.

Returns

codebook
[ndarray] A k by N array of k centroids. The i’th centroid codebook[i] is represented with
the code i. The centroids and codes generated represent the lowest distortion seen, not
necessarily the globally minimal distortion.

distortion
[float] The distortion between the observations passed and the centroids generated.

Seealso

• kmeans2: a different implementation of k-means clustering with more methods for gen-
erating initial centroids but without using a distortion change threshold as a stopping
criterion.

• whiten: must be called prior to passing an observation matrix to kmeans.

Examples

>>> from numpy import array
>>> from scipy.cluster.vq import vq, kmeans, whiten
>>> features = array([[1.9,2.3],
... [1.5,2.5],
... [0.8,0.6],
... [0.4,1.8],
... [0.1,0.1],
... [0.2,1.8],
... [2.0,0.5],
... [0.3,1.5],
... [1.0,1.0]])
>>> whitened = whiten(features)
>>> book = array((whitened[0],whitened[2]))
>>> kmeans(whitened,book)
(array([[2.3110306 , 2.86287398],

[0.93218041, 1.24398691]]), 0.85684700941625547)

>>> from numpy import random
>>> random.seed((1000,2000))
>>> codes = 3
>>> kmeans(whitened,codes)
(array([[2.3110306 , 2.86287398],

[1.32544402, 0.65607529],
[0.40782893, 2.02786907]]), 0.5196582527686241)

kmeans2(data, k, iter=10, thresh=1.0000000000000001e-05, minit=’random’, missing=’warn’)

3.1. Clustering package (scipy.cluster) 97

SciPy Reference Guide, Release 0.7

Classify a set of observations into k clusters using the k-means
algorithm.

The algorithm attempts to minimize the Euclidian distance between observations and centroids. Several initial-
ization methods are included.

Parameters

data
[ndarray] A M by N array of M observations in N dimensions or a length M array of M
one-dimensional observations.

k
[int or ndarray] The number of clusters to form as well as the number of centroids to
generate. If minit initialization string is ‘matrix’, or if a ndarray is given instead, it is
interpreted as initial cluster to use instead.

iter
[int] Number of iterations of the k-means algrithm to run. Note that this differs in meaning
from the iters parameter to the kmeans function.

thresh
[float] (not used yet).

minit
[string] Method for initialization. Available methods are ‘random’, ‘points’, ‘uniform’,
and ‘matrix’:
‘random’: generate k centroids from a Gaussian with mean and variance estimated from
the data.
‘points’: choose k observations (rows) at random from data for the initial centroids.
‘uniform’: generate k observations from the data from a uniform distribution defined by
the data set (unsupported).
‘matrix’: interpret the k parameter as a k by M (or length k array for one-dimensional
data) array of initial centroids.

Returns

centroid
[ndarray] A k by N array of centroids found at the last iteration of k-means.

label
[ndarray] label[i] is the code or index of the centroid the i’th observation is closest to.

3.1.3 Vector Quantization / Kmeans

Clustering algorithms are useful in information theory, target detection, communications, compression,
and other areas. The vq module only supports vector quantization and the k-means algorithms. Develop-
ment of self-organizing maps (SOM) and other approaches is underway.

3.1.4 Hierarchical Clustering

The hierarchy module provides functions for hierarchical and agglomerative clustering. Its features in-
clude generating hierarchical clusters from distance matrices, computing distance matrices from obser-
vation vectors, calculating statistics on clusters, cutting linkages to generate flat clusters, and visualizing
clusters with dendrograms.

98 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

3.1.5 Distance Computation

The distance module provides functions for computing distances between pairs of vectors from a set of
observation vectors.

3.2 Constants (scipy.constants)

Physical and mathematical constants and units.

3.2.1 Mathematical constants

pi Pi
golden Golden ratio

3.2.2 Physical constants

c speed of light in vacuum
mu_0 the magnetic constant µ0

epsilon_0 the electric constant (vacuum permittivity), ε0
h the Planck constant h
hbar h̄ = h/(2π)
G Newtonian constant of gravitation
g standard acceleration of gravity
e elementary charge
R molar gas constant
alpha fine-structure constant
N_A Avogadro constant
k Boltzmann constant
sigma Stefan-Boltzmann constant σ
Wien Wien displacement law constant
Rydberg Rydberg constant
m_e electron mass
m_p proton mass
m_n neutron mass

3.2.3 Constants database

In addition to the above variables containing physical constants, scipy.constants also contains a database of
additional physical constants.

value (key) value indexed by key

unit (key) unit indexed by key

precision (key) relative precision indexed by key

find (sub) list all keys containing the string sub

value(key)
value indexed by key

3.2. Constants (scipy.constants) 99

SciPy Reference Guide, Release 0.7

unit(key)
unit indexed by key

precision(key)
relative precision indexed by key

find(sub)
list all keys containing the string sub

physical_constants
Dictionary of physical constants, of the format physical_constants[name] = (value, unit,
uncertainty).

Available constants:

100 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

alpha particle mass
alpha particle mass energy equivalent
alpha particle mass energy equivalent in MeV
alpha particle mass in u
alpha particle molar mass
alpha particle-electron mass ratio
alpha particle-proton mass ratio
Angstrom star
atomic mass constant
atomic mass constant energy equivalent
atomic mass constant energy equivalent in MeV
atomic mass unit-electron volt relationship
atomic mass unit-hartree relationship
atomic mass unit-hertz relationship
atomic mass unit-inverse meter relationship
atomic mass unit-joule relationship
atomic mass unit-kelvin relationship
atomic mass unit-kilogram relationship
atomic unit of 1st hyperpolarizablity
atomic unit of 2nd hyperpolarizablity
atomic unit of action
atomic unit of charge
atomic unit of charge density
atomic unit of current
atomic unit of electric dipole moment
atomic unit of electric field
atomic unit of electric field gradient
atomic unit of electric polarizablity
atomic unit of electric potential
atomic unit of electric quadrupole moment
atomic unit of energy
atomic unit of force
atomic unit of length
atomic unit of magnetic dipole moment
atomic unit of magnetic flux density
atomic unit of magnetizability
atomic unit of mass
atomic unit of momentum
atomic unit of permittivity
atomic unit of time
atomic unit of velocity
Avogadro constant
Bohr magneton
Bohr magneton in eV/T
Bohr magneton in Hz/T
Bohr magneton in inverse meters per tesla
Bohr magneton in K/T
Bohr radius
Boltzmann constant
Boltzmann constant in eV/K
Boltzmann constant in Hz/K
Boltzmann constant in inverse meters per kelvin
characteristic impedance of vacuum
classical electron radius
Compton wavelength
Compton wavelength over 2 pi
conductance quantum
conventional value of Josephson constant
conventional value of von Klitzing constant
Cu x unit
deuteron magnetic moment
deuteron magnetic moment to Bohr magneton ratio
deuteron magnetic moment to nuclear magneton ratio
deuteron mass
deuteron mass energy equivalent
deuteron mass energy equivalent in MeV
deuteron mass in u
deuteron molar mass
deuteron rms charge radius
deuteron-electron magnetic moment ratio
deuteron-electron mass ratio
deuteron-neutron magnetic moment ratio
deuteron-proton magnetic moment ratio
deuteron-proton mass ratio
electric constant
electron charge to mass quotient
electron g factor
electron gyromagnetic ratio
electron gyromagnetic ratio over 2 pi
electron magnetic moment
electron magnetic moment anomaly
electron magnetic moment to Bohr magneton ratio
electron magnetic moment to nuclear magneton ratio
electron mass
electron mass energy equivalent
electron mass energy equivalent in MeV
electron mass in u
electron molar mass
electron to alpha particle mass ratio
electron to shielded helion magnetic moment ratio
electron to shielded proton magnetic moment ratio
electron volt
electron volt-atomic mass unit relationship
electron volt-hartree relationship
electron volt-hertz relationship
electron volt-inverse meter relationship
electron volt-joule relationship
electron volt-kelvin relationship
electron volt-kilogram relationship
electron-deuteron magnetic moment ratio
electron-deuteron mass ratio
electron-muon magnetic moment ratio
electron-muon mass ratio
electron-neutron magnetic moment ratio
electron-neutron mass ratio
electron-proton magnetic moment ratio
electron-proton mass ratio
electron-tau mass ratio
elementary charge
elementary charge over h
Faraday constant
Faraday constant for conventional electric current
Fermi coupling constant
fine-structure constant
first radiation constant
first radiation constant for spectral radiance
Hartree energy
Hartree energy in eV
hartree-atomic mass unit relationship
hartree-electron volt relationship
hartree-hertz relationship
hartree-inverse meter relationship
hartree-joule relationship
hartree-kelvin relationship
hartree-kilogram relationship
helion mass
helion mass energy equivalent
helion mass energy equivalent in MeV
helion mass in u
helion molar mass
helion-electron mass ratio
helion-proton mass ratio
hertz-atomic mass unit relationship
hertz-electron volt relationship
hertz-hartree relationship
hertz-inverse meter relationship
hertz-joule relationship
hertz-kelvin relationship
hertz-kilogram relationship
inverse fine-structure constant
inverse meter-atomic mass unit relationship
inverse meter-electron volt relationship
inverse meter-hartree relationship
inverse meter-hertz relationship
inverse meter-joule relationship
inverse meter-kelvin relationship
inverse meter-kilogram relationship
inverse of conductance quantum
Josephson constant
joule-atomic mass unit relationship
joule-electron volt relationship
joule-hartree relationship
joule-hertz relationship
joule-inverse meter relationship
joule-kelvin relationship
joule-kilogram relationship
kelvin-atomic mass unit relationship
kelvin-electron volt relationship
kelvin-hartree relationship
kelvin-hertz relationship
kelvin-inverse meter relationship
kelvin-joule relationship
kelvin-kilogram relationship
kilogram-atomic mass unit relationship
kilogram-electron volt relationship
kilogram-hartree relationship
kilogram-hertz relationship
kilogram-inverse meter relationship
kilogram-joule relationship
kilogram-kelvin relationship
lattice parameter of silicon
Loschmidt constant (273.15 K, 101.325 kPa)
magnetic constant
magnetic flux quantum
Mo x unit
molar gas constant
molar mass constant
molar mass of carbon-12
molar Planck constant
molar Planck constant times c
molar volume of ideal gas (273.15 K, 100 kPa)
molar volume of ideal gas (273.15 K, 101.325 kPa)
molar volume of silicon
muon Compton wavelength
muon Compton wavelength over 2 pi
muon g factor
muon magnetic moment
muon magnetic moment anomaly
muon magnetic moment to Bohr magneton ratio
muon magnetic moment to nuclear magneton ratio
muon mass
muon mass energy equivalent
muon mass energy equivalent in MeV
muon mass in u
muon molar mass
muon-electron mass ratio
muon-neutron mass ratio
muon-proton magnetic moment ratio
muon-proton mass ratio
muon-tau mass ratio
natural unit of action
natural unit of action in eV s
natural unit of energy
natural unit of energy in MeV
natural unit of length
natural unit of mass
natural unit of momentum
natural unit of momentum in MeV/c
natural unit of time
natural unit of velocity
neutron Compton wavelength
neutron Compton wavelength over 2 pi
neutron g factor
neutron gyromagnetic ratio
neutron gyromagnetic ratio over 2 pi
neutron magnetic moment
neutron magnetic moment to Bohr magneton ratio
neutron magnetic moment to nuclear magneton ratio
neutron mass
neutron mass energy equivalent
neutron mass energy equivalent in MeV
neutron mass in u
neutron molar mass
neutron to shielded proton magnetic moment ratio
neutron-electron magnetic moment ratio
neutron-electron mass ratio
neutron-muon mass ratio
neutron-proton magnetic moment ratio
neutron-proton mass ratio
neutron-tau mass ratio
Newtonian constant of gravitation
Newtonian constant of gravitation over h-bar c
nuclear magneton
nuclear magneton in eV/T
nuclear magneton in inverse meters per tesla
nuclear magneton in K/T
nuclear magneton in MHz/T
Planck constant
Planck constant in eV s
Planck constant over 2 pi
Planck constant over 2 pi in eV s
Planck constant over 2 pi times c in MeV fm
Planck length
Planck mass
Planck temperature
Planck time
proton charge to mass quotient
proton Compton wavelength
proton Compton wavelength over 2 pi
proton g factor
proton gyromagnetic ratio
proton gyromagnetic ratio over 2 pi
proton magnetic moment
proton magnetic moment to Bohr magneton ratio
proton magnetic moment to nuclear magneton ratio
proton magnetic shielding correction
proton mass
proton mass energy equivalent
proton mass energy equivalent in MeV
proton mass in u
proton molar mass
proton rms charge radius
proton-electron mass ratio
proton-muon mass ratio
proton-neutron magnetic moment ratio
proton-neutron mass ratio
proton-tau mass ratio
quantum of circulation
quantum of circulation times 2
Rydberg constant
Rydberg constant times c in Hz
Rydberg constant times hc in eV
Rydberg constant times hc in J
Sackur-Tetrode constant (1 K, 100 kPa)
Sackur-Tetrode constant (1 K, 101.325 kPa)
second radiation constant
shielded helion gyromagnetic ratio
shielded helion gyromagnetic ratio over 2 pi
shielded helion magnetic moment
shielded helion magnetic moment to Bohr magneton ratio
shielded helion magnetic moment to nuclear magneton ratio
shielded helion to proton magnetic moment ratio
shielded helion to shielded proton magnetic moment ratio
shielded proton gyromagnetic ratio
shielded proton gyromagnetic ratio over 2 pi
shielded proton magnetic moment
shielded proton magnetic moment to Bohr magneton ratio
shielded proton magnetic moment to nuclear magneton ratio
speed of light in vacuum
standard acceleration of gravity
standard atmosphere
Stefan-Boltzmann constant
tau Compton wavelength
tau Compton wavelength over 2 pi
tau mass
tau mass energy equivalent
tau mass energy equivalent in MeV
tau mass in u
tau molar mass
tau-electron mass ratio
tau-muon mass ratio
tau-neutron mass ratio
tau-proton mass ratio
Thomson cross section
unified atomic mass unit
von Klitzing constant
weak mixing angle
Wien displacement law constant
{220} lattice spacing of silicon

3.2. Constants (scipy.constants) 101

SciPy Reference Guide, Release 0.7

3.2.4 Unit prefixes

SI

yotta 1024

zetta 1021

exa 1018

peta 1015

tera 1012

giga 109

mega 106

kilo 103

hecto 102

deka 101

deci 10−1

centi 10−2

milli 10−3

micro 10−6

nano 10−9

pico 10−12

femto 10−15

atto 10−18

zepto 10−21

Binary

kibi 210

mebi 220

gibi 230

tebi 240

pebi 250

exbi 260

zebi 270

yobi 280

3.2.5 Units

Weight

gram 10−3 kg
metric_ton 103 kg
grain one grain in kg
lb one pound (avoirdupous) in kg
oz one ounce in kg
stone one stone in kg
grain one grain in kg
long_ton one long ton in kg
short_ton one short ton in kg
troy_ounce one Troy ounce in kg
troy_pound one Troy pound in kg
carat one carat in kg
m_u atomic mass constant (in kg)

102 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

Angle

degree degree in radians
arcmin arc minute in radians
arcsec arc second in radians

Time

minute one minute in seconds
hour one hour in seconds
day one day in seconds
week one week in seconds
year one year (365 days) in seconds
Julian_year one Julian year (365.25 days) in seconds

Length

inch one inch in meters
foot one foot in meters
yard one yard in meters
mile one mile in meters
mil one mil in meters
pt one point in meters
survey_foot one survey foot in meters
survey_mile one survey mile in meters
nautical_mile one nautical mile in meters
fermi one Fermi in meters
angstrom one Ångström in meters
micron one micron in meters
au one astronomical unit in meters
light_year one light year in meters
parsec one parsec in meters

Pressure

atm standard atmosphere in pascals
bar one bar in pascals
torr one torr (mmHg) in pascals
psi one psi in pascals

Area

hectare one hectare in square meters
acre one acre in square meters

3.2. Constants (scipy.constants) 103

SciPy Reference Guide, Release 0.7

Volume

liter one liter in cubic meters
gallon one gallon (US) in cubic meters
gallon_imp one gallon (UK) in cubic meters
fluid_ounce one fluid ounce (US) in cubic meters
fluid_ounce_imp one fluid ounce (UK) in cubic meters
bbl one barrel in cubic meters

Speed

kmh kilometers per hour in meters per second
mph miles per hour in meters per second
mach one Mach (approx., at 15 °C, 1 atm) in meters per second
knot one knot in meters per second

Temperature

zero_Celsius zero of Celsius scale in Kelvin
degree_Fahrenheit one Fahrenheit (only differences) in Kelvins

C2K (C) Convert Celcius to Kelvin

K2C (K) Convert Kelvin to Celcius

F2C (F) Convert Fahrenheit to Celcius

C2F (C) Convert Celcius to Fahrenheit

F2K (F) Convert Fahrenheit to Kelvin

K2F (K) Convert Kelvin to Fahrenheit

C2K(C)
Convert Celcius to Kelvin

K2C(K)
Convert Kelvin to Celcius

F2C(F)
Convert Fahrenheit to Celcius

C2F(C)
Convert Celcius to Fahrenheit

F2K(F)
Convert Fahrenheit to Kelvin

K2F(K)
Convert Kelvin to Fahrenheit

104 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

Energy

eV one electron volt in Joules
calorie one calorie (thermochemical) in Joules
calorie_IT one calorie (International Steam Table calorie, 1956) in Joules
erg one erg in Joules
Btu one British thermal unit (International Steam Table) in Joules
Btu_th one British thermal unit (thermochemical) in Joules
ton_TNT one ton of TNT in Joules

Power

hp one horsepower in watts

Force

dyn one dyne in watts
lbf one pound force in watts
kgf one kilogram force in watts

Optics

lambda2nu (lambda_) Convert wavelength to optical frequency

nu2lambda (nu) Convert optical frequency to wavelength

lambda2nu(lambda_)
Convert wavelength to optical frequency

nu2lambda(nu)
Convert optical frequency to wavelength

3.2. Constants (scipy.constants) 105

SciPy Reference Guide, Release 0.7

3.3 Fourier transforms (scipy.fftpack)

3.3.1 Fast Fourier transforms

fft (x[, n, axis, overwrite_x]) Return discrete Fourier transform of arbitrary type sequence x.

ifft (x[, n, axis, overwrite_x]) ifft(x, n=None, axis=-1, overwrite_x=0) -> y

fftn (x[, shape, axes, overwrite_x]) fftn(x, shape=None, axes=None, overwrite_x=0) -> y

ifftn (x[, shape, axes, overwrite_x]) ifftn(x, s=None, axes=None, overwrite_x=0) -> y

fft2 (x[, shape, axes, -1), ...]) fft2(x, shape=None, axes=(-2,-1), overwrite_x=0) -> y

ifft2 (x[, shape, axes, -1), ...]) ifft2(x, shape=None, axes=(-2,-1), overwrite_x=0) -> y

rfft (x[, n, axis, overwrite_x]) rfft(x, n=None, axis=-1, overwrite_x=0) -> y

irfft (x[, n, axis, overwrite_x]) irfft(x, n=None, axis=-1, overwrite_x=0) -> y

fft(x, n=None, axis=-1, overwrite_x=0)
Return discrete Fourier transform of arbitrary type sequence x.

Parameters
x : array-like

array to fourier transform.

n : int, optional

Length of the Fourier transform. If n<x.shape[axis], x is truncated. If
n>x.shape[axis], x is zero-padded. (Default n=x.shape[axis]).

axis : int, optional

Axis along which the fft’s are computed. (default=-1)

overwrite_x : bool, optional

If True the contents of x can be destroyed. (default=False)

Returns
z : complex ndarray

with the elements:
[y(0),y(1),..,y(n/2-1),y(-n/2),...,y(-1)] if n is even [y(0),y(1),..,y((n-1)/2),y(-(n-
1)/2),...,y(-1)] if n is odd

where
y(j) = sum[k=0..n-1] x[k] * exp(-sqrt(-1)*j*k* 2*pi/n), j = 0..n-1

Note that y(-j) = y(n-j).

See Also:

ifft
Inverse FFT

rfft
FFT of a real sequence

106 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

Notes
The packing of the result is “standard”: If A = fft(a, n), then A[0] contains the zero-frequency term, A[1:n/2+1]
contains the positive-frequency terms, and A[n/2+1:] contains the negative-frequency terms, in order of decreas-
ingly negative frequency. So for an 8-point transform, the frequencies of the result are [0, 1, 2, 3, 4, -3, -2,
-1].

This is most efficient for n a power of two.

Examples

>>> x = np.arange(5)
>>> np.all(np.abs(x-fft(ifft(x))<1.e-15) #within numerical accuracy.
True

ifft(x, n=None, axis=-1, overwrite_x=0)
ifft(x, n=None, axis=-1, overwrite_x=0) -> y

Return inverse discrete Fourier transform of arbitrary type sequence x.

The returned complex array contains
[y(0),y(1),...,y(n-1)]

where
y(j) = 1/n sum[k=0..n-1] x[k] * exp(sqrt(-1)*j*k* 2*pi/n)

Optional input: see fft.__doc__

fftn(x, shape=None, axes=None, overwrite_x=0)
fftn(x, shape=None, axes=None, overwrite_x=0) -> y

Return multi-dimensional discrete Fourier transform of arbitrary type sequence x.

The returned array contains

y[j_1,..,j_d] = sum[k_1=0..n_1-1, ..., k_d=0..n_d-1]
x[k_1,..,k_d] * prod[i=1..d] exp(-sqrt(-1)*2*pi/n_i * j_i * k_i)

where d = len(x.shape) and n = x.shape. Note that y[..., -j_i, ...] = y[..., n_i-j_i, ...].

Optional input:

shape
Defines the shape of the Fourier transform. If shape is not specified then
shape=take(x.shape,axes,axis=0). If shape[i]>x.shape[i] then the i-th dimension is padded
with zeros. If shape[i]<x.shape[i], then the i-th dimension is truncated to desired length shape[i].

axes
The transform is applied along the given axes of the input array (or the newly constructed array if
shape argument was used).

overwrite_x
If set to true, the contents of x can be destroyed.

Notes:
y == fftn(ifftn(y)) within numerical accuracy.

ifftn(x, shape=None, axes=None, overwrite_x=0)
ifftn(x, s=None, axes=None, overwrite_x=0) -> y

Return inverse multi-dimensional discrete Fourier transform of arbitrary type sequence x.

The returned array contains

3.3. Fourier transforms (scipy.fftpack) 107

SciPy Reference Guide, Release 0.7

y[j_1,..,j_d] = 1/p * sum[k_1=0..n_1-1, ..., k_d=0..n_d-1]
x[k_1,..,k_d] * prod[i=1..d] exp(sqrt(-1)*2*pi/n_i * j_i * k_i)

where d = len(x.shape), n = x.shape, and p = prod[i=1..d] n_i.

Optional input: see fftn.__doc__

fft2(x, shape=None, axes=(-2, -1), overwrite_x=0)
fft2(x, shape=None, axes=(-2,-1), overwrite_x=0) -> y

Return two-dimensional discrete Fourier transform of arbitrary type sequence x.

See fftn.__doc__ for more information.

ifft2(x, shape=None, axes=(-2, -1), overwrite_x=0)
ifft2(x, shape=None, axes=(-2,-1), overwrite_x=0) -> y

Return inverse two-dimensional discrete Fourier transform of arbitrary type sequence x.

See ifftn.__doc__ for more information.

rfft(x, n=None, axis=-1, overwrite_x=0)
rfft(x, n=None, axis=-1, overwrite_x=0) -> y

Return discrete Fourier transform of real sequence x.

The returned real arrays contains
[y(0),Re(y(1)),Im(y(1)),...,Re(y(n/2))] if n is even [y(0),Re(y(1)),Im(y(1)),...,Re(y(n/2)),Im(y(n/2))] if n is
odd

where
y(j) = sum[k=0..n-1] x[k] * exp(-sqrt(-1)*j*k* 2*pi/n) j = 0..n-1

Note that y(-j) = y(n-j).

Optional input:

n
Defines the length of the Fourier transform. If n is not specified then n=x.shape[axis] is set. If
n<x.shape[axis], x is truncated. If n>x.shape[axis], x is zero-padded.

axis
The transform is applied along the given axis of the input array (or the newly constructed array if n
argument was used).

overwrite_x
If set to true, the contents of x can be destroyed.

Notes:
y == rfft(irfft(y)) within numerical accuracy.

irfft(x, n=None, axis=-1, overwrite_x=0)
irfft(x, n=None, axis=-1, overwrite_x=0) -> y

Return inverse discrete Fourier transform of real sequence x. The contents of x is interpreted as the output of
rfft(..) function.

The returned real array contains
[y(0),y(1),...,y(n-1)]

where for n is even

108 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

y(j) = 1/n (sum[k=1..n/2-1] (x[2*k-1]+sqrt(-1)*x[2*k])

• exp(sqrt(-1)*j*k* 2*pi/n)

• c.c. + x[0] + (-1)**(j) x[n-1])

and for n is odd

y(j) = 1/n (sum[k=1..(n-1)/2] (x[2*k-1]+sqrt(-1)*x[2*k])

• exp(sqrt(-1)*j*k* 2*pi/n)

• c.c. + x[0])

c.c. denotes complex conjugate of preceeding expression.

Optional input: see rfft.__doc__

3.3.2 Differential and pseudo-differential operators

diff (x[, order, period, _cache]) diff(x, order=1, period=2*pi) -> y

tilbert (x, h[, period, _cache]) tilbert(x, h, period=2*pi) -> y

itilbert (x, h[, period, _cache]) itilbert(x, h, period=2*pi) -> y

hilbert (x[, _cache]) hilbert(x) -> y

ihilbert (x) ihilbert(x) -> y

cs_diff (x, a, b[, period, _cache]) cs_diff(x, a, b, period=2*pi) -> y

sc_diff (x, a, b[, period, _cache]) sc_diff(x, a, b, period=2*pi) -> y

ss_diff (x, a, b[, period, _cache]) ss_diff(x, a, b, period=2*pi) -> y

cc_diff (x, a, b[, period, _cache]) cc_diff(x, a, b, period=2*pi) -> y

shift (x, a[, period, _cache]) shift(x, a, period=2*pi) -> y

diff(x, order=1, period=None, _cache={})
diff(x, order=1, period=2*pi) -> y

Return k-th derivative (or integral) of a periodic sequence x.

If x_j and y_j are Fourier coefficients of periodic functions x and y, respectively, then

y_j = pow(sqrt(-1)*j*2*pi/period, order) * x_j y_0 = 0 if order is not 0.

Optional input:

order
The order of differentiation. Default order is 1. If order is negative, then integration is carried out
under the assumption that x_0==0.

3.3. Fourier transforms (scipy.fftpack) 109

SciPy Reference Guide, Release 0.7

period
The assumed period of the sequence. Default is 2*pi.

Notes:

If sum(x,axis=0)=0 then
diff(diff(x,k),-k)==x (within numerical accuracy)

For odd order and even len(x), the Nyquist mode is taken zero.

tilbert(x, h, period=None, _cache={})
tilbert(x, h, period=2*pi) -> y

Return h-Tilbert transform of a periodic sequence x.

If x_j and y_j are Fourier coefficients of periodic functions x and y, respectively, then

y_j = sqrt(-1)*coth(j*h*2*pi/period) * x_j y_0 = 0

Input:

h
Defines the parameter of the Tilbert transform.

period
The assumed period of the sequence. Default period is 2*pi.

Notes:

If sum(x,axis=0)==0 and n=len(x) is odd then
tilbert(itilbert(x)) == x

If 2*pi*h/period is approximately 10 or larger then numerically
tilbert == hilbert

(theoretically oo-Tilbert == Hilbert). For even len(x), the Nyquist mode of x is taken zero.

itilbert(x, h, period=None, _cache={})
itilbert(x, h, period=2*pi) -> y

Return inverse h-Tilbert transform of a periodic sequence x.

If x_j and y_j are Fourier coefficients of periodic functions x and y, respectively, then

y_j = -sqrt(-1)*tanh(j*h*2*pi/period) * x_j y_0 = 0

Optional input: see tilbert.__doc__

hilbert(x, _cache={})
hilbert(x) -> y

Return Hilbert transform of a periodic sequence x.

If x_j and y_j are Fourier coefficients of periodic functions x and y, respectively, then

y_j = sqrt(-1)*sign(j) * x_j y_0 = 0

Notes:

110 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

If sum(x,axis=0)==0 then
hilbert(ihilbert(x)) == x

For even len(x), the Nyquist mode of x is taken zero.

ihilbert(x)
ihilbert(x) -> y

Return inverse Hilbert transform of a periodic sequence x.

If x_j and y_j are Fourier coefficients of periodic functions x and y, respectively, then

y_j = -sqrt(-1)*sign(j) * x_j y_0 = 0

cs_diff(x, a, b, period=None, _cache={})
cs_diff(x, a, b, period=2*pi) -> y

Return (a,b)-cosh/sinh pseudo-derivative of a periodic sequence x.

If x_j and y_j are Fourier coefficients of periodic functions x and y, respectively, then

y_j = -sqrt(-1)*cosh(j*a*2*pi/period)/sinh(j*b*2*pi/period) * x_j y_0 = 0

Input:

a,b
Defines the parameters of the cosh/sinh pseudo-differential operator.

period
The period of the sequence. Default period is 2*pi.

Notes:
For even len(x), the Nyquist mode of x is taken zero.

sc_diff(x, a, b, period=None, _cache={})
sc_diff(x, a, b, period=2*pi) -> y

Return (a,b)-sinh/cosh pseudo-derivative of a periodic sequence x.

If x_j and y_j are Fourier coefficients of periodic functions x and y, respectively, then

y_j = sqrt(-1)*sinh(j*a*2*pi/period)/cosh(j*b*2*pi/period) * x_j y_0 = 0

Input:

a,b
Defines the parameters of the sinh/cosh pseudo-differential operator.

period
The period of the sequence x. Default is 2*pi.

Notes:
sc_diff(cs_diff(x,a,b),b,a) == x For even len(x), the Nyquist mode of x is taken zero.

ss_diff(x, a, b, period=None, _cache={})
ss_diff(x, a, b, period=2*pi) -> y

Return (a,b)-sinh/sinh pseudo-derivative of a periodic sequence x.

If x_j and y_j are Fourier coefficients of periodic functions x and y, respectively, then

3.3. Fourier transforms (scipy.fftpack) 111

SciPy Reference Guide, Release 0.7

y_j = sinh(j*a*2*pi/period)/sinh(j*b*2*pi/period) * x_j y_0 = a/b * x_0

Input:

a,b
Defines the parameters of the sinh/sinh pseudo-differential operator.

period
The period of the sequence x. Default is 2*pi.

Notes:
ss_diff(ss_diff(x,a,b),b,a) == x

cc_diff(x, a, b, period=None, _cache={})
cc_diff(x, a, b, period=2*pi) -> y

Return (a,b)-cosh/cosh pseudo-derivative of a periodic sequence x.

If x_j and y_j are Fourier coefficients of periodic functions x and y, respectively, then

y_j = cosh(j*a*2*pi/period)/cosh(j*b*2*pi/period) * x_j

Input:

a,b
Defines the parameters of the sinh/sinh pseudo-differential operator.

Optional input:

period
The period of the sequence x. Default is 2*pi.

Notes:
cc_diff(cc_diff(x,a,b),b,a) == x

shift(x, a, period=None, _cache={})
shift(x, a, period=2*pi) -> y

Shift periodic sequence x by a: y(u) = x(u+a).

If x_j and y_j are Fourier coefficients of periodic functions x and y, respectively, then

y_j = exp(j*a*2*pi/period*sqrt(-1)) * x_f

Optional input:

period
The period of the sequences x and y. Default period is 2*pi.

112 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

3.3.3 Helper functions

fftshift (x[, axes]) Shift zero-frequency component to center of spectrum.

ifftshift (x[, axes]) Inverse of fftshift.

dftfreq

rfftfreq (n[, d]) rfftfreq(n, d=1.0) -> f

fftshift(x, axes=None)
Shift zero-frequency component to center of spectrum.

This function swaps half-spaces for all axes listed (defaults to all). If len(x) is even then the Nyquist component
is y[0].

Parameters
x : array_like

Input array.

axes : int or shape tuple, optional

Axes over which to shift. Default is None which shifts all axes.

See Also:
ifftshift

ifftshift(x, axes=None)
Inverse of fftshift.

Parameters
x : array_like

Input array.

axes : int or shape tuple, optional

Axes over which to calculate. Defaults to None which is over all axes.

See Also:
fftshift

rfftfreq(n, d=1.0)
rfftfreq(n, d=1.0) -> f

DFT sample frequencies (for usage with rfft,irfft).

The returned float array contains the frequency bins in cycles/unit (with zero at the start) given a window length
n and a sample spacing d:

f = [0,1,1,2,2,...,n/2-1,n/2-1,n/2]/(d*n) if n is even f = [0,1,1,2,2,...,n/2-1,n/2-1,n/2,n/2]/(d*n) if n is
odd

3.3. Fourier transforms (scipy.fftpack) 113

SciPy Reference Guide, Release 0.7

3.3.4 Convolutions (scipy.fftpack.convolve)

convolve () convolve - Function signature: y = convolve(x,omega,[swap_real_imag,overwrite_x])
Required arguments: x : input rank-1 array(‘d’) with bounds (n) omega : input rank-1
array(‘d’) with bounds (n) Optional arguments: overwrite_x := 0 input int swap_real_imag
:= 0 input int Return objects: y : rank-1 array(‘d’) with bounds (n) and x storage

convolve_z () convolve_z - Function signature: y =
convolve_z(x,omega_real,omega_imag,[overwrite_x]) Required arguments: x : input
rank-1 array(‘d’) with bounds (n) omega_real : input rank-1 array(‘d’) with bounds (n)
omega_imag : input rank-1 array(‘d’) with bounds (n) Optional arguments: overwrite_x :=
0 input int Return objects: y : rank-1 array(‘d’) with bounds (n) and x storage

init_convolution_kernel ()init_convolution_kernel - Function signature: omega =
init_convolution_kernel(n,kernel_func,[d,zero_nyquist,kernel_func_extra_args]) Required
arguments: n : input int kernel_func : call-back function Optional arguments: d := 0 input
int kernel_func_extra_args := () input tuple zero_nyquist := d%2 input int Return objects:
omega : rank-1 array(‘d’) with bounds (n) Call-back functions: def kernel_func(k): return
kernel_func Required arguments: k : input int Return objects: kernel_func : float

destroy_convolve_cache ()destroy_convolve_cache - Function signature: destroy_convolve_cache()

convolve()

convolve - Function signature:
y = convolve(x,omega,[swap_real_imag,overwrite_x])

Required arguments:
x : input rank-1 array(‘d’) with bounds (n) omega : input rank-1 array(‘d’) with bounds (n)

Optional arguments:
overwrite_x := 0 input int swap_real_imag := 0 input int

Return objects:
y : rank-1 array(‘d’) with bounds (n) and x storage

convolve_z()

convolve_z - Function signature:
y = convolve_z(x,omega_real,omega_imag,[overwrite_x])

Required arguments:
x : input rank-1 array(‘d’) with bounds (n) omega_real : input rank-1 array(‘d’) with bounds (n)
omega_imag : input rank-1 array(‘d’) with bounds (n)

Optional arguments:
overwrite_x := 0 input int

Return objects:
y : rank-1 array(‘d’) with bounds (n) and x storage

init_convolution_kernel()

114 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

init_convolution_kernel - Function signature:
omega = init_convolution_kernel(n,kernel_func,[d,zero_nyquist,kernel_func_extra_args])

Required arguments:
n : input int kernel_func : call-back function

Optional arguments:
d := 0 input int kernel_func_extra_args := () input tuple zero_nyquist := d%2 input int

Return objects:
omega : rank-1 array(‘d’) with bounds (n)

Call-back functions:
def kernel_func(k): return kernel_func Required arguments:

k : input int

Return objects:
kernel_func : float

destroy_convolve_cache()
destroy_convolve_cache - Function signature: destroy_convolve_cache()

3.3.5 scipy.fftpack._fftpack

drfft () drfft - Function signature: y = drfft(x,[n,direction,normalize,overwrite_x]) Required
arguments: x : input rank-1 array(‘d’) with bounds (*) Optional arguments: overwrite_x := 0
input int n := size(x) input int direction := 1 input int normalize := (direction<0) input int
Return objects: y : rank-1 array(‘d’) with bounds (*) and x storage

zfft () zfft - Function signature: y = zfft(x,[n,direction,normalize,overwrite_x]) Required
arguments: x : input rank-1 array(‘D’) with bounds (*) Optional arguments: overwrite_x := 0
input int n := size(x) input int direction := 1 input int normalize := (direction<0) input int
Return objects: y : rank-1 array(‘D’) with bounds (*) and x storage

zrfft () zrfft - Function signature: y = zrfft(x,[n,direction,normalize,overwrite_x]) Required
arguments: x : input rank-1 array(‘D’) with bounds (*) Optional arguments: overwrite_x := 1
input int n := size(x) input int direction := 1 input int normalize := (direction<0) input int
Return objects: y : rank-1 array(‘D’) with bounds (*) and x storage

zfftnd () zfftnd - Function signature: y = zfftnd(x,[s,direction,normalize,overwrite_x]) Required
arguments: x : input rank-1 array(‘D’) with bounds (*) Optional arguments: overwrite_x := 0
input int s := old_shape(x,j++) input rank-1 array(‘i’) with bounds (r) direction := 1 input int
normalize := (direction<0) input int Return objects: y : rank-1 array(‘D’) with bounds (*)
and x storage

destroy_drfft_cache ()destroy_drfft_cache - Function signature: destroy_drfft_cache()

destroy_zfft_cache ()destroy_zfft_cache - Function signature: destroy_zfft_cache()

destroy_zfftnd_cache ()destroy_zfftnd_cache - Function signature: destroy_zfftnd_cache()

drfft()

3.3. Fourier transforms (scipy.fftpack) 115

SciPy Reference Guide, Release 0.7

drfft - Function signature:
y = drfft(x,[n,direction,normalize,overwrite_x])

Required arguments:
x : input rank-1 array(‘d’) with bounds (*)

Optional arguments:
overwrite_x := 0 input int n := size(x) input int direction := 1 input int normalize := (direction<0) input int

Return objects:
y : rank-1 array(‘d’) with bounds (*) and x storage

zfft()

zfft - Function signature:
y = zfft(x,[n,direction,normalize,overwrite_x])

Required arguments:
x : input rank-1 array(‘D’) with bounds (*)

Optional arguments:
overwrite_x := 0 input int n := size(x) input int direction := 1 input int normalize := (direction<0) input int

Return objects:
y : rank-1 array(‘D’) with bounds (*) and x storage

zrfft()

zrfft - Function signature:
y = zrfft(x,[n,direction,normalize,overwrite_x])

Required arguments:
x : input rank-1 array(‘D’) with bounds (*)

Optional arguments:
overwrite_x := 1 input int n := size(x) input int direction := 1 input int normalize := (direction<0) input int

Return objects:
y : rank-1 array(‘D’) with bounds (*) and x storage

zfftnd()

zfftnd - Function signature:
y = zfftnd(x,[s,direction,normalize,overwrite_x])

Required arguments:
x : input rank-1 array(‘D’) with bounds (*)

Optional arguments:
overwrite_x := 0 input int s := old_shape(x,j++) input rank-1 array(‘i’) with bounds (r) direction := 1 input
int normalize := (direction<0) input int

Return objects:
y : rank-1 array(‘D’) with bounds (*) and x storage

116 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

destroy_drfft_cache()
destroy_drfft_cache - Function signature: destroy_drfft_cache()

destroy_zfft_cache()
destroy_zfft_cache - Function signature: destroy_zfft_cache()

destroy_zfftnd_cache()
destroy_zfftnd_cache - Function signature: destroy_zfftnd_cache()

3.4 Integration and ODEs (scipy.integrate)

3.4.1 Integrating functions, given function object

quad (func, a, b[, args=(), full_output, ...]) Compute a definite integral.

dblquad (func, a, b, gfun, hfun[, args=(), epsabs, ...]) Compute a double (definite) integral.

tplquad (func, a, b, gfun, hfun, qfun, rfun[, args=(), epsabs, ...])Compute a triple (definite) integral.

fixed_quad (func, a, b[, args=(), n]) Compute a definite integral using fixed-order Gaussian
quadrature.

quadrature (func, a, b[, args=(), tol, maxiter, ...]) Compute a definite integral using fixed-tolerance
Gaussian quadrature.

romberg (function, a, b[, args=(), tol, show, ...]) Romberg integration of a callable function or method.

quad(func, a, b, args=(), full_output=0, epsabs=1.4899999999999999e-08, epsrel=1.4899999999999999e-08,
limit=50, points=None, weight=None, wvar=None, wopts=None, maxp1=50, limlst=50)

Compute a definite integral.

Description:

Integrate func from a to b (possibly infinite interval) using a technique from the Fortran library
QUADPACK. Run scipy.integrate.quad_explain() for more information on the more esoteric inputs
and outputs.

Inputs:

func – a Python function or method to integrate. a – lower limit of integration (use -
scipy.integrate.Inf for -infinity). b – upper limit of integration (use scipy.integrate.Inf for +infinity).
args – extra arguments to pass to func. full_output – non-zero to return a dictionary of integration
information.

If non-zero, warning messages are also suppressed and the message is appended to the
output tuple.

Outputs: (y, abserr, {infodict, message, explain})

y – the integral of func from a to b. abserr – an estimate of the absolute error in the result.

infodict – a dictionary containing additional information.
Run scipy.integrate.quad_explain() for more information.

message – a convergence message. explain – appended only with ‘cos’ or ‘sin’ weighting and
infinite

3.4. Integration and ODEs (scipy.integrate) 117

SciPy Reference Guide, Release 0.7

integration limits, it contains an explanation of the codes in infodict[’ierlst’]

Additional Inputs:

epsabs – absolute error tolerance. epsrel – relative error tolerance. limit – an upper bound on the
number of subintervals used in the adaptive

algorithm.

points – a sequence of break points in the bounded integration interval

where local difficulties of the integrand may occur (e.g., singularities, discontinu-
ities). The sequence does not have to be sorted.

** ** Run scipy.integrate.quad_explain() for more information ** on the following inputs **

weight – string indicating weighting function. wvar – variables for use with weighting functions.
limlst – Upper bound on the number of cylces (>=3) for use with a sinusoidal

weighting and an infinite end-point.

wopts – Optional input for reusing Chebyshev moments. maxp1 – An upper bound on the number
of Chebyshev moments.

See also:
dblquad, tplquad - double and triple integrals fixed_quad - fixed-order Gaussian quadrature
quadrature - adaptive Gaussian quadrature odeint, ode - ODE integrators simps, trapz, romb -
integrators for sampled data scipy.special - for coefficients and roots of orthogonal polynomi-
als

dblquad(func, a, b, gfun, hfun, args=(), epsabs=1.4899999999999999e-08, epsrel=1.4899999999999999e-08)
Compute a double (definite) integral.

Description:

Return the double integral of func2d(y,x) from x=a..b and y=gfun(x)..hfun(x).

Inputs:

func2d – a Python function or method of at least two variables: y must be
the first argument and x the second argument.

(a,b) – the limits of integration in x: a < b gfun – the lower boundary curve in y which is a function
taking a single

floating point argument (x) and returning a floating point result: a lambda function can
be useful here.

hfun – the upper boundary curve in y (same requirements as gfun). args – extra arguments to pass
to func2d. epsabs – absolute tolerance passed directly to the inner 1-D quadrature

integration.

epsrel – relative tolerance of the inner 1-D integrals.

Outputs: (y, abserr)

y – the resultant integral. abserr – an estimate of the error.

118 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

See also:
quad - single integral tplquad - triple integral fixed_quad - fixed-order Gaussian quadrature
quadrature - adaptive Gaussian quadrature odeint, ode - ODE integrators simps, trapz, romb -
integrators for sampled data scipy.special - for coefficients and roots of orthogonal polynomi-
als

tplquad(func, a, b, gfun, hfun, qfun, rfun, args=(), epsabs=1.4899999999999999e-08,
epsrel=1.4899999999999999e-08)

Compute a triple (definite) integral.

Description:

Return the triple integral of func3d(z, y,x) from x=a..b, y=gfun(x)..hfun(x), and
z=qfun(x,y)..rfun(x,y)

Inputs:

func3d – a Python function or method of at least three variables in the
order (z, y, x).

(a,b) – the limits of integration in x: a < b gfun – the lower boundary curve in y which is a function
taking a single

floating point argument (x) and returning a floating point result: a lambda function can
be useful here.

hfun – the upper boundary curve in y (same requirements as gfun). qfun – the lower boundary
surface in z. It must be a function that takes

two floats in the order (x, y) and returns a float.

rfun – the upper boundary surface in z. (Same requirements as qfun.) args – extra arguments to
pass to func3d. epsabs – absolute tolerance passed directly to the innermost 1-D quadrature

integration.

epsrel – relative tolerance of the innermost 1-D integrals.

Outputs: (y, abserr)

y – the resultant integral. abserr – an estimate of the error.

See also:
quad - single integral dblquad - double integral fixed_quad - fixed-order Gaussian quadrature quadrature
- adaptive Gaussian quadrature odeint, ode - ODE integrators simps, trapz, romb - integrators for sampled
data scipy.special - for coefficients and roots of orthogonal polynomials

fixed_quad(func, a, b, args=(), n=5)
Compute a definite integral using fixed-order Gaussian quadrature.

Description:

Integrate func from a to b using Gaussian quadrature of order n.

Inputs:

3.4. Integration and ODEs (scipy.integrate) 119

SciPy Reference Guide, Release 0.7

func – a Python function or method to integrate
(must accept vector inputs)

a – lower limit of integration b – upper limit of integration args – extra arguments to pass to function.
n – order of quadrature integration.

Outputs: (val, None)

val – Gaussian quadrature approximation to the integral.

See also:

quad - adaptive quadrature using QUADPACK dblquad, tplquad - double and triple integrals
romberg - adaptive Romberg quadrature quadrature - adaptive Gaussian quadrature romb, simps,
trapz - integrators for sampled data cumtrapz - cumulative integration for sampled data ode, odeint
- ODE integrators

quadrature(func, a, b, args=(), tol=1.4899999999999999e-08, maxiter=50, vec_func=True)
Compute a definite integral using fixed-tolerance Gaussian quadrature.

Description:

Integrate func from a to b using Gaussian quadrature with absolute tolerance tol.

Inputs:

func – a Python function or method to integrate. a – lower limit of integration. b – upper limit of
integration. args – extra arguments to pass to function. tol – iteration stops when error between last
two iterates is less than

tolerance.

maxiter – maximum number of iterations. vec_func – True or False if func handles arrays as
arguments (is

a “vector” function). Default is True.

Outputs: (val, err)

val – Gaussian quadrature approximation (within tolerance) to integral. err – Difference between
last two estimates of the integral.

See also:

romberg - adaptive Romberg quadrature fixed_quad - fixed-order Gaussian quadrature quad - adap-
tive quadrature using QUADPACK dblquad, tplquad - double and triple integrals romb, simps, trapz
- integrators for sampled data cumtrapz - cumulative integration for sampled data ode, odeint - ODE
integrators

romberg(function, a, b, args=(), tol=1.48e-08, show=False, divmax=10, vec_func=False)
Romberg integration of a callable function or method.

Returns the integral of |function| (a function of one variable) over |interval| (a sequence of length two containing
the lower and upper limit of the integration interval), calculated using Romberg integration up to the specified
|accuracy|. If |show| is 1, the triangular array of the intermediate results will be printed. If |vec_func| is True
(default is False), then |function| is assumed to support vector arguments.

See also:

quad - adaptive quadrature using QUADPACK quadrature - adaptive Gaussian quadrature
fixed_quad - fixed-order Gaussian quadrature dblquad, tplquad - double and triple integrals romb,
simps, trapz - integrators for sampled data cumtrapz - cumulative integration for sampled data ode,
odeint - ODE integrators

120 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

3.4.2 Integrating functions, given fixed samples

trapz (y[, x, dx, axis])Integrate along the given axis using the composite trapezoidal rule.

cumtrapz (y[, x, dx, axis])Cumulatively integrate y(x) using samples along the given axis and the composite
trapezoidal rule. If x is None, spacing given by dx is assumed.

simps (y[, x, dx, axis, even])Integrate y(x) using samples along the given axis and the composite Simpson’s rule. If x is
None, spacing of dx is assumed.

romb (y[, dx, axis, show])Romberg integration using samples of a function

trapz(y, x=None, dx=1.0, axis=-1)
Integrate along the given axis using the composite trapezoidal rule.

Integrate y (x) along given axis.

Parameters
y : array_like

Input array to integrate.

x : array_like, optional

If x is None, then spacing between all y elements is dx.

dx : scalar, optional

If x is None, spacing given by dx is assumed. Default is 1.

axis : int, optional

Specify the axis.

Examples

>>> np.trapz([1,2,3])
>>> 4.0
>>> np.trapz([1,2,3], [4,6,8])
>>> 8.0

cumtrapz(y, x=None, dx=1.0, axis=-1)
Cumulatively integrate y(x) using samples along the given axis and the composite trapezoidal rule. If x is None,
spacing given by dx is assumed.

See also:

quad - adaptive quadrature using QUADPACK romberg - adaptive Romberg quadrature quadrature -
adaptive Gaussian quadrature fixed_quad - fixed-order Gaussian quadrature dblquad, tplquad - dou-
ble and triple integrals romb, trapz - integrators for sampled data cumtrapz - cumulative integration
for sampled data ode, odeint - ODE integrators

simps(y, x=None, dx=1, axis=-1, even=’avg’)
Integrate y(x) using samples along the given axis and the composite Simpson’s rule. If x is None, spacing of dx
is assumed.

If there are an even number of samples, N, then there are an odd number of intervals (N-1), but Simpson’s rule
requires an even number of intervals. The parameter ‘even’ controls how this is handled as follows:

even=’avg’: Average two results: 1) use the first N-2 intervals with
a trapezoidal rule on the last interval and 2) use the last N-2 intervals with a trapezoidal rule on the first
interval

3.4. Integration and ODEs (scipy.integrate) 121

SciPy Reference Guide, Release 0.7

even=’first’: Use Simpson’s rule for the first N-2 intervals with
a trapezoidal rule on the last interval.

even=’last’: Use Simpson’s rule for the last N-2 intervals with a
trapezoidal rule on the first interval.

For an odd number of samples that are equally spaced the result is
exact if the function is a polynomial of order 3 or less. If the samples are not equally spaced, then the
result is exact only if the function is a polynomial of order 2 or less.

See also:

quad - adaptive quadrature using QUADPACK romberg - adaptive Romberg quadrature quadrature -
adaptive Gaussian quadrature fixed_quad - fixed-order Gaussian quadrature dblquad, tplquad - dou-
ble and triple integrals romb, trapz - integrators for sampled data cumtrapz - cumulative integration
for sampled data ode, odeint - ODE integrators

romb(y, dx=1.0, axis=-1, show=False)
Romberg integration using samples of a function

Inputs:

y - a vector of 2**k + 1 equally-spaced samples of a fucntion dx - the sample spacing. axis - the
axis along which to integrate show - When y is a single 1-d array, then if this argument is True

print the table showing Richardson extrapolation from the samples.

Output: ret

ret - The integrated result for each axis.

See also:

quad - adaptive quadrature using QUADPACK romberg - adaptive Romberg quadrature quadrature -
adaptive Gaussian quadrature fixed_quad - fixed-order Gaussian quadrature dblquad, tplquad - dou-
ble and triple integrals simps, trapz - integrators for sampled data cumtrapz - cumulative integration
for sampled data ode, odeint - ODE integrators

See Also:

scipy.special for orthogonal polynomials (special) for Gaussian quadrature roots and weights for other weight-
ing factors and regions.

3.4.3 Integrators of ODE systems

odeint (func, y0, t[, args=(), Dfun, col_deriv, ...]) Integrate a system of ordinary differential equations.

ode A generic interface class to numeric integrators.

odeint(func, y0, t, args=(), Dfun=None, col_deriv=0, full_output=0, ml=None, mu=None, rtol=None, atol=None,
tcrit=None, h0=0.0, hmax=0.0, hmin=0.0, ixpr=0, mxstep=0, mxhnil=0, mxordn=12, mxords=5, print-
messg=0)

Integrate a system of ordinary differential equations.

Solve a system of ordinary differential equations using lsoda from the FORTRAN library odepack.

Solves the initial value problem for stiff or non-stiff systems of first order ode-s:

122 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

dy/dt = func(y,t0,...)

where y can be a vector.

Parameters
func : callable(y, t0, ...)

Computes the derivative of y at t0.

y0 : array

Initial condition on y (can be a vector).

t : array

A sequence of time points for which to solve for y. The initial value point should be
the first element of this sequence.

args : tuple

Extra arguments to pass to function.

Dfun : callable(y, t0, ...)

Gradient (Jacobian) of func.

col_deriv : boolean

True if Dfun defines derivatives down columns (faster), otherwise Dfun should define
derivatives across rows.

full_output : boolean

True if to return a dictionary of optional outputs as the second output

printmessg : boolean

Whether to print the convergence message

Returns
y : array, shape (len(y0), len(t))

Array containing the value of y for each desired time in t, with the initial value y0 in
the first row.

infodict : dict, only returned if full_output == True

Dictionary containing additional output information
key meaning
‘hu’ vector of step sizes successfully used for each time step.
‘tcur’ vector with the value of t reached for each time step. (will always be at least as large as the input times).
‘tolsf’ vector of tolerance scale factors, greater than 1.0, computed when a request for too much accuracy was

detected.
‘tsw’ value of t at the time of the last method switch (given for each time step)
‘nst’ cumulative number of time steps
‘nfe’ cumulative number of function evaluations for each time step
‘nje’ cumulative number of jacobian evaluations for each time step
‘nqu’ a vector of method orders for each successful step.
‘imxer’ index of the component of largest magnitude in the weighted local error vector (e / ewt) on an error

return, -1 otherwise.
‘lenrw’ the length of the double work array required.
‘leniw’ the length of integer work array required.
‘mused’ a vector of method indicators for each successful time step: 1: adams (nonstiff), 2: bdf (stiff)

See Also:

3.4. Integration and ODEs (scipy.integrate) 123

SciPy Reference Guide, Release 0.7

ode
a more object-oriented integrator based on VODE

quad
for finding the area under a curve

class ode(f, jac=None)
A generic interface class to numeric integrators.

See Also:

odeint
an integrator with a simpler interface based on lsoda from ODEPACK

quad
for finding the area under a curve

Examples

A problem to integrate and the corresponding jacobian:

>>> from scipy import eye
>>> from scipy.integrate import ode
>>>
>>> y0, t0 = [1.0j, 2.0], 0
>>>
>>> def f(t, y, arg1):
>>> return [1j*arg1*y[0] + y[1], -arg1*y[1]**2]
>>> def jac(t, y, arg1):
>>> return [[1j*arg1, 1], [0, -arg1*2*y[1]]]

The integration:

>>> r = ode(f, jac).set_integrator(’zvode’, method=’bdf’, with_jacobian=True)
>>> r.set_initial_value(y0, t0).set_f_params(2.0).set_jac_params(2.0)
>>> t1 = 10
>>> dt = 1
>>> while r.successful() and r.t < t1:
>>> r.integrate(r.t+dt)
>>> print r.t, r.y

124 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

3.5 Interpolation (scipy.interpolate)

3.5.1 Univariate interpolation

interp1d Interpolate a 1D function.

BarycentricInterpolator The interpolating polynomial for a set of points

KroghInterpolator The interpolating polynomial for a set of points

PiecewisePolynomial Piecewise polynomial curve specified by points and
derivatives

barycentric_interpolate (xi, yi, x) Convenience function for polynomial interpolation

krogh_interpolate (xi, yi, x[, der]) Convenience function for polynomial interpolation.

piecewise_polynomial_interpolate (xi, yi, x[, or-
ders, der])

Convenience function for piecewise polynomial
interpolation

class interp1d(x, y, kind=’linear’, axis=-1, copy=True, bounds_error=True, fill_value=nan)
Interpolate a 1D function.

See Also:
splrep, splev, UnivariateSpline

class BarycentricInterpolator(xi, yi=None)
The interpolating polynomial for a set of points

Constructs a polynomial that passes through a given set of points. Allows evaluation of the polynomial, efficient
changing of the y values to be interpolated, and updating by adding more x values. For reasons of numerical
stability, this function does not compute the coefficients of the polynomial.

This class uses a “barycentric interpolation” method that treats the problem as a special case of rational function
interpolation. This algorithm is quite stable, numerically, but even in a world of exact computation, unless the
x coordinates are chosen very carefully - Chebyshev zeros (e.g. cos(i*pi/n)) are a good choice - polynomial
interpolation itself is a very ill-conditioned process due to the Runge phenomenon.

Based on Berrut and Trefethen 2004, “Barycentric Lagrange Interpolation”.

class KroghInterpolator(xi, yi)
The interpolating polynomial for a set of points

Constructs a polynomial that passes through a given set of points, optionally with specified derivatives at those
points. Allows evaluation of the polynomial and all its derivatives. For reasons of numerical stability, this
function does not compute the coefficients of the polynomial, although they can be obtained by evaluating all
the derivatives.

Be aware that the algorithms implemented here are not necessarily the most numerically stable known. More-
over, even in a world of exact computation, unless the x coordinates are chosen very carefully - Chebyshev
zeros (e.g. cos(i*pi/n)) are a good choice - polynomial interpolation itself is a very ill-conditioned process due
to the Runge phenomenon. In general, even with well-chosen x values, degrees higher than about thirty cause
problems with numerical instability in this code.

Based on Krogh 1970, “Efficient Algorithms for Polynomial Interpolation and Numerical Differentiation”

class PiecewisePolynomial(xi, yi, orders=None, direction=None)
Piecewise polynomial curve specified by points and derivatives

3.5. Interpolation (scipy.interpolate) 125

SciPy Reference Guide, Release 0.7

This class represents a curve that is a piecewise polynomial. It passes through a list of points and has specified
derivatives at each point. The degree of the polynomial may very from segment to segment, as may the number
of derivatives available. The degree should not exceed about thirty.

Appending points to the end of the curve is efficient.

barycentric_interpolate(xi, yi, x)
Convenience function for polynomial interpolation

Constructs a polynomial that passes through a given set of points, then evaluates the polynomial. For reasons of
numerical stability, this function does not compute the coefficients of the polynomial.

This function uses a “barycentric interpolation” method that treats the problem as a special case of rational
function interpolation. This algorithm is quite stable, numerically, but even in a world of exact computation,
unless the x coordinates are chosen very carefully - Chebyshev zeros (e.g. cos(i*pi/n)) are a good choice -
polynomial interpolation itself is a very ill-conditioned process due to the Runge phenomenon.

Based on Berrut and Trefethen 2004, “Barycentric Lagrange Interpolation”.

Parameters
xi : array-like of length N

The x coordinates of the points the polynomial should pass through

yi : array-like N by R

The y coordinates of the points the polynomial should pass through; if R>1 the
polynomial is vector-valued.

x : scalar or array-like of length M

Returns
y : scalar or array-like of length R or length M or M by R

The shape of y depends on the shape of x and whether the interpolator is vector-
valued or scalar-valued.

Notes

Construction of the interpolation weights is a relatively slow process. If you want to call this many times with
the same xi (but possibly varying yi or x) you should use the class BarycentricInterpolator. This is what this
function uses internally.

krogh_interpolate(xi, yi, x, der=0)
Convenience function for polynomial interpolation.

Constructs a polynomial that passes through a given set of points, optionally with specified derivatives at those
points. Evaluates the polynomial or some of its derivatives. For reasons of numerical stability, this function does
not compute the coefficients of the polynomial, although they can be obtained by evaluating all the derivatives.

Be aware that the algorithms implemented here are not necessarily the most numerically stable known. More-
over, even in a world of exact computation, unless the x coordinates are chosen very carefully - Chebyshev
zeros (e.g. cos(i*pi/n)) are a good choice - polynomial interpolation itself is a very ill-conditioned process due
to the Runge phenomenon. In general, even with well-chosen x values, degrees higher than about thirty cause
problems with numerical instability in this code.

Based on Krogh 1970, “Efficient Algorithms for Polynomial Interpolation and Numerical Differentiation”

The polynomial passes through all the pairs (xi,yi). One may additionally specify a number of derivatives at
each point xi; this is done by repeating the value xi and specifying the derivatives as successive yi values.

Parameters
xi : array-like, length N

known x-coordinates

yi : array-like, N by R

126 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

known y-coordinates, interpreted as vectors of length R, or scalars if R=1

x : scalar or array-like of length N

Point or points at which to evaluate the derivatives

der : integer or list

How many derivatives to extract; None for all potentially nonzero derivatives (that
is a number equal to the number of points), or a list of derivatives to extract. This
number includes the function value as 0th derivative.

Returns :
——- :
d : array

If the interpolator’s values are R-dimensional then the returned array will be the
number of derivatives by N by R. If x is a scalar, the middle dimension will be
dropped; if the yi are scalars then the last dimension will be dropped.

Notes

Construction of the interpolating polynomial is a relatively expensive process. If you want to evaluate it repeat-
edly consider using the class KroghInterpolator (which is what this function uses).

piecewise_polynomial_interpolate(xi, yi, x, orders=None, der=0)
Convenience function for piecewise polynomial interpolation

Parameters
xi : array-like of length N

a sorted list of x-coordinates

yi : list of lists of length N

yi[i] is the list of derivatives known at xi[i]

x : scalar or array-like of length M
orders : list of integers, or integer

a list of polynomial orders, or a single universal order

der : integer

which single derivative to extract

Returns
y : scalar or array-like of length R or length M or M by R

Notes

If orders is None, or orders[i] is None, then the degree of the polynomial segment is exactly the degree required
to match all i available derivatives at both endpoints. If orders[i] is not None, then some derivatives will be
ignored. The code will try to use an equal number of derivatives from each end; if the total number of derivatives
needed is odd, it will prefer the rightmost endpoint. If not enough derivatives are available, an exception is raised.

Construction of these piecewise polynomials can be an expensive process; if you repeatedly evaluate the same
polynomial, consider using the class PiecewisePolynomial (which is what this function does).

3.5.2 Multivariate interpolation

interp2d (x, y, z[, kind, copy, bounds_error, ...])Interpolate over a 2D grid.

Rbf (*args) A class for radial basis function approximation/interpolation of
n-dimensional scattered data.

3.5. Interpolation (scipy.interpolate) 127

SciPy Reference Guide, Release 0.7

class interp2d(x, y, z, kind=’linear’, copy=True, bounds_error=False, fill_value=nan)
Interpolate over a 2D grid.

Parameters
x, y : 1D arrays

Arrays defining the coordinates of a 2D grid. If the points lie on a regular grid, x can
specify the column coordinates and y the row coordinates, e.g.:

x = [0,1,2]; y = [0,3,7]

otherwise x and y must specify the full coordinates, i.e.:

x = [0,1,2,0,1,2,0,1,2]; y = [0,0,0,3,3,3,7,7,7]

If x and y are multi-dimensional, they are flattened before use.
z : 1D array

The values of the interpolated function on the grid points. If z is a multi-dimensional
array, it is flattened before use.

kind : {‘linear’, ‘cubic’, ‘quintic’}
The kind of interpolation to use.

copy : bool
If True, then data is copied, otherwise only a reference is held.

bounds_error : bool
If True, when interpolated values are requested outside of the domain of the input
data, an error is raised. If False, then fill_value is used.

fill_value : number
If provided, the value to use for points outside of the interpolation domain. Defaults
to NaN.

Raises
ValueError when inputs are invalid. :

See Also:
bisplrep, bisplev

BivariateSpline
a more recent wrapper of the FITPACK routines

class Rbf(*args, **kwargs)
A class for radial basis function approximation/interpolation of n-dimensional scattered data.

Parameters
*args : arrays

x, y, z, ..., d, where x, y, z, ... are the coordinates of the nodes and d is the array of
values at the nodes

function : str, optional
The radial basis function, based on the radius, r, given by the norm (defult is Eu-
clidean distance); the default is ‘multiquadric’:

’multiquadric’: sqrt((r/self.epsilon)**2 + 1)
’inverse multiquadric’: 1.0/sqrt((r/self.epsilon)**2 + 1)
’gaussian’: exp(-(r/self.epsilon)**2)
’linear’: r
’cubic’: r**3
’quintic’: r**5
’thin-plate’: r**2 * log(r)

128 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

epsilon : float, optional

Adjustable constant for gaussian or multiquadrics functions - defaults to approximate
average distance between nodes (which is a good start).

smooth : float, optional

Values greater than zero increase the smoothness of the approximation. 0 is for
interpolation (default), the function will always go through the nodal points in this
case.

norm : callable, optional

A function that returns the ‘distance’ between two points, with inputs as arrays of
positions (x, y, z, ...), and an output as an array of distance. E.g, the default:

def euclidean_norm(x1, x2):
return sqrt(((x1 - x2)**2).sum(axis=0))

which is called with x1=x1[ndims,newaxis,:] and x2=x2[ndims,:,newaxis] such that
the result is a matrix of the distances from each point in x1 to each point in x2.

Examples

>>> rbfi = Rbf(x, y, z, d) # radial basis function interpolator instance
>>> di = rbfi(xi, yi, zi) # interpolated values

3.5.3 1-D Splines

UnivariateSpline Univariate spline s(x) of degree k on the interval [xb,xe] calculated from a given set
of data points (x,y).

InterpolatedUnivariateSplineInterpolated univariate spline approximation. Identical to UnivariateSpline with
less error checking.

LSQUnivariateSpline Weighted least-squares univariate spline approximation. Appears to be identical to
UnivariateSpline with more error checking.

class UnivariateSpline(x, y, w=None, bbox=, [None, None], k=3, s=None)
Univariate spline s(x) of degree k on the interval [xb,xe] calculated from a given set of data points (x,y).

Can include least-squares fitting.

See also:

splrep, splev, sproot, spint, spalde - an older wrapping of FITPACK BivariateSpline - a similar class for bivariate
spline interpolation

class InterpolatedUnivariateSpline(x, y, w=None, bbox=, [None, None], k=3)
Interpolated univariate spline approximation. Identical to UnivariateSpline with less error checking.

class LSQUnivariateSpline(x, y, t, w=None, bbox=, [None, None], k=3)
Weighted least-squares univariate spline approximation. Appears to be identical to UnivariateSpline with more
error checking.

The above univariate spline classes have the following methods:

3.5. Interpolation (scipy.interpolate) 129

SciPy Reference Guide, Release 0.7

UnivariateSpline.__call__ (self, x[, nu])Evaluate spline (or its nu-th derivative) at positions x. Note: x can be
unordered but the evaluation is more efficient if x is (partially) ordered.

UnivariateSpline.derivatives (self, x)Return all derivatives of the spline at the point x.

UnivariateSpline.integral (self, a, b)Return definite integral of the spline between two given points.

UnivariateSpline.roots (self)Return the zeros of the spline.

UnivariateSpline.get_coeffs (self)Return spline coefficients.

UnivariateSpline.get_knots (self)Return the positions of (boundary and interior) knots of the spline.

UnivariateSpline.get_residual (self)Return weighted sum of squared residuals of the spline approximation: sum
((w[i]*(y[i]-s(x[i])))**2,axis=0)

UnivariateSpline.set_smoothing_factor (self, s)Continue spline computation with the given smoothing factor s and with the
knots found at the last call.

__call__(x, nu=None)
Evaluate spline (or its nu-th derivative) at positions x. Note: x can be unordered but the evaluation is more
efficient if x is (partially) ordered.

derivatives(x)
Return all derivatives of the spline at the point x.

integral(a, b)
Return definite integral of the spline between two given points.

roots()
Return the zeros of the spline.

Restriction: only cubic splines are supported by fitpack.

get_coeffs()
Return spline coefficients.

get_knots()
Return the positions of (boundary and interior) knots of the spline.

get_residual()
Return weighted sum of squared residuals of the spline approximation: sum ((w[i]*(y[i]-s(x[i])))**2,axis=0)

set_smoothing_factor(s)
Continue spline computation with the given smoothing factor s and with the knots found at the last call.

Low-level interface to FITPACK functions:

130 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

splrep (x, y[, w, xb, xe, k, task, ...]) Find the B-spline representation of 1-D curve.

splprep (x[, w, u, ub, ue, k, ...]) Find the B-spline representation of an N-dimensional curve.

splev (x, tck[, der]) Evaulate a B-spline and its derivatives.

splint (a, b, tck[, full_output]) Evaluate the definite integral of a B-spline.

sproot (tck[, mest]) Find the roots of a cubic B-spline.

spalde (x, tck) Evaluate all derivatives of a B-spline.

bisplrep (x, y, z[, w, xb, xe, yb, ye, ...]) Find a bivariate B-spline representation of a surface.

bisplev (x, y, tck[, dx, dy]) Evaluate a bivariate B-spline and its derivatives.

splrep(x, y, w=None, xb=None, xe=None, k=3, task=0, s=None, t=None, full_output=0, per=0, quiet=1)
Find the B-spline representation of 1-D curve.

Description:

Given the set of data points (x[i], y[i]) determine a smooth spline approximation of degree k on the
interval xb <= x <= xe. The coefficients, c, and the knot points, t, are returned. Uses the FORTRAN
routine curfit from FITPACK.

Inputs:

x, y – The data points defining a curve y = f(x). w – Strictly positive rank-1 array of weights the
same length as x and y.

The weights are used in computing the weighted least-squares spline fit. If the errors in
the y values have standard-deviation given by the vector d, then w should be 1/d. Default
is ones(len(x)).

xb, xe – The interval to fit. If None, these default to x[0] and x[-1]
respectively.

k – The order of the spline fit. It is recommended to use cubic splines.
Even order splines should be avoided especially with small s values. 1 <= k <= 5

task – If task==0 find t and c for a given smoothing factor, s.

If task==1 find t and c for another value of the
smoothing factor, s. There must have been a previous call with task=0 or task=1 for the
same set of data (t will be stored an used internally)

If task=-1 find the weighted least square spline for
a given set of knots, t. These should be interior knots as knots on the ends will be added
automatically.

s – A smoothing condition. The amount of smoothness is determined by
satisfying the conditions: sum((w * (y - g))**2,axis=0) <= s where g(x) is the smoothed
interpolation of (x,y). The user can use s to control the tradeoff between closeness and
smoothness of fit. Larger s means more smoothing while smaller values of s indicate less
smoothing. Recommended values of s depend on the weights, w. If the weights represent
the inverse of the standard-deviation of y, then a good s value should be found in the range
(m-sqrt(2*m),m+sqrt(2*m)) where m is the number of datapoints in x, y, and w. default :
s=m-sqrt(2*m) if weights are supplied.

3.5. Interpolation (scipy.interpolate) 131

SciPy Reference Guide, Release 0.7

s = 0.0 (interpolating) if no weights are supplied.

t – The knots needed for task=-1. If given then task is automatically
set to -1.

full_output – If non-zero, then return optional outputs. per – If non-zero, data points are considered
periodic with period

x[m-1] - x[0] and a smooth periodic spline approximation is returned. Values of y[m-1]
and w[m-1] are not used.

quiet – Non-zero to suppress messages.

Outputs: (tck, {fp, ier, msg})

tck – (t,c,k) a tuple containing the vector of knots, the B-spline
coefficients, and the degree of the spline.

fp – The weighted sum of squared residuals of the spline approximation. ier – An integer flag about
splrep success. Success is indicated if

ier<=0. If ier in [1,2,3] an error occurred but was not raised. Otherwise an error is raised.

msg – A message corresponding to the integer flag, ier.

Remarks:

See splev for evaluation of the spline and its derivatives.

Example:

x = linspace(0, 10, 10) y = sin(x) tck = splrep(x, y) x2 = linspace(0, 10, 200) y2 = splev(x2, tck)
plot(x, y, ‘o’, x2, y2)

See also:
splprep, splev, sproot, spalde, splint - evaluation, roots, integral bisplrep, bisplev - bivariate splines Uni-
variateSpline, BivariateSpline - an alternative wrapping

of the FITPACK functions

Notes:

Based on algorithms described in:

Dierckx P.
[An algorithm for smoothing, differentiation and integ-] ration of experimental data using spline
functions, J.Comp.Appl.Maths 1 (1975) 165-184.

Dierckx P.
[A fast algorithm for smoothing data on a rectangular] grid while using spline functions, SIAM
J.Numer.Anal. 19 (1982) 1286-1304.

Dierckx P.
[An improved algorithm for curve fitting with spline] functions, report tw54, Dept. Computer Sci-
ence,K.U. Leuven, 1981.

Dierckx P.
[Curve and surface fitting with splines, Monographs on] Numerical Analysis, Oxford University
Press, 1993.

132 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

splprep(x, w=None, u=None, ub=None, ue=None, k=3, task=0, s=None, t=None, full_output=0, nest=None,
per=0, quiet=1)

Find the B-spline representation of an N-dimensional curve.

Description:

Given a list of N rank-1 arrays, x, which represent a curve in N-dimensional space parametrized
by u, find a smooth approximating spline curve g(u). Uses the FORTRAN routine parcur from
FITPACK

Inputs:

x – A list of sample vector arrays representing the curve. u – An array of parameter values. If not
given, these values are

calculated automatically as (M = len(x[0])): v[0] = 0 v[i] = v[i-1] + distance(x[i],x[i-1])
u[i] = v[i] / v[M-1]

ub, ue – The end-points of the parameters interval. Defaults to
u[0] and u[-1].

k – Degree of the spline. Cubic splines are recommended. Even values of
k should be avoided especially with a small s-value. 1 <= k <= 5.

task – If task==0 find t and c for a given smoothing factor, s.

If task==1 find t and c for another value of the smoothing factor,
s. There must have been a previous call with task=0 or task=1 for the same set of data.

If task=-1 find the weighted least square spline for a given set of
knots, t.

s – A smoothing condition. The amount of smoothness is determined by
satisfying the conditions: sum((w * (y - g))**2,axis=0) <= s where g(x) is the smoothed
interpolation of (x,y). The user can use s to control the tradeoff between closeness and
smoothness of fit. Larger s means more smoothing while smaller values of s indicate less
smoothing. Recommended values of s depend on the weights, w. If the weights represent
the inverse of the standard-deviation of y, then a good s value should be found in the range
(m-sqrt(2*m),m+sqrt(2*m)) where m is the number of datapoints in x, y, and w.

t – The knots needed for task=-1. full_output – If non-zero, then return optional outputs. nest – An
over-estimate of the total number of knots of the spline to

help in determining the storage space. By default nest=m/2. Always large enough is
nest=m+k+1.

per – If non-zero, data points are considered periodic with period
x[m-1] - x[0] and a smooth periodic spline approximation is returned. Values of y[m-1] and
w[m-1] are not used.

quiet – Non-zero to suppress messages.

Outputs: (tck, u, {fp, ier, msg})

tck – (t,c,k) a tuple containing the vector of knots, the B-spline
coefficients, and the degree of the spline.

u – An array of the values of the parameter.

fp – The weighted sum of squared residuals of the spline approximation. ier – An integer flag about
splrep success. Success is indicated

3.5. Interpolation (scipy.interpolate) 133

SciPy Reference Guide, Release 0.7

if ier<=0. If ier in [1,2,3] an error occurred but was not raised. Otherwise an error is
raised.

msg – A message corresponding to the integer flag, ier.

Remarks:

SEE splev for evaluation of the spline and its derivatives.

See also:
splrep, splev, sproot, spalde, splint - evaluation, roots, integral bisplrep, bisplev - bivariate splines Uni-
variateSpline, BivariateSpline - an alternative wrapping

of the FITPACK functions

Notes:

Dierckx P.
[Algorithms for smoothing data with periodic and] parametric splines, Computer Graphics and Im-
age Processing 20 (1982) 171-184.

Dierckx P.
[Algorithms for smoothing data with periodic and param-] etric splines, report tw55, Dept. Com-
puter Science, K.U.Leuven, 1981.

Dierckx P.
[Curve and surface fitting with splines, Monographs on] Numerical Analysis, Oxford University
Press, 1993.

splev(x, tck, der=0)
Evaulate a B-spline and its derivatives.

Description:

Given the knots and coefficients of a B-spline representation, evaluate the value of the smoothing
polynomial and it’s derivatives. This is a wrapper around the FORTRAN routines splev and splder
of FITPACK.

Inputs:

x (u) – a 1-D array of points at which to return the value of the
smoothed spline or its derivatives. If tck was returned from splprep, then the parameter values,
u should be given.

tck – A sequence of length 3 returned by splrep or splprep containg the
knots, coefficients, and degree of the spline.

der – The order of derivative of the spline to compute (must be less than
or equal to k).

Outputs: (y,)

y – an array of values representing the spline function or curve.
If tck was returned from splrep, then this is a list of arrays representing the curve in N-
dimensional space.

134 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

See also:
splprep, splrep, sproot, spalde, splint - evaluation, roots, integral bisplrep, bisplev - bivariate splines
UnivariateSpline, BivariateSpline - an alternative wrapping

of the FITPACK functions

Notes:

de Boor C
[On calculating with b-splines, J. Approximation Theory] 6 (1972) 50-62.

Cox M.G.
[The numerical evaluation of b-splines, J. Inst. Maths] Applics 10 (1972) 134-149.

Dierckx P.
[Curve and surface fitting with splines, Monographs on] Numerical Analysis, Oxford University
Press, 1993.

splint(a, b, tck, full_output=0)
Evaluate the definite integral of a B-spline.

Description:

Given the knots and coefficients of a B-spline, evaluate the definite integral of the smoothing poly-
nomial between two given points.

Inputs:

a, b – The end-points of the integration interval. tck – A length 3 sequence describing the given
spline (See splev). full_output – Non-zero to return optional output.

Outputs: (integral, {wrk})

integral – The resulting integral. wrk – An array containing the integrals of the normalized B-splines
defined

on the set of knots.

See also:
splprep, splrep, sproot, spalde, splev - evaluation, roots, integral bisplrep, bisplev - bivariate splines Uni-
variateSpline, BivariateSpline - an alternative wrapping

of the FITPACK functions

Notes:

Gaffney P.W.
[The calculation of indefinite integrals of b-splines]

1. Inst. Maths Applics 17 (1976) 37-41.

Dierckx P.
[Curve and surface fitting with splines, Monographs on] Numerical Analysis, Oxford University
Press, 1993.

sproot(tck, mest=10)
Find the roots of a cubic B-spline.

Description:

3.5. Interpolation (scipy.interpolate) 135

SciPy Reference Guide, Release 0.7

Given the knots (>=8) and coefficients of a cubic B-spline return the roots of the spline.

Inputs:

tck – A length 3 sequence describing the given spline (See splev).
The number of knots must be >= 8. The knots must be a montonically increasing sequence.

mest – An estimate of the number of zeros (Default is 10).

Outputs: (zeros,)

zeros – An array giving the roots of the spline.

See also:
splprep, splrep, splint, spalde, splev - evaluation, roots, integral bisplrep, bisplev - bivariate splines Uni-
variateSpline, BivariateSpline - an alternative wrapping

of the FITPACK functions

spalde(x, tck)
Evaluate all derivatives of a B-spline.

Description:

Given the knots and coefficients of a cubic B-spline compute all derivatives up to order k at a point
(or set of points).

Inputs:

tck – A length 3 sequence describing the given spline (See splev). x – A point or a set of points at
which to evaluate the derivatives.

Note that t(k) <= x <= t(n-k+1) must hold for each x.

Outputs: (results,)

results – An array (or a list of arrays) containing all derivatives
up to order k inclusive for each point x.

See also:
splprep, splrep, splint, sproot, splev - evaluation, roots, integral bisplrep, bisplev - bivariate splines Uni-
variateSpline, BivariateSpline - an alternative wrapping

of the FITPACK functions

Notes: Based on algorithms from:

de Boor C
[On calculating with b-splines, J. Approximation Theory] 6 (1972) 50-62.

Cox M.G.
[The numerical evaluation of b-splines, J. Inst. Maths] applics 10 (1972) 134-149.

Dierckx P.
[Curve and surface fitting with splines, Monographs on] Numerical Analysis, Oxford Univer-
sity Press, 1993.

136 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

bisplrep(x, y, z, w=None, xb=None, xe=None, yb=None, ye=None, kx=3, ky=3, task=0, s=None,
eps=9.9999999999999998e-17, tx=None, ty=None, full_output=0, nxest=None, nyest=None, quiet=1)

Find a bivariate B-spline representation of a surface.

Description:

Given a set of data points (x[i], y[i], z[i]) representing a surface z=f(x,y), compute a B-spline
representation of the surface. Based on the routine SURFIT from FITPACK.

Inputs:

x, y, z – Rank-1 arrays of data points. w – Rank-1 array of weights. By default w=ones(len(x)). xb,
xe – End points of approximation interval in x. yb, ye – End points of approximation interval in y.

By default xb, xe, yb, ye = x.min(), x.max(), y.min(), y.max()

kx, ky – The degrees of the spline (1 <= kx, ky <= 5). Third order
(kx=ky=3) is recommended.

task – If task=0, find knots in x and y and coefficients for a given

smoothing factor, s.

If task=1, find knots and coefficients for another value of the
smoothing factor, s. bisplrep must have been previously called with task=0 or task=1.

If task=-1, find coefficients for a given set of knots tx, ty.

s – A non-negative smoothing factor. If weights correspond
to the inverse of the standard-deviation of the errors in z, then a good s-value should be found
in the range (m-sqrt(2*m),m+sqrt(2*m)) where m=len(x)

eps – A threshold for determining the effective rank of an
over-determined linear system of equations (0 < eps < 1) — not likely to need changing.

tx, ty – Rank-1 arrays of the knots of the spline for task=-1 full_output – Non-zero to return optional
outputs. nxest, nyest – Over-estimates of the total number of knots.

If None then nxest = max(kx+sqrt(m/2),2*kx+3),
nyest = max(ky+sqrt(m/2),2*ky+3)

quiet – Non-zero to suppress printing of messages.

Outputs: (tck, {fp, ier, msg})

tck – A list [tx, ty, c, kx, ky] containing the knots (tx, ty) and
coefficients (c) of the bivariate B-spline representation of the surface along with the degree of
the spline.

fp – The weighted sum of squared residuals of the spline approximation. ier – An integer flag about
splrep success. Success is indicated if

ier<=0. If ier in [1,2,3] an error occurred but was not raised. Otherwise an error is raised.

msg – A message corresponding to the integer flag, ier.

Remarks:

SEE bisplev to evaluate the value of the B-spline given its tck representation.

3.5. Interpolation (scipy.interpolate) 137

SciPy Reference Guide, Release 0.7

See also:
splprep, splrep, splint, sproot, splev - evaluation, roots, integral UnivariateSpline, BivariateSpline - an
alternative wrapping

of the FITPACK functions

Notes: Based on algorithms from:

Dierckx P.
[An algorithm for surface fitting with spline functions] Ima J. Numer. Anal. 1 (1981) 267-283.

Dierckx P.
[An algorithm for surface fitting with spline functions] report tw50, Dept. Computer Sci-
ence,K.U.Leuven, 1980.

Dierckx P.
[Curve and surface fitting with splines, Monographs on] Numerical Analysis, Oxford Univer-
sity Press, 1993.

bisplev(x, y, tck, dx=0, dy=0)
Evaluate a bivariate B-spline and its derivatives.

Description:

Return a rank-2 array of spline function values (or spline derivative values) at points given by the
cross-product of the rank-1 arrays x and y. In special cases, return an array or just a float if either x
or y or both are floats. Based on BISPEV from FITPACK.

Inputs:

x, y – Rank-1 arrays specifying the domain over which to evaluate the
spline or its derivative.

tck – A sequence of length 5 returned by bisplrep containing the knot
locations, the coefficients, and the degree of the spline: [tx, ty, c, kx, ky].

dx, dy – The orders of the partial derivatives in x and y respectively.

Outputs: (vals,)

vals – The B-pline or its derivative evaluated over the set formed by
the cross-product of x and y.

Remarks:

SEE bisprep to generate the tck representation.

See also:
splprep, splrep, splint, sproot, splev - evaluation, roots, integral UnivariateSpline, BivariateSpline - an
alternative wrapping

of the FITPACK functions

Notes: Based on algorithms from:

Dierckx P.
[An algorithm for surface fitting with spline functions] Ima J. Numer. Anal. 1 (1981) 267-283.

138 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

Dierckx P.
[An algorithm for surface fitting with spline functions] report tw50, Dept. Computer Sci-
ence,K.U.Leuven, 1980.

Dierckx P.
[Curve and surface fitting with splines, Monographs on] Numerical Analysis, Oxford Univer-
sity Press, 1993.

3.5.4 2-D Splines

See Also:

scipy.ndimage.map_coordinates

BivariateSpline Bivariate spline s(x,y) of degrees kx and ky on the rectangle [xb,xe] x [yb, ye] calculated
from a given set of data points (x,y,z).

SmoothBivariateSplineSmooth bivariate spline approximation.

LSQBivariateSplineWeighted least-squares spline approximation. See also:

class BivariateSpline()
Bivariate spline s(x,y) of degrees kx and ky on the rectangle [xb,xe] x [yb, ye] calculated from a given set of
data points (x,y,z).

See also:

bisplrep, bisplev - an older wrapping of FITPACK UnivariateSpline - a similar class for univariate spline inter-
polation SmoothUnivariateSpline - to create a BivariateSpline through the

given points

LSQUnivariateSpline - to create a BivariateSpline using weighted
least-squares fitting

class SmoothBivariateSpline(x, y, z, w=None, bbox=, [None, None, None, None], kx=3, ky=3, s=None,
eps=None)

Smooth bivariate spline approximation.

See also:

bisplrep, bisplev - an older wrapping of FITPACK UnivariateSpline - a similar class for univariate spline inter-
polation LSQUnivariateSpline - to create a BivariateSpline using weighted

least-squares fitting

class LSQBivariateSpline(x, y, z, tx, ty, w=None, bbox=, [None, None, None, None], kx=3, ky=3, eps=None)
Weighted least-squares spline approximation. See also:

bisplrep, bisplev - an older wrapping of FITPACK UnivariateSpline - a similar class for univariate spline inter-
polation SmoothUnivariateSpline - to create a BivariateSpline through the

given points

Low-level interface to FITPACK functions:

bisplrep (x, y, z[, w, xb, xe, yb, ye, ...]) Find a bivariate B-spline representation of a surface.

bisplev (x, y, tck[, dx, dy]) Evaluate a bivariate B-spline and its derivatives.

3.5. Interpolation (scipy.interpolate) 139

SciPy Reference Guide, Release 0.7

bisplrep(x, y, z, w=None, xb=None, xe=None, yb=None, ye=None, kx=3, ky=3, task=0, s=None,
eps=9.9999999999999998e-17, tx=None, ty=None, full_output=0, nxest=None, nyest=None, quiet=1)

Find a bivariate B-spline representation of a surface.

Description:

Given a set of data points (x[i], y[i], z[i]) representing a surface z=f(x,y), compute a B-spline
representation of the surface. Based on the routine SURFIT from FITPACK.

Inputs:

x, y, z – Rank-1 arrays of data points. w – Rank-1 array of weights. By default w=ones(len(x)). xb,
xe – End points of approximation interval in x. yb, ye – End points of approximation interval in y.

By default xb, xe, yb, ye = x.min(), x.max(), y.min(), y.max()

kx, ky – The degrees of the spline (1 <= kx, ky <= 5). Third order
(kx=ky=3) is recommended.

task – If task=0, find knots in x and y and coefficients for a given

smoothing factor, s.

If task=1, find knots and coefficients for another value of the
smoothing factor, s. bisplrep must have been previously called with task=0 or task=1.

If task=-1, find coefficients for a given set of knots tx, ty.

s – A non-negative smoothing factor. If weights correspond
to the inverse of the standard-deviation of the errors in z, then a good s-value should be found
in the range (m-sqrt(2*m),m+sqrt(2*m)) where m=len(x)

eps – A threshold for determining the effective rank of an
over-determined linear system of equations (0 < eps < 1) — not likely to need changing.

tx, ty – Rank-1 arrays of the knots of the spline for task=-1 full_output – Non-zero to return optional
outputs. nxest, nyest – Over-estimates of the total number of knots.

If None then nxest = max(kx+sqrt(m/2),2*kx+3),
nyest = max(ky+sqrt(m/2),2*ky+3)

quiet – Non-zero to suppress printing of messages.

Outputs: (tck, {fp, ier, msg})

tck – A list [tx, ty, c, kx, ky] containing the knots (tx, ty) and
coefficients (c) of the bivariate B-spline representation of the surface along with the degree of
the spline.

fp – The weighted sum of squared residuals of the spline approximation. ier – An integer flag about
splrep success. Success is indicated if

ier<=0. If ier in [1,2,3] an error occurred but was not raised. Otherwise an error is raised.

msg – A message corresponding to the integer flag, ier.

Remarks:

SEE bisplev to evaluate the value of the B-spline given its tck representation.

140 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

See also:
splprep, splrep, splint, sproot, splev - evaluation, roots, integral UnivariateSpline, BivariateSpline - an
alternative wrapping

of the FITPACK functions

Notes: Based on algorithms from:

Dierckx P.
[An algorithm for surface fitting with spline functions] Ima J. Numer. Anal. 1 (1981) 267-283.

Dierckx P.
[An algorithm for surface fitting with spline functions] report tw50, Dept. Computer Sci-
ence,K.U.Leuven, 1980.

Dierckx P.
[Curve and surface fitting with splines, Monographs on] Numerical Analysis, Oxford Univer-
sity Press, 1993.

bisplev(x, y, tck, dx=0, dy=0)
Evaluate a bivariate B-spline and its derivatives.

Description:

Return a rank-2 array of spline function values (or spline derivative values) at points given by the
cross-product of the rank-1 arrays x and y. In special cases, return an array or just a float if either x
or y or both are floats. Based on BISPEV from FITPACK.

Inputs:

x, y – Rank-1 arrays specifying the domain over which to evaluate the
spline or its derivative.

tck – A sequence of length 5 returned by bisplrep containing the knot
locations, the coefficients, and the degree of the spline: [tx, ty, c, kx, ky].

dx, dy – The orders of the partial derivatives in x and y respectively.

Outputs: (vals,)

vals – The B-pline or its derivative evaluated over the set formed by
the cross-product of x and y.

Remarks:

SEE bisprep to generate the tck representation.

See also:
splprep, splrep, splint, sproot, splev - evaluation, roots, integral UnivariateSpline, BivariateSpline - an
alternative wrapping

of the FITPACK functions

Notes: Based on algorithms from:

Dierckx P.
[An algorithm for surface fitting with spline functions] Ima J. Numer. Anal. 1 (1981) 267-283.

3.5. Interpolation (scipy.interpolate) 141

SciPy Reference Guide, Release 0.7

Dierckx P.
[An algorithm for surface fitting with spline functions] report tw50, Dept. Computer Sci-
ence,K.U.Leuven, 1980.

Dierckx P.
[Curve and surface fitting with splines, Monographs on] Numerical Analysis, Oxford Univer-
sity Press, 1993.

3.5.5 Additional tools

lagrange (x, w) Return the Lagrange interpolating polynomial of the
data-points (x,w)

approximate_taylor_polynomial (f, x, de-
gree, scale[, order])

Estimate the Taylor polynomial of f at x by polynomial
fitting

lagrange(x, w)
Return the Lagrange interpolating polynomial of the data-points (x,w)

Warning: This implementation is numerically unstable; do not expect to be able to use more than about 20 points
even if they are chosen optimally.

approximate_taylor_polynomial(f, x, degree, scale, order=None)
Estimate the Taylor polynomial of f at x by polynomial fitting

A polynomial Parameters ———- f : callable

The function whose Taylor polynomial is sought. Should accept a vector of x values.

x
[scalar] The point at which the polynomial is to be evaluated.

degree
[integer] The degree of the Taylor polynomial

scale
[scalar] The width of the interval to use to evaluate the Taylor polynomial. Function values spread over a
range this wide are used to fit the polynomial. Must be chosen carefully.

order
[integer or None] The order of the polynomial to be used in the fitting; f will be evaluated order+1 times.
If None, use degree.

Returns
p : poly1d

the Taylor polynomial (translated to the origin, so that for example p(0)=f(x)).

Notes

The appropriate choice of “scale” is a tradeoff - too large and the function differs from its Taylor polynomial
too much to get a good answer, too small and roundoff errors overwhelm the higher-order terms. The algorithm
used becomes numerically unstable around order 30 even under ideal circumstances.

Choosing order somewhat larger than degree may improve the higher-order terms.

142 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

3.6 Input and output (scipy.io)

See Also:

undefined label: numpy-reference.routines.io – if you don’t give a link caption the label must precede a section header.

(in Numpy)

3.6.1 MATLAB® files

loadmat (file_name[, mdict, append-
mat, **kwargs)

Load Matlab(tm) file

savemat (file_name, mdict[, appendmat, for-
mat, ...])

Save a dictionary of names and arrays into the MATLAB-style
.mat file.

loadmat(file_name, mdict=None, appendmat=True, **kwargs)
Load Matlab(tm) file

file_name
[string] Name of the mat file (do not need .mat extension if appendmat==True) If name not a full path
name, search for the file on the sys.path list and use the first one found (the current directory is searched
first). Can also pass open file-like object

m_dict
[dict, optional] dictionary in which to insert matfile variables

appendmat
[{True, False} optional] True to append the .mat extension to the end of the given filename, if not already
present

base_name
[string, optional, unused] base name for unnamed variables. The code no longer uses this. We deprecate
for this version of scipy, and will remove it in future versions

byte_order
[{None, string}, optional] None by default, implying byte order guessed from mat file. Otherwise can be
one of (‘native’, ‘=’, ‘little’, ‘<’, ‘BIG’, ‘>’)

mat_dtype
[{False, True} optional] If True, return arrays in same dtype as would be loaded into matlab (instead of
the dtype with which they are saved)

squeeze_me
[{False, True} optional] whether to squeeze unit matrix dimensions or not

chars_as_strings
[{True, False} optional] whether to convert char arrays to string arrays

matlab_compatible
[{False, True}] returns matrices as would be loaded by matlab (implies squeeze_me=False,
chars_as_strings=False, mat_dtype=True, struct_as_record=True)

struct_as_record
[{False, True} optional] Whether to load matlab structs as numpy record arrays, or as old-style numpy
arrays with dtype=object. Setting this flag to False replicates the behaviour of scipy version 0.6 (returning

3.6. Input and output (scipy.io) 143

SciPy Reference Guide, Release 0.7

numpy object arrays). The preferred setting is True, because it allows easier round-trip load and save of
matlab files. In a future version of scipy, we will change the default setting to True, and following versions
may remove this flag entirely. For now, we set the default to False, for backwards compatibility, but issue
a warning. Note that non-record arrays cannot be exported via savemat.

Notes

v4 (Level 1.0), v6 and v7 to 7.2 matfiles are supported.

You will need an HDF5 python library to read matlab 7.3 format mat files. Because scipy does not supply one,
we do not implement the HDF5 / 7.3 interface here.

savemat(file_name, mdict, appendmat=True, format=’5’, long_field_names=False)
Save a dictionary of names and arrays into the MATLAB-style .mat file.

This saves the arrayobjects in the given dictionary to a matlab style .mat file.

file_name
[{string, file-like object}] Name of the mat file (do not need .mat extension if appendmat==True) Can also
pass open file-like object

m_dict
[dict] dictionary from which to save matfile variables

appendmat
[{True, False} optional] True to append the .mat extension to the end of the given filename, if not already
present

format
[{‘5’, ‘4’} string, optional] ‘5’ for matlab 5 (up to matlab 7.2) ‘4’ for matlab 4 mat files

long_field_names
[boolean, optional, default=False]

False - maximum field name length in a structure is 31 characters
which is the documented maximum length

True - maximum field name length in a structure is 63 characters
which works for Matlab 7.6

3.6.2 Matrix Market files

mminfo (source) Queries the contents of the Matrix Market file ‘filename’ to extract size and
storage information.

mmread (source) Reads the contents of a Matrix Market file ‘filename’ into a matrix.

mmwrite (target, a[, com-
ment, field, ...])

Writes the sparse or dense matrix A to a Matrix Market formatted file.

mminfo(source)
Queries the contents of the Matrix Market file ‘filename’ to extract size and storage information.

Inputs:

source - Matrix Market filename (extension .mtx) or open file object

Outputs:

144 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

rows,cols - number of matrix rows and columns entries - number of non-zero entries of a sparse
matrix

or rows*cols for a dense matrix

format - ‘coordinate’ | ‘array’ field - ‘real’ | ‘complex’ | ‘pattern’ | ‘integer’ symm - ‘general’ |
‘symmetric’ | ‘skew-symmetric’ | ‘hermitian’

mmread(source)
Reads the contents of a Matrix Market file ‘filename’ into a matrix.

Inputs:

source - Matrix Market filename (extensions .mtx, .mtz.gz)
or open file object.

Outputs:

a - sparse or full matrix

mmwrite(target, a, comment=”, field=None, precision=None)
Writes the sparse or dense matrix A to a Matrix Market formatted file.

Inputs:

target - Matrix Market filename (extension .mtx) or open file object a - sparse or full matrix com-
ment - comments to be prepended to the Matrix Market file field - ‘real’ | ‘complex’ | ‘pattern’ |
‘integer’ precision - Number of digits to display for real or complex values.

3.6.3 Other

save_as_module ([file_name, data]) Save the dictionary “data” into a module and shelf named save

npfile (*args, **kwds) npfile is DEPRECATED!!

save_as_module(file_name=None, data=None)
Save the dictionary “data” into a module and shelf named save

npfile(*args, **kwds)
npfile is DEPRECATED!!

Class for reading and writing numpy arrays to/from files

Inputs:

file_name – The complete path name to the file to open
or an open file-like object

permission – Open the file with given permissions: (‘r’, ‘w’, ‘a’)
for reading, writing, or appending. This is the same as the mode argument in
the builtin open command.

format – The byte-ordering of the file:
([’native’, ‘n’], [’ieee-le’, ‘l’], [’ieee-be’, ‘B’]) for native, little-endian, or big-
endian respectively.

Attributes:
endian – default endian code for reading / writing order – default order for reading
writing (‘C’ or ‘F’) file – file object containing read / written data

3.6. Input and output (scipy.io) 145

SciPy Reference Guide, Release 0.7

Methods:
seek, tell, close – as for file objects rewind – set read position to beginning of file
read_raw – read string data from file (read method of file) write_raw – write string
data to file (write method of file) read_array – read numpy array from binary file
data write_array – write numpy array contents to binary file

Example use: >>> from StringIO import StringIO >>> import numpy as np >>> from
scipy.io import npfile >>> arr = np.arange(10).reshape(5,2) >>> # Make file-like ob-
ject (could also be file name) >>> my_file = StringIO() >>> npf = npfile(my_file)
>>> npf.write_array(arr) >>> npf.rewind() >>> npf.read_array((5,2), arr.dtype) >>>
npf.close() >>> # Or read write in Fortran order, Big endian >>> # and read back
in C, system endian >>> my_file = StringIO() >>> npf = npfile(my_file, order=’F’,
endian=’>’) >>> npf.write_array(arr) >>> npf.rewind() >>> npf.read_array((5,2),
arr.dtype)

You can achieve the same effect as using npfile, using ndarray.tofile and numpy.fromfile.

Even better you can use memory-mapped arrays and data-types to map out a file format for direct manipulation
in NumPy.

3.6.4 Wav sound files (scipy.io.wavfile)

read (file) Return the sample rate (in samples/sec) and data from a WAV file

write (filename, rate, data) Write a numpy array as a WAV file

read(file)
Return the sample rate (in samples/sec) and data from a WAV file

The file can be an open file or a filename. The returned sample rate is a Python integer The data is returned as a
numpy array with a

data-type determined from the file.

write(filename, rate, data)
Write a numpy array as a WAV file

filename – The name of the file to write (will be over-written) rate – The sample rate (in samples/sec). data – A
1-d or 2-d numpy array of integer data-type.

The bits-per-sample will be determined by the data-type To write multiple-channels, use a 2-d array
of shape (Nsamples, Nchannels)

Writes a simple uncompressed WAV file.

3.6.5 Arff files (scipy.io.arff)

Module to read arff files (weka format).

arff is a simple file format which support numerical, string and data values. It supports sparse data too.

See http://weka.sourceforge.net/wekadoc/index.php/en:ARFF_(3.4.6) for more details about arff format and available
datasets.

loadarff (filename) Read an arff file.

146 Chapter 3. Reference

http://weka.sourceforge.net/wekadoc/index.php/en:ARFF_(3.4.6)>>
>> endobj
2418 0 obj <<
/Type /Annot
/Border[0 0 0]/H/I/C[1 0 0]
/Rect [77.3798 89.4776 127.193 100.008]
/Subtype /Link
/A << /S /GoTo /D (scipy.io.arff.loadarff) >>
>> endobj
2410 0 obj <<
/D [2408 0 R /XYZ 72 744.9066 null]
>> endobj
2411 0 obj <<
/D [2408 0 R /XYZ 72 496.6829 null]
>> endobj
2414 0 obj <<
/D [2408 0 R /XYZ 72 413.3225 null]
>> endobj
2415 0 obj <<
/D [2408 0 R /XYZ 72 327.6988 null]
>> endobj
2416 0 obj <<
/D [2408 0 R /XYZ 72 196.5106 null]
>> endobj
2419 0 obj <<
/D [2408 0 R /XYZ 72 76.3169 null]
>> endobj
2407 0 obj <<
/Font << /F30 157 0 R /F40 176 0 R /F33 163 0 R /F54 230 0 R /F42 182 0 R /F57 254 0 R >>
/ProcSet [/PDF /Text]
>> endobj
2422 0 obj <<
/Length 1663
/Filter /FlateDecode
>>
stream
xڵXY��6�~��У����G��H�l��-�d�� ���P[�Jr��d개dS��R�x�of8C�a�#������,e��V8����+��o�|���r�zv�pd��TF7��

SciPy Reference Guide, Release 0.7

loadarff(filename)
Read an arff file.

Args

filename: str
the name of the file

Returns

data: record array
the data of the arff file. Each record corresponds to one attribute.

meta: MetaData
this contains informations about the arff file, like type and names of attributes, the relation
(name of the dataset), etc...

Note
This function should be able to read most arff files. Not implemented functionalities include:

• date type attributes
• string type attributes

It can read files with numeric and nominal attributes. It can read files with sparse data (? in
the file).

3.6.6 Netcdf (scipy.io.netcdf)

netcdf_file A NetCDF file parser.

netcdf_variable

class netcdf_file(file, mode)
A NetCDF file parser.

class netcdf_variable(fileno, nc_type, vsize, begin, shape, dimensions, attributes, isrec=False, recsize=0)

3.6. Input and output (scipy.io) 147

SciPy Reference Guide, Release 0.7

3.7 Linear algebra (scipy.linalg)

3.7.1 Basics

inv (a[, overwrite_a]) Compute the inverse of a matrix.

solve (a, b[, sym_pos, lower, ...]) Solve the equation a x = b for x

solve_banded ((l, u), ab, b[, overwrite_ab, over-
write_b, ...])

Solve the equation a x = b for x, assuming a is banded
matrix.

solveh_banded (ab, b[, overwrite_ab, over-
write_b, ...])

Solve equation a x = b. a is Hermitian positive-definite
banded matrix.

det (a[, overwrite_a]) Compute the determinant of a matrix

norm (x[, ord]) Matrix or vector norm.

lstsq (a, b[, cond, overwrite_a, ...]) Compute least-squares solution to equation :m:‘a x = b‘

pinv (a[, cond, rcond]) Compute the (Moore-Penrose) pseudo-inverse of a matrix.

pinv2 (a[, cond, rcond]) Compute the (Moore-Penrose) pseudo-inverse of a matrix.

inv(a, overwrite_a=0)
Compute the inverse of a matrix.

Parameters
a : array-like, shape (M, M)

Matrix to be inverted

Returns
ainv : array-like, shape (M, M)

Inverse of the matrix a

Raises LinAlgError if a is singular :

Examples

>>> a = array([[1., 2.], [3., 4.]])
>>> inv(a)
array([[-2. , 1.],

[1.5, -0.5]])
>>> dot(a, inv(a))
array([[1., 0.],

[0., 1.]])

solve(a, b, sym_pos=0, lower=0, overwrite_a=0, overwrite_b=0, debug=0)
Solve the equation a x = b for x

Parameters
a : array, shape (M, M)
b : array, shape (M,) or (M, N)
sym_pos : boolean

148 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

Assume a is symmetric and positive definite

lower : boolean

Use only data contained in the lower triangle of a, if sym_pos is true. Default is to
use upper triangle.

overwrite_a : boolean

Allow overwriting data in a (may enhance performance)

overwrite_b : boolean

Allow overwriting data in b (may enhance performance)

Returns
x : array, shape (M,) or (M, N) depending on b

Solution to the system a x = b

Raises LinAlgError if a is singular :

solve_banded((l, u), ab, b, overwrite_ab=0, overwrite_b=0, debug=0)
Solve the equation a x = b for x, assuming a is banded matrix.

The matrix a is stored in ab using the matrix diagonal orded form:

ab[u + i - j, j] == a[i,j]

Example of ab (shape of a is (6,6), u=1, l=2):

* a01 a12 a23 a34 a45
a00 a11 a22 a33 a44 a55
a10 a21 a32 a43 a54 *
a20 a31 a42 a53 * *

Parameters
(l, u) : (integer, integer)

Number of non-zero lower and upper diagonals

ab : array, shape (l+u+1, M)

Banded matrix

b : array, shape (M,) or (M, K)

Right-hand side

overwrite_ab : boolean

Discard data in ab (may enhance performance)

overwrite_b : boolean

Discard data in b (may enhance performance)

Returns
x : array, shape (M,) or (M, K)

The solution to the system a x = b

solveh_banded(ab, b, overwrite_ab=0, overwrite_b=0, lower=0)
Solve equation a x = b. a is Hermitian positive-definite banded matrix.

The matrix a is stored in ab either in lower diagonal or upper diagonal ordered form:

ab[u + i - j, j] == a[i,j] (if upper form; i <= j) ab[i - j, j] == a[i,j] (if lower form; i >= j)

Example of ab (shape of a is (6,6), u=2):

3.7. Linear algebra (scipy.linalg) 149

SciPy Reference Guide, Release 0.7

upper form:

* * a02 a13 a24 a35

* a01 a12 a23 a34 a45
a00 a11 a22 a33 a44 a55

lower form:
a00 a11 a22 a33 a44 a55
a10 a21 a32 a43 a54 *
a20 a31 a42 a53 * *

Cells marked with * are not used.

Parameters
ab : array, shape (M, u + 1)

Banded matrix

b : array, shape (M,) or (M, K)

Right-hand side

overwrite_ab : boolean

Discard data in ab (may enhance performance)

overwrite_b : boolean

Discard data in b (may enhance performance)

lower : boolean

Is the matrix in the lower form. (Default is upper form)

Returns
c : array, shape (M, u+1)

Cholesky factorization of a, in the same banded format as ab

x : array, shape (M,) or (M, K)

The solution to the system a x = b

det(a, overwrite_a=0)
Compute the determinant of a matrix

Parameters
a : array, shape (M, M)

Returns
det : float or complex

Determinant of a

Notes

The determinant is computed via LU factorization, LAPACK routine z/dgetrf.

norm(x, ord=None)
Matrix or vector norm.

Parameters
x : array, shape (M,) or (M, N)
ord : number, or {None, 1, -1, 2, -2, inf, -inf, ‘fro’}

150 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

Order of the norm:
ord norm for matrices norm for vectors
None Frobenius norm 2-norm
‘fro’ Frobenius norm –
inf max(sum(abs(x), axis=1)) max(abs(x))
-inf min(sum(abs(x), axis=1)) min(abs(x))
1 max(sum(abs(x), axis=0)) as below
-1 min(sum(abs(x), axis=0)) as below
2 2-norm (largest sing. value) as below
-2 smallest singular value as below
other – sum(abs(x)**ord)**(1./ord)

Returns
n : float

Norm of the matrix or vector

Notes

For values ord < 0, the result is, strictly speaking, not a mathematical ‘norm’, but it may still be useful for
numerical purposes.

lstsq(a, b, cond=None, overwrite_a=0, overwrite_b=0)
Compute least-squares solution to equation :m:‘a x = b‘
Compute a vector x such that the 2-norm :m:‘|b - a x|‘ is minimised.

Parameters
a : array, shape (M, N)
b : array, shape (M,) or (M, K)
cond : float

Cutoff for ‘small’ singular values; used to determine effective rank of a. Singular
values smaller than rcond*largest_singular_value are considered zero.

overwrite_a : boolean

Discard data in a (may enhance performance)

overwrite_b : boolean

Discard data in b (may enhance performance)

Returns
x : array, shape (N,) or (N, K) depending on shape of b

Least-squares solution

residues : array, shape () or (1,) or (K,)

Sums of residues, squared 2-norm for each column in :m:‘b - a x‘ If rank of matrix
a is < N or > M this is an empty array. If b was 1-d, this is an (1,) shape array,
otherwise the shape is (K,)

rank : integer

Effective rank of matrix a

s : array, shape (min(M,N),)

Singular values of a. The condition number of a is abs(s[0]/s[-1]).

Raises LinAlgError if computation does not converge :

pinv(a, cond=None, rcond=None)
Compute the (Moore-Penrose) pseudo-inverse of a matrix.

Calculate a generalized inverse of a matrix using a least-squares solver.

3.7. Linear algebra (scipy.linalg) 151

SciPy Reference Guide, Release 0.7

Parameters
a : array, shape (M, N)

Matrix to be pseudo-inverted

cond, rcond : float

Cutoff for ‘small’ singular values in the least-squares solver. Singular values smaller
than rcond*largest_singular_value are considered zero.

Returns
B : array, shape (N, M)
Raises LinAlgError if computation does not converge :

Examples

>>> from numpy import *
>>> a = random.randn(9, 6)
>>> B = linalg.pinv(a)
>>> allclose(a, dot(a, dot(B, a)))
True
>>> allclose(B, dot(B, dot(a, B)))
True

pinv2(a, cond=None, rcond=None)
Compute the (Moore-Penrose) pseudo-inverse of a matrix.

Calculate a generalized inverse of a matrix using its singular-value decomposition and including all ‘large’
singular values.

Parameters
a : array, shape (M, N)

Matrix to be pseudo-inverted

cond, rcond : float or None

Cutoff for ‘small’ singular values. Singular values smaller than
rcond*largest_singular_value are considered zero.
If None or -1, suitable machine precision is used.

Returns
B : array, shape (N, M)
Raises LinAlgError if SVD computation does not converge :

Examples

>>> from numpy import *
>>> a = random.randn(9, 6)
>>> B = linalg.pinv2(a)
>>> allclose(a, dot(a, dot(B, a)))
True
>>> allclose(B, dot(B, dot(a, B)))
True

152 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

3.7.2 Eigenvalues and Decompositions

eig (a[, b, left, right, ...]) Solve an ordinary or generalized eigenvalue problem of a square
matrix.

eigvals (a[, b, overwrite_a]) Compute eigenvalues from an ordinary or generalized eigenvalue
problem.

eigh (a[, b, lower, eigvals_only, ...]) Solve an ordinary or generalized eigenvalue problem for a complex
Hermitian or real symmetric matrix.

eigvalsh (a[, b, lower, over-
write_a, ...])

Solve an ordinary or generalized eigenvalue problem for a complex
Hermitian or real symmetric matrix.

eig_banded (a_band[, lower, eigvals_only, ...])Solve real symmetric or complex hermetian band matrix eigenvalue
problem.

eigvals_banded (a_band[, lower, over-
write_a_band, ...])

Solve real symmetric or complex hermitian band matrix eigenvalue
problem.

lu (a[, permute_l, overwrite_a]) Compute pivoted LU decompostion of a matrix.

lu_factor (a[, overwrite_a]) Compute pivoted LU decomposition of a matrix.

lu_solve ((lu, piv), b[, trans, over-
write_b])

Solve an equation system, a x = b, given the LU factorization of a

svd (a[, full_matrices, compute_uv, ...]) Singular Value Decomposition.

svdvals (a[, overwrite_a]) Compute singular values of a matrix.

diagsvd (s, M, N) Construct the sigma matrix in SVD from singular values and size
M,N.

orth (A) Construct an orthonormal basis for the range of A using SVD

cholesky (a[, lower, overwrite_a]) Compute the Cholesky decomposition of a matrix.

cholesky_banded (ab[, over-
write_ab, lower])

Cholesky decompose a banded Hermitian positive-definite matrix

cho_factor (a[, lower, overwrite_a]) Compute the Cholesky decomposition of a matrix, to use in cho_solve

cho_solve (clow, b) Solve a previously factored symmetric system of equations.

qr (a[, overwrite_a, lwork, ...]) Compute QR decomposition of a matrix.

schur (a[, output, lwork, overwrite_a]) Compute Schur decomposition of a matrix.

rsf2csf (T, Z) Convert real Schur form to complex Schur form.

hessenberg (a[, calc_q, overwrite_a]) Compute Hessenberg form of a matrix.

3.7. Linear algebra (scipy.linalg) 153

SciPy Reference Guide, Release 0.7

eig(a, b=None, left=False, right=True, overwrite_a=False, overwrite_b=False)
Solve an ordinary or generalized eigenvalue problem of a square matrix.

Find eigenvalues w and right or left eigenvectors of a general matrix:

a vr[:,i] = w[i] b vr[:,i]
a.H vl[:,i] = w[i].conj() b.H vl[:,i]

where .H is the Hermitean conjugation.

Parameters
a : array, shape (M, M)

A complex or real matrix whose eigenvalues and eigenvectors will be computed.

b : array, shape (M, M)

Right-hand side matrix in a generalized eigenvalue problem. If omitted, identity
matrix is assumed.

left : boolean

Whether to calculate and return left eigenvectors

right : boolean

Whether to calculate and return right eigenvectors

overwrite_a : boolean

Whether to overwrite data in a (may improve performance)

overwrite_b : boolean

Whether to overwrite data in b (may improve performance)

Returns
w : double or complex array, shape (M,)

The eigenvalues, each repeated according to its multiplicity.

(if left == True) :
vl : double or complex array, shape (M, M)

The normalized left eigenvector corresponding to the eigenvalue w[i] is the column
v[:,i].

(if right == True) :
vr : double or complex array, shape (M, M)

The normalized right eigenvector corresponding to the eigenvalue w[i] is the column
vr[:,i].

Raises LinAlgError if eigenvalue computation does not converge :

See Also:

eigh
eigenvalues and right eigenvectors for symmetric/Hermitian arrays

eigvals(a, b=None, overwrite_a=0)
Compute eigenvalues from an ordinary or generalized eigenvalue problem.

Find eigenvalues of a general matrix:

a vr[:,i] = w[i] b vr[:,i]

154 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

Parameters
a : array, shape (M, M)

A complex or real matrix whose eigenvalues and eigenvectors will be computed.

b : array, shape (M, M)

Right-hand side matrix in a generalized eigenvalue problem. If omitted, identity
matrix is assumed.

overwrite_a : boolean

Whether to overwrite data in a (may improve performance)

Returns
w : double or complex array, shape (M,)

The eigenvalues, each repeated according to its multiplicity, but not in any specific
order.

Raises LinAlgError if eigenvalue computation does not converge :

See Also:

eigvalsh
eigenvalues of symmetric or Hemitiean arrays

eig
eigenvalues and right eigenvectors of general arrays

eigh
eigenvalues and eigenvectors of symmetric/Hermitean arrays.

eigh(a, b=None, lower=True, eigvals_only=False, overwrite_a=False, overwrite_b=False, turbo=True,
eigvals=None, type=1)

Solve an ordinary or generalized eigenvalue problem for a complex Hermitian or real symmetric matrix.

Find eigenvalues w and optionally eigenvectors v of matrix a, where b is positive definite:

a v[:,i] = w[i] b v[:,i]
v[i,:].conj() a v[:,i] = w[i]
v[i,:].conj() b v[:,i] = 1

Parameters
a : array, shape (M, M)

A complex Hermitian or real symmetric matrix whose eigenvalues and eigenvectors
will be computed.

b : array, shape (M, M)

A complex Hermitian or real symmetric definite positive matrix in. If omitted, iden-
tity matrix is assumed.

lower : boolean

Whether the pertinent array data is taken from the lower or upper triangle of a. (De-
fault: lower)

eigvals_only : boolean

Whether to calculate only eigenvalues and no eigenvectors. (Default: both are cal-
culated)

turbo : boolean

3.7. Linear algebra (scipy.linalg) 155

SciPy Reference Guide, Release 0.7

Use divide and conquer algorithm (faster but expensive in memory, only for gener-
alized eigenvalue problem and if eigvals=None)

eigvals : tuple (lo, hi)

Indexes of the smallest and largest (in ascending order) eigenvalues and correspond-
ing eigenvectors to be returned: 0 <= lo < hi <= M-1. If omitted, all eigenvalues and
eigenvectors are returned.

type: integer :

Specifies the problem type to be solved:
type = 1: a v[:,i] = w[i] b v[:,i] type = 2: a b v[:,i] = w[i] v[:,i] type = 3: b a v[:,i]
= w[i] v[:,i]

overwrite_a : boolean

Whether to overwrite data in a (may improve performance)

overwrite_b : boolean

Whether to overwrite data in b (may improve performance)

Returns
w : real array, shape (N,)

The N (1<=N<=M) selected eigenvalues, in ascending order, each repeated accord-
ing to its multiplicity.

(if eigvals_only == False) :
v : complex array, shape (M, N)

The normalized selected eigenvector corresponding to the eigenvalue w[i] is the col-
umn v[:,i]. Normalization: type 1 and 3: v.conj() a v = w type 2: inv(v).conj() a
inv(v) = w type = 1 or 2: v.conj() b v = I type = 3 : v.conj() inv(b) v = I

Raises LinAlgError if eigenvalue computation does not converge, :
an error occurred, or b matrix is not definite positive. Note that :
if input matrices are not symmetric or hermitian, no error is reported :
but results will be wrong. :

See Also:

eig
eigenvalues and right eigenvectors for non-symmetric arrays

eigvalsh(a, b=None, lower=True, overwrite_a=False, overwrite_b=False, turbo=True, eigvals=None, type=1)
Solve an ordinary or generalized eigenvalue problem for a complex Hermitian or real symmetric matrix.

Find eigenvalues w of matrix a, where b is positive definite:

a v[:,i] = w[i] b v[:,i]
v[i,:].conj() a v[:,i] = w[i]
v[i,:].conj() b v[:,i] = 1

Parameters
a : array, shape (M, M)

A complex Hermitian or real symmetric matrix whose eigenvalues and eigenvectors
will be computed.

b : array, shape (M, M)

156 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

A complex Hermitian or real symmetric definite positive matrix in. If omitted, iden-
tity matrix is assumed.

lower : boolean

Whether the pertinent array data is taken from the lower or upper triangle of a. (De-
fault: lower)

turbo : boolean

Use divide and conquer algorithm (faster but expensive in memory, only for gener-
alized eigenvalue problem and if eigvals=None)

eigvals : tuple (lo, hi)

Indexes of the smallest and largest (in ascending order) eigenvalues and correspond-
ing eigenvectors to be returned: 0 <= lo < hi <= M-1. If omitted, all eigenvalues and
eigenvectors are returned.

type: integer :

Specifies the problem type to be solved:
type = 1: a v[:,i] = w[i] b v[:,i] type = 2: a b v[:,i] = w[i] v[:,i] type = 3: b a v[:,i]
= w[i] v[:,i]

overwrite_a : boolean

Whether to overwrite data in a (may improve performance)

overwrite_b : boolean

Whether to overwrite data in b (may improve performance)

Returns
w : real array, shape (N,)

The N (1<=N<=M) selected eigenvalues, in ascending order, each repeated accord-
ing to its multiplicity.

Raises LinAlgError if eigenvalue computation does not converge, :
an error occurred, or b matrix is not definite positive. Note that :
if input matrices are not symmetric or hermitian, no error is reported :
but results will be wrong. :

See Also:

eigvals
eigenvalues of general arrays

eigh
eigenvalues and right eigenvectors for symmetric/Hermitian arrays

eig
eigenvalues and right eigenvectors for non-symmetric arrays

eig_banded(a_band, lower=0, eigvals_only=0, overwrite_a_band=0, select=’a’, select_range=None,
max_ev=0)

Solve real symmetric or complex hermetian band matrix eigenvalue problem.

Find eigenvalues w and optionally right eigenvectors v of a:

a v[:,i] = w[i] v[:,i]
v.H v = identity

3.7. Linear algebra (scipy.linalg) 157

SciPy Reference Guide, Release 0.7

The matrix a is stored in ab either in lower diagonal or upper diagonal ordered form:

ab[u + i - j, j] == a[i,j] (if upper form; i <= j) ab[i - j, j] == a[i,j] (if lower form; i >= j)

Example of ab (shape of a is (6,6), u=2):

upper form:

* * a02 a13 a24 a35

* a01 a12 a23 a34 a45
a00 a11 a22 a33 a44 a55

lower form:
a00 a11 a22 a33 a44 a55
a10 a21 a32 a43 a54 *
a20 a31 a42 a53 * *

Cells marked with * are not used.

Parameters
a_band : array, shape (M, u+1)

Banded matrix whose eigenvalues to calculate

lower : boolean

Is the matrix in the lower form. (Default is upper form)

eigvals_only : boolean

Compute only the eigenvalues and no eigenvectors. (Default: calculate also eigen-
vectors)

overwrite_a_band: :

Discard data in a_band (may enhance performance)

select: {‘a’, ‘v’, ‘i’} :

Which eigenvalues to calculate
select calculated
‘a’ All eigenvalues
‘v’ Eigenvalues in the interval (min, max]
‘i’ Eigenvalues with indices min <= i <= max

select_range : (min, max)

Range of selected eigenvalues

max_ev : integer

For select==’v’, maximum number of eigenvalues expected. For other values of
select, has no meaning.
In doubt, leave this parameter untouched.

Returns
w : array, shape (M,)

The eigenvalues, in ascending order, each repeated according to its multiplicity.

v : double or complex double array, shape (M, M)

The normalized eigenvector corresponding to the eigenvalue w[i] is the column v[:,i].

Raises LinAlgError if eigenvalue computation does not converge :

eigvals_banded(a_band, lower=0, overwrite_a_band=0, select=’a’, select_range=None)
Solve real symmetric or complex hermitian band matrix eigenvalue problem.

Find eigenvalues w of a:

158 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

a v[:,i] = w[i] v[:,i]
v.H v = identity

The matrix a is stored in ab either in lower diagonal or upper diagonal ordered form:

ab[u + i - j, j] == a[i,j] (if upper form; i <= j) ab[i - j, j] == a[i,j] (if lower form; i >= j)

Example of ab (shape of a is (6,6), u=2):

upper form:

* * a02 a13 a24 a35

* a01 a12 a23 a34 a45
a00 a11 a22 a33 a44 a55

lower form:
a00 a11 a22 a33 a44 a55
a10 a21 a32 a43 a54 *
a20 a31 a42 a53 * *

Cells marked with * are not used.

Parameters
a_band : array, shape (M, u+1)

Banded matrix whose eigenvalues to calculate

lower : boolean

Is the matrix in the lower form. (Default is upper form)

overwrite_a_band: :

Discard data in a_band (may enhance performance)

select: {‘a’, ‘v’, ‘i’} :

Which eigenvalues to calculate
select calculated
‘a’ All eigenvalues
‘v’ Eigenvalues in the interval (min, max]
‘i’ Eigenvalues with indices min <= i <= max

select_range : (min, max)

Range of selected eigenvalues

Returns
w : array, shape (M,)

The eigenvalues, in ascending order, each repeated according to its multiplicity.

Raises LinAlgError if eigenvalue computation does not converge :

See Also:

eig_banded
eigenvalues and right eigenvectors for symmetric/Hermitian band matrices

eigvals
eigenvalues of general arrays

eigh
eigenvalues and right eigenvectors for symmetric/Hermitian arrays

3.7. Linear algebra (scipy.linalg) 159

SciPy Reference Guide, Release 0.7

eig
eigenvalues and right eigenvectors for non-symmetric arrays

lu(a, permute_l=0, overwrite_a=0)
Compute pivoted LU decompostion of a matrix.

The decomposition is:

A = P L U

where P is a permutation matrix, L lower triangular with unit diagonal elements, and U upper triangular.

Parameters
a : array, shape (M, N)

Array to decompose

permute_l : boolean

Perform the multiplication P*L (Default: do not permute)

overwrite_a : boolean

Whether to overwrite data in a (may improve performance)

Returns
(If permute_l == False) :
p : array, shape (M, M)

Permutation matrix

l : array, shape (M, K)

Lower triangular or trapezoidal matrix with unit diagonal. K = min(M, N)

u : array, shape (K, N)

Upper triangular or trapezoidal matrix

(If permute_l == True) :
pl : array, shape (M, K)

Permuted L matrix. K = min(M, N)

u : array, shape (K, N)

Upper triangular or trapezoidal matrix

Notes

This is a LU factorization routine written for Scipy.

lu_factor(a, overwrite_a=0)
Compute pivoted LU decomposition of a matrix.

The decomposition is:

A = P L U

where P is a permutation matrix, L lower triangular with unit diagonal elements, and U upper triangular.

Parameters
a : array, shape (M, M)

Matrix to decompose

overwrite_a : boolean

Whether to overwrite data in A (may increase performance)

160 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

Returns
lu : array, shape (N, N)

Matrix containing U in its upper triangle, and L in its lower triangle. The unit diag-
onal elements of L are not stored.

piv : array, shape (N,)

Pivot indices representing the permutation matrix P: row i of matrix was inter-
changed with row piv[i].

See Also:

lu_solve
solve an equation system using the LU factorization of a matrix

Notes

This is a wrapper to the *GETRF routines from LAPACK.

lu_solve((lu, piv), b, trans=0, overwrite_b=0)
Solve an equation system, a x = b, given the LU factorization of a

Parameters
(lu, piv) :

Factorization of the coefficient matrix a, as given by lu_factor

b : array

Right-hand side

trans : {0, 1, 2}

Type of system to solve:
trans system
0 a x = b
1 a^T x = b
2 a^H x = b

Returns
x : array

Solution to the system

See Also:

lu_factor
LU factorize a matrix

svd(a, full_matrices=1, compute_uv=1, overwrite_a=0)
Singular Value Decomposition.

Factorizes the matrix a into two unitary matrices U and Vh and an 1d-array s of singular values (real, non-
negative) such that a == U S Vh if S is an suitably shaped matrix of zeros whose main diagonal is s.

Parameters
a : array, shape (M, N)

Matrix to decompose

full_matrices : boolean

3.7. Linear algebra (scipy.linalg) 161

SciPy Reference Guide, Release 0.7

If true, U, Vh are shaped (M,M), (N,N) If false, the shapes are (M,K), (K,N) where
K = min(M,N)

compute_uv : boolean

Whether to compute also U, Vh in addition to s (Default: true)

overwrite_a : boolean

Whether data in a is overwritten (may improve performance)

Returns
U: array, shape (M,M) or (M,K) depending on full_matrices :
s: array, shape (K,) :

The singular values, sorted so that s[i] >= s[i+1]. K = min(M, N)

Vh: array, shape (N,N) or (K,N) depending on full_matrices :
For compute_uv = False, only s is returned. :
Raises LinAlgError if SVD computation does not converge :

See Also:

svdvals
return singular values of a matrix

diagsvd
return the Sigma matrix, given the vector s

Examples

>>> from scipy import random, linalg, allclose, dot
>>> a = random.randn(9, 6) + 1j*random.randn(9, 6)
>>> U, s, Vh = linalg.svd(a)
>>> U.shape, Vh.shape, s.shape
((9, 9), (6, 6), (6,))

>>> U, s, Vh = linalg.svd(a, full_matrices=False)
>>> U.shape, Vh.shape, s.shape
((9, 6), (6, 6), (6,))
>>> S = linalg.diagsvd(s, 6, 6)
>>> allclose(a, dot(U, dot(S, Vh)))
True

>>> s2 = linalg.svd(a, compute_uv=False)
>>> allclose(s, s2)
True

svdvals(a, overwrite_a=0)
Compute singular values of a matrix.

Parameters
a : array, shape (M, N)

Matrix to decompose

overwrite_a : boolean

Whether data in a is overwritten (may improve performance)

162 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

Returns
s: array, shape (K,) :

The singular values, sorted so that s[i] >= s[i+1]. K = min(M, N)

Raises LinAlgError if SVD computation does not converge :

See Also:

svd
return the full singular value decomposition of a matrix

diagsvd
return the Sigma matrix, given the vector s

diagsvd(s, M, N)
Construct the sigma matrix in SVD from singular values and size M,N.

Parameters
s : array, shape (M,) or (N,)

Singular values

M : integer
N : integer

Size of the matrix whose singular values are s

Returns
S : array, shape (M, N)

The S-matrix in the singular value decomposition

orth(A)
Construct an orthonormal basis for the range of A using SVD

Parameters
A : array, shape (M, N)

Returns
Q : array, shape (M, K)

Orthonormal basis for the range of A. K = effective rank of A, as determined by
automatic cutoff

See Also:

svd
Singular value decomposition of a matrix

cholesky(a, lower=0, overwrite_a=0)
Compute the Cholesky decomposition of a matrix.

Returns the Cholesky decomposition, :lm:‘A = L L^*‘ or :lm:‘A = U^* U‘ of a Hermitian positive-definite
matrix :lm:‘A‘.

Parameters
a : array, shape (M, M)

Matrix to be decomposed

3.7. Linear algebra (scipy.linalg) 163

SciPy Reference Guide, Release 0.7

lower : boolean

Whether to compute the upper or lower triangular Cholesky factorization (Default:
upper-triangular)

overwrite_a : boolean

Whether to overwrite data in a (may improve performance)

Returns
B : array, shape (M, M)

Upper- or lower-triangular Cholesky factor of A

Raises LinAlgError if decomposition fails :

Examples

>>> from scipy import array, linalg, dot
>>> a = array([[1,-2j],[2j,5]])
>>> L = linalg.cholesky(a, lower=True)
>>> L
array([[1.+0.j, 0.+0.j],

[0.+2.j, 1.+0.j]])
>>> dot(L, L.T.conj())
array([[1.+0.j, 0.-2.j],

[0.+2.j, 5.+0.j]])

cholesky_banded(ab, overwrite_ab=0, lower=0)
Cholesky decompose a banded Hermitian positive-definite matrix

The matrix a is stored in ab either in lower diagonal or upper diagonal ordered form:

ab[u + i - j, j] == a[i,j] (if upper form; i <= j) ab[i - j, j] == a[i,j] (if lower form; i >= j)

Example of ab (shape of a is (6,6), u=2):

upper form:

* * a02 a13 a24 a35

* a01 a12 a23 a34 a45
a00 a11 a22 a33 a44 a55

lower form:
a00 a11 a22 a33 a44 a55
a10 a21 a32 a43 a54 *
a20 a31 a42 a53 * *

Parameters
ab : array, shape (M, u + 1)

Banded matrix

overwrite_ab : boolean

Discard data in ab (may enhance performance)

lower : boolean

Is the matrix in the lower form. (Default is upper form)

Returns
c : array, shape (M, u+1)

Cholesky factorization of a, in the same banded format as ab

164 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

cho_factor(a, lower=0, overwrite_a=0)
Compute the Cholesky decomposition of a matrix, to use in cho_solve

Returns a matrix containing the Cholesky decomposition, A = L L* or A = U* U of a Hermitian positive-
definite matrix a. The return value can be directly used as the first parameter to cho_solve.

Warning: The returned matrix also contains random data in the entries not used by the Cholesky decom-
position. If you need to zero these entries, use the function cholesky instead.

Parameters
a : array, shape (M, M)

Matrix to be decomposed

lower : boolean

Whether to compute the upper or lower triangular Cholesky factorization (Default:
upper-triangular)

overwrite_a : boolean

Whether to overwrite data in a (may improve performance)

Returns
c : array, shape (M, M)

Matrix whose upper or lower triangle contains the Cholesky factor of a. Other parts
of the matrix contain random data.

lower : boolean

Flag indicating whether the factor is in the lower or upper triangle

Raises
LinAlgError :

Raised if decomposition fails.

cho_solve(clow, b)
Solve a previously factored symmetric system of equations.

The equation system is

A x = b, A = U^H U = L L^H

and A is real symmetric or complex Hermitian.

Parameters
clow : tuple (c, lower)

Cholesky factor and a flag indicating whether it is lower triangular. The return value
from cho_factor can be used.

b : array

Right-hand side of the equation system

First input is a tuple (LorU, lower) which is the output to cho_factor. :
Second input is the right-hand side. :

Returns
x : array

Solution to the equation system

qr(a, overwrite_a=0, lwork=None, econ=None, mode=’qr’)
Compute QR decomposition of a matrix.

Calculate the decomposition :lm:‘A = Q R‘ where Q is unitary/orthogonal and R upper triangular.

3.7. Linear algebra (scipy.linalg) 165

SciPy Reference Guide, Release 0.7

Parameters
a : array, shape (M, N)

Matrix to be decomposed

overwrite_a : boolean

Whether data in a is overwritten (may improve performance)

lwork : integer

Work array size, lwork >= a.shape[1]. If None or -1, an optimal size is computed.

econ : boolean

Whether to compute the economy-size QR decomposition, making shapes of Q and
R (M, K) and (K, N) instead of (M,M) and (M,N). K=min(M,N). Default is False.

mode : {‘qr’, ‘r’}

Determines what information is to be returned: either both Q and R or only R.

Returns
(if mode == ‘qr’) :
Q : double or complex array, shape (M, M) or (M, K) for econ==True
(for any mode) :
R : double or complex array, shape (M, N) or (K, N) for econ==True

Size K = min(M, N)

Raises LinAlgError if decomposition fails :

Notes

This is an interface to the LAPACK routines dgeqrf, zgeqrf, dorgqr, and zungqr.

Examples

>>> from scipy import random, linalg, dot
>>> a = random.randn(9, 6)
>>> q, r = linalg.qr(a)
>>> allclose(a, dot(q, r))
True
>>> q.shape, r.shape
((9, 9), (9, 6))

>>> r2 = linalg.qr(a, mode=’r’)
>>> allclose(r, r2)

>>> q3, r3 = linalg.qr(a, econ=True)
>>> q3.shape, r3.shape
((9, 6), (6, 6))

schur(a, output=’real’, lwork=None, overwrite_a=0)
Compute Schur decomposition of a matrix.

The Schur decomposition is

A = Z T Z^H

where Z is unitary and T is either upper-triangular, or for real Schur decomposition (output=’real’), quasi-upper
triangular. In the quasi-triangular form, 2x2 blocks describing complex-valued eigenvalue pairs may extrude
from the diagonal.

166 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

Parameters
a : array, shape (M, M)

Matrix to decompose

output : {‘real’, ‘complex’}

Construct the real or complex Schur decomposition (for real matrices).

lwork : integer

Work array size. If None or -1, it is automatically computed.

overwrite_a : boolean

Whether to overwrite data in a (may improve performance)

Returns
T : array, shape (M, M)

Schur form of A. It is real-valued for the real Schur decomposition.

Z : array, shape (M, M)

An unitary Schur transformation matrix for A. It is real-valued for the real Schur
decomposition.

See Also:

rsf2csf
Convert real Schur form to complex Schur form

rsf2csf(T, Z)
Convert real Schur form to complex Schur form.

Convert a quasi-diagonal real-valued Schur form to the upper triangular complex-valued Schur form.

Parameters
T : array, shape (M, M)

Real Schur form of the original matrix

Z : array, shape (M, M)

Schur transformation matrix

Returns
T : array, shape (M, M)

Complex Schur form of the original matrix

Z : array, shape (M, M)

Schur transformation matrix corresponding to the complex form

See Also:

schur
Schur decompose a matrix

hessenberg(a, calc_q=0, overwrite_a=0)
Compute Hessenberg form of a matrix.

The Hessenberg decomposition is

A = Q H Q^H

3.7. Linear algebra (scipy.linalg) 167

SciPy Reference Guide, Release 0.7

where Q is unitary/orthogonal and H has only zero elements below the first subdiagonal.

Parameters
a : array, shape (M,M)

Matrix to bring into Hessenberg form

calc_q : boolean

Whether to compute the transformation matrix

overwrite_a : boolean

Whether to ovewrite data in a (may improve performance)

Returns
H : array, shape (M,M)

Hessenberg form of A

(If calc_q == True) :
Q : array, shape (M,M)

Unitary/orthogonal similarity transformation matrix s.t. A = Q H Q^H

3.7.3 Matrix Functions

expm (A[, q]) Compute the matrix exponential using Pade approximation.

expm2 (A) Compute the matrix exponential using eigenvalue decomposition.

expm3 (A[, q]) Compute the matrix exponential using Taylor series.

logm (A[, disp]) Compute matrix logarithm.

cosm (A) Compute the matrix cosine.

sinm (A) Compute the matrix sine.

tanm (A) Compute the matrix tangent.

coshm (A) Compute the hyperbolic matrix cosine.

sinhm (A) Compute the hyperbolic matrix sine.

tanhm (A) Compute the hyperbolic matrix tangent.

signm (a[, disp]) Matrix sign function.

sqrtm (A[, disp]) Matrix square root.

funm (A, func[, disp]) Evaluate a matrix function specified by a callable.

expm(A, q=7)
Compute the matrix exponential using Pade approximation.

Parameters
A : array, shape(M,M)

Matrix to be exponentiated

168 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

q : integer

Order of the Pade approximation

Returns
expA : array, shape(M,M)

Matrix exponential of A

expm2(A)
Compute the matrix exponential using eigenvalue decomposition.

Parameters
A : array, shape(M,M)

Matrix to be exponentiated

Returns
expA : array, shape(M,M)

Matrix exponential of A

expm3(A, q=20)
Compute the matrix exponential using Taylor series.

Parameters
A : array, shape(M,M)

Matrix to be exponentiated

q : integer

Order of the Taylor series

Returns
expA : array, shape(M,M)

Matrix exponential of A

logm(A, disp=1)
Compute matrix logarithm.

The matrix logarithm is the inverse of expm: expm(logm(A)) == A

Parameters
A : array, shape(M,M)

Matrix whose logarithm to evaluate

disp : boolean

Print warning if error in the result is estimated large instead of returning estimated
error. (Default: True)

Returns
logA : array, shape(M,M)

Matrix logarithm of A

(if disp == False) :
errest : float

1-norm of the estimated error, ||err||_1 / ||A||_1

cosm(A)
Compute the matrix cosine.

This routine uses expm to compute the matrix exponentials.

3.7. Linear algebra (scipy.linalg) 169

SciPy Reference Guide, Release 0.7

Parameters
A : array, shape(M,M)

Returns
cosA : array, shape(M,M)

Matrix cosine of A

sinm(A)
Compute the matrix sine.

This routine uses expm to compute the matrix exponentials.

Parameters
A : array, shape(M,M)

Returns
sinA : array, shape(M,M)

Matrix cosine of A

tanm(A)
Compute the matrix tangent.

This routine uses expm to compute the matrix exponentials.

Parameters
A : array, shape(M,M)

Returns
tanA : array, shape(M,M)

Matrix tangent of A

coshm(A)
Compute the hyperbolic matrix cosine.

This routine uses expm to compute the matrix exponentials.

Parameters
A : array, shape(M,M)

Returns
coshA : array, shape(M,M)

Hyperbolic matrix cosine of A

sinhm(A)
Compute the hyperbolic matrix sine.

This routine uses expm to compute the matrix exponentials.

Parameters
A : array, shape(M,M)

Returns
sinhA : array, shape(M,M)

Hyperbolic matrix sine of A

tanhm(A)
Compute the hyperbolic matrix tangent.

This routine uses expm to compute the matrix exponentials.

170 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

Parameters
A : array, shape(M,M)

Returns
tanhA : array, shape(M,M)

Hyperbolic matrix tangent of A

signm(a, disp=1)
Matrix sign function.

Extension of the scalar sign(x) to matrices.

Parameters
A : array, shape(M,M)

Matrix at which to evaluate the sign function

disp : boolean

Print warning if error in the result is estimated large instead of returning estimated
error. (Default: True)

Returns
sgnA : array, shape(M,M)

Value of the sign function at A

(if disp == False) :
errest : float

1-norm of the estimated error, ||err||_1 / ||A||_1

Examples

>>> from scipy.linalg import signm, eigvals
>>> a = [[1,2,3], [1,2,1], [1,1,1]]
>>> eigvals(a)
array([4.12488542+0.j, -0.76155718+0.j, 0.63667176+0.j])
>>> eigvals(signm(a))
array([-1.+0.j, 1.+0.j, 1.+0.j])

sqrtm(A, disp=1)
Matrix square root.

Parameters
A : array, shape(M,M)

Matrix whose square root to evaluate

disp : boolean

Print warning if error in the result is estimated large instead of returning estimated
error. (Default: True)

Returns
sgnA : array, shape(M,M)

Value of the sign function at A

(if disp == False) :
errest : float

Frobenius norm of the estimated error, ||err||_F / ||A||_F

3.7. Linear algebra (scipy.linalg) 171

SciPy Reference Guide, Release 0.7

Notes

Uses algorithm by Nicholas J. Higham

funm(A, func, disp=1)
Evaluate a matrix function specified by a callable.

Returns the value of matrix-valued function f at A. The function f is an extension of the scalar-valued function
func to matrices.

Parameters
A : array, shape(M,M)

Matrix at which to evaluate the function

func : callable

Callable object that evaluates a scalar function f. Must be vectorized (eg. using
vectorize).

disp : boolean

Print warning if error in the result is estimated large instead of returning estimated
error. (Default: True)

Returns
fA : array, shape(M,M)

Value of the matrix function specified by func evaluated at A

(if disp == False) :
errest : float

1-norm of the estimated error, ||err||_1 / ||A||_1

3.7.4 Iterative linear systems solutions

cg (*args, **kwds) scipy.linalg.cg is DEPRECATED!! – use scipy.sparse.linalg.cg instead

cgs (*args, **kwds) scipy.linalg.cgs is DEPRECATED!! – use scipy.sparse.linalg.cgs instead

qmr (*args, **kwds) scipy.linalg.qmr is DEPRECATED!! – use scipy.sparse.linalg.qmr instead

gmres (*args, **kwds) scipy.linalg.gmres is DEPRECATED!! – use scipy.sparse.linalg.gmres instead

bicg (*args, **kwds) scipy.linalg.bicg is DEPRECATED!! – use scipy.sparse.linalg.bicg instead

bicgstab (*args, **kwds) scipy.linalg.bicgstab is DEPRECATED!! – use scipy.sparse.linalg.bicgstab instead

cg(*args, **kwds)
scipy.linalg.cg is DEPRECATED!! – use scipy.sparse.linalg.cg instead

Use Conjugate Gradient iteration to solve A x = b

Parameters
A : {sparse matrix, dense matrix, LinearOperator}

The N-by-N matrix of the linear system.

b : {array, matrix}

Right hand side of the linear system. Has shape (N,) or (N,1).

172 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

cgs(*args, **kwds)
scipy.linalg.cgs is DEPRECATED!! – use scipy.sparse.linalg.cgs instead

Use Conjugate Gradient Squared iteration to solve A x = b

Parameters
A : {sparse matrix, dense matrix, LinearOperator}

The N-by-N matrix of the linear system.

b : {array, matrix}

Right hand side of the linear system. Has shape (N,) or (N,1).

qmr(*args, **kwds)
scipy.linalg.qmr is DEPRECATED!! – use scipy.sparse.linalg.qmr instead

Use Quasi-Minimal Residual iteration to solve A x = b

Parameters
A : {sparse matrix, dense matrix, LinearOperator}

The N-by-N matrix of the linear system.
b

[{array, matrix}] Right hand side of the linear system. Has shape (N,) or (N,1).

gmres(*args, **kwds)
scipy.linalg.gmres is DEPRECATED!! – use scipy.sparse.linalg.gmres instead

Use Generalized Minimal RESidual iteration to solve A x = b

Parameters
A : {sparse matrix, dense matrix, LinearOperator}

The N-by-N matrix of the linear system.
b

[{array, matrix}] Right hand side of the linear system. Has shape (N,) or (N,1).

bicg(*args, **kwds)
scipy.linalg.bicg is DEPRECATED!! – use scipy.sparse.linalg.bicg instead

Use BIConjugate Gradient iteration to solve A x = b

Parameters
A : {sparse matrix, dense matrix, LinearOperator}

The N-by-N matrix of the linear system.

b : {array, matrix}

Right hand side of the linear system. Has shape (N,) or (N,1).

bicgstab(*args, **kwds)
scipy.linalg.bicgstab is DEPRECATED!! – use scipy.sparse.linalg.bicgstab instead

Use BIConjugate Gradient STABilized iteration to solve A x = b

Parameters
A : {sparse matrix, dense matrix, LinearOperator}

The N-by-N matrix of the linear system.

b : {array, matrix}

Right hand side of the linear system. Has shape (N,) or (N,1).

3.7. Linear algebra (scipy.linalg) 173

SciPy Reference Guide, Release 0.7

3.8 Maximum entropy models (scipy.maxentropy)

3.8.1 Routines for fitting maximum entropy models

Contains two classes for fitting maximum entropy models subject to linear constraints on the expectations of arbitrary
feature statistics. One class, “model”, is for small discrete sample spaces, using explicit summation. The other,
“bigmodel”, is for sample spaces that are either continuous (and perhaps high-dimensional) or discrete but too large to
sum over, and uses importance sampling. conditional Monte Carlo methods.

The maximum entropy model has exponential form

p(x) = exp(theta^T . f_vec(x)) / Z(theta).

with a real parameter vector theta of the same length as the feature statistic f_vec. For more background, see, for
example, Cover and Thomas (1991), Elements of Information Theory.

See the file bergerexample.py for a walk-through of how to use these routines when the sample space is small enough
to be enumerated.

See bergerexamplesimulated.py for a a similar walk-through using simulation.

Copyright: Ed Schofield, 2003-2006 License: BSD-style (see LICENSE.txt in main source directory)

3.8.2 Models

class model(f=None, samplespace=None)
A maximum-entropy (exponential-form) model on a discrete sample space.

174 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

model.beginlogging (self, file-
name[, freq])

Enable logging params for each fn evaluation to files named
‘filename.freq.pickle’, ‘filename.(2*freq).pickle’, ... each ‘freq’ iterations.

model.endlogging (self) Stop logging param values whenever setparams() is called.

model.clearcache (self) Clears the interim results of computations depending on the parameters and the
sample.

model.crossentropy (self, fx[, log_prior_x, base])Returns the cross entropy H(q, p) of the empirical distribution q of the data
(with the given feature matrix fx) with respect to the model p. For discrete
distributions this is defined as:

model.dual (self[, params, ig-
norepenalty, ...])

Computes the Lagrangian dual L(theta) of the entropy of the model, for the
given vector theta=params. Minimizing this function (without constraints)
should fit the maximum entropy model subject to the given constraints. These
constraints are specified as the desired (target) values self.K for the
expectations of the feature statistic.

model.fit (self, K[, algo-
rithm])

Fit the maxent model p whose feature expectations are given by the vector K.

model.grad (self[, params, ig-
norepenalty])

Computes or estimates the gradient of the entropy dual.

model.log (self, params) This method is called every iteration during the optimization process. It calls
the user-supplied callback function (if any), logs the evolution of the entropy
dual and gradient norm, and checks whether the process appears to be
diverging, which would indicate inconsistent constraints (or, for bigmodel
instances, too large a variance in the estimates).

model.logparams (self) Saves the model parameters if logging has been enabled and the # of iterations
since the last save has reached self.paramslogfreq.

model.normconst (self) Returns the normalization constant, or partition function, for the current model.
Warning – this may be too large to represent; if so, this will result in numerical
overflow. In this case use lognormconst() instead.

model.reset (self[, numfea-
tures])

Resets the parameters self.params to zero, clearing the cache variables
dependent on them. Also resets the number of function and gradient
evaluations to zero.

model.setcallback (self[, call-
back, callback_dual, ...])

Sets callback functions to be called every iteration, every function evaluation,
or every gradient evaluation. All callback functions are passed one argument,
the current model object.

model.setparams (self, params)Set the parameter vector to params, replacing the existing parameters. params
must be a list or numpy array of the same length as the model’s feature vector f.

model.setsmooth (sigma) Speficies that the entropy dual and gradient should be computed with a
quadratic penalty term on magnitude of the parameters. This ‘smooths’ the
model to account for noise in the target expectation values or to improve
robustness when using simulation to fit models and when the sampling
distribution has high variance. The smoothing mechanism is described in Chen
and Rosenfeld, ‘A Gaussian prior for smoothing maximum entropy models’
(1999).

model.expectations (self) The vector E_p[f(X)] under the model p_params of the vector of feature
functions f_i over the sample space.

model.lognormconst (self) Compute the log of the normalization constant (partition function) Z=sum_{x
in samplespace} p_0(x) exp(params . f(x)). The sample space must be discrete
and finite.

model.logpmf (self) Returns an array indexed by integers representing the logarithms of the
probability mass function (pmf) at each point in the sample space under the
current model (with the current parameter vector self.params).

model.pmf_function (self[, f])Returns the pmf p_theta(x) as a function taking values on the model’s sample
space. The returned pmf is defined as:

model.setfeaturesandsamplespace (self, f, sam-
plespace)

Creates a new matrix self.F of features f of all points in the sample space. f is a
list of feature functions f_i mapping the sample space to real values. The
parameter vector self.params is initialized to zero.

3.8. Maximum entropy models (scipy.maxentropy) 175

SciPy Reference Guide, Release 0.7

beginlogging(filename, freq=10)
Enable logging params for each fn evaluation to files named ‘filename.freq.pickle’, ‘filename.(2*freq).pickle’,
... each ‘freq’ iterations.

endlogging()
Stop logging param values whenever setparams() is called.

clearcache()
Clears the interim results of computations depending on the parameters and the sample.

crossentropy(fx, log_prior_x=None, base=2.7182818284590451)
Returns the cross entropy H(q, p) of the empirical distribution q of the data (with the given feature matrix fx)
with respect to the model p. For discrete distributions this is defined as:

H(q, p) = - n^{-1} sum_{j=1}^n log p(x_j)

where x_j are the data elements assumed drawn from q whose features are given by the matrix fx = {f(x_j)},
j=1,...,n.

The ‘base’ argument specifies the base of the logarithm, which defaults to e.

For continuous distributions this makes no sense!

dual(params=None, ignorepenalty=False, ignoretest=False)
Computes the Lagrangian dual L(theta) of the entropy of the model, for the given vector theta=params. Min-
imizing this function (without constraints) should fit the maximum entropy model subject to the given
constraints. These constraints are specified as the desired (target) values self.K for the expectations of the
feature statistic.

This function is computed as:
L(theta) = log(Z) - theta^T . K

For ‘bigmodel’ objects, it estimates the entropy dual without actually computing p_theta. This is important if the
sample space is continuous or innumerable in practice. We approximate the norm constant Z using importance
sampling as in [Rosenfeld01whole]. This estimator is deterministic for any given sample. Note that the gradient
of this estimator is equal to the importance sampling ratio estimator of the gradient of the entropy dual [see my
thesis], justifying the use of this estimator in conjunction with grad() in optimization methods that use both the
function and gradient. Note, however, that convergence guarantees break down for most optimization algorithms
in the presence of stochastic error.

Note that, for ‘bigmodel’ objects, the dual estimate is deterministic for any given sample. It is given as:

L_est = log Z_est - sum_i{theta_i K_i}

where
Z_est = 1/m sum_{x in sample S_0} p_dot(x) / aux_dist(x),

and m = # observations in sample S_0, and K_i = the empirical expectation E_p_tilde f_i (X) = sum_x {p(x)
f_i(x)}.

fit(K, algorithm=’CG’)
Fit the maxent model p whose feature expectations are given by the vector K.

Model expectations are computed either exactly or using Monte Carlo simulation, depending on the ‘func’ and
‘grad’ parameters passed to this function.

For ‘model’ instances, expectations are computed exactly, by summing over the given sample space. If the
sample space is continuous or too large to iterate over, use the ‘bigmodel’ class instead.

For ‘bigmodel’ instances, the model expectations are not computed exactly (by summing or integrating over a
sample space) but approximately (by Monte Carlo simulation). Simulation is necessary when the sample space

176 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

is too large to sum or integrate over in practice, like a continuous sample space in more than about 4 dimensions
or a large discrete space like all possible sentences in a natural language.

Approximating the expectations by sampling requires an instrumental distribution that should be close to the
model for fast convergence. The tails should be fatter than the model. This instrumental distribution is specified
by calling setsampleFgen() with a user-supplied generator function that yields a matrix of features of a random
sample and its log pdf values.

The algorithm can be ‘CG’, ‘BFGS’, ‘LBFGSB’, ‘Powell’, or ‘Nelder-Mead’.

The CG (conjugate gradients) method is the default; it is quite fast and requires only linear space in the number
of parameters, (not quadratic, like Newton-based methods).

The BFGS (Broyden-Fletcher-Goldfarb-Shanno) algorithm is a variable metric Newton method. It is perhaps
faster than the CG method but requires O(N^2) instead of O(N) memory, so it is infeasible for more than about
10^3 parameters.

The Powell algorithm doesn’t require gradients. For small models it is slow but robust. For big models (where
func and grad are simulated) with large variance in the function estimates, this may be less robust than the
gradient-based algorithms.

grad(params=None, ignorepenalty=False)
Computes or estimates the gradient of the entropy dual.

log(params)
This method is called every iteration during the optimization process. It calls the user-supplied callback function
(if any), logs the evolution of the entropy dual and gradient norm, and checks whether the process appears to be
diverging, which would indicate inconsistent constraints (or, for bigmodel instances, too large a variance in the
estimates).

logparams()
Saves the model parameters if logging has been enabled and the # of iterations since the last save has reached
self.paramslogfreq.

normconst()
Returns the normalization constant, or partition function, for the current model. Warning – this may be too
large to represent; if so, this will result in numerical overflow. In this case use lognormconst() instead.

For ‘bigmodel’ instances, estimates the normalization term as Z = E_aux_dist [{exp (params.f(X))} /
aux_dist(X)] using a sample from aux_dist.

reset(numfeatures=None)
Resets the parameters self.params to zero, clearing the cache variables dependent on them. Also resets the
number of function and gradient evaluations to zero.

setcallback(callback=None, callback_dual=None, callback_grad=None)
Sets callback functions to be called every iteration, every function evaluation, or every gradient evaluation. All
callback functions are passed one argument, the current model object.

Note that line search algorithms in e.g. CG make potentially several function and gradient evaluations per
iteration, some of which we expect to be poor.

setparams(params)
Set the parameter vector to params, replacing the existing parameters. params must be a list or numpy array of
the same length as the model’s feature vector f.

setsmooth(sigma)
Speficies that the entropy dual and gradient should be computed with a quadratic penalty term on magnitude of
the parameters. This ‘smooths’ the model to account for noise in the target expectation values or to improve
robustness when using simulation to fit models and when the sampling distribution has high variance. The
smoothing mechanism is described in Chen and Rosenfeld, ‘A Gaussian prior for smoothing maximum entropy
models’ (1999).

The parameter ‘sigma’ will be squared and stored as self.sigma2.

3.8. Maximum entropy models (scipy.maxentropy) 177

SciPy Reference Guide, Release 0.7

expectations()
The vector E_p[f(X)] under the model p_params of the vector of feature functions f_i over the sample space.

lognormconst()
Compute the log of the normalization constant (partition function) Z=sum_{x in samplespace} p_0(x)
exp(params . f(x)). The sample space must be discrete and finite.

logpmf()
Returns an array indexed by integers representing the logarithms of the probability mass function (pmf) at each
point in the sample space under the current model (with the current parameter vector self.params).

pmf_function(f=None)
Returns the pmf p_theta(x) as a function taking values on the model’s sample space. The returned pmf is
defined as:

p_theta(x) = exp(theta.f(x) - log Z)

where theta is the current parameter vector self.params. The returned function p_theta also satisfies

all([p(x) for x in self.samplespace] == pmf()).

The feature statistic f should be a list of functions [f1(),...,fn(x)]. This must be passed unless the model already
contains an equivalent attribute ‘model.f’.

Requires that the sample space be discrete and finite, and stored as self.samplespace as a list or array.

setfeaturesandsamplespace(f, samplespace)
Creates a new matrix self.F of features f of all points in the sample space. f is a list of feature functions f_i
mapping the sample space to real values. The parameter vector self.params is initialized to zero.

We also compute f(x) for each x in the sample space and store them as self.F. This uses lots of memory but is
much faster.

This is only appropriate when the sample space is finite.

class bigmodel()
A maximum-entropy (exponential-form) model on a large sample space.

The model expectations are not computed exactly (by summing or integrating over a sample space) but approx-
imately (by Monte Carlo estimation). Approximation is necessary when the sample space is too large to sum or
integrate over in practice, like a continuous sample space in more than about 4 dimensions or a large discrete
space like all possible sentences in a natural language.

Approximating the expectations by sampling requires an instrumental distribution that should be close to the
model for fast convergence. The tails should be fatter than the model.

178 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

bigmodel.estimate (self) This function approximates both the feature expectation vector E_p f(X)
and the log of the normalization term Z with importance sampling.

bigmodel.logpdf (self, fx[, log_prior_x])Returns the log of the estimated density p(x) = p_theta(x) at the point x.
If log_prior_x is None, this is defined as: log p(x) = theta.f(x) - log Z
where f(x) is given by the (m x 1) array fx.

bigmodel.pdf (self, fx) Returns the estimated density p_theta(x) at the point x with feature
statistic fx = f(x). This is defined as p_theta(x) = exp(theta.f(x)) /
Z(theta), where Z is the estimated value self.normconst() of the partition
function.

bigmodel.pdf_function (self) Returns the estimated density p_theta(x) as a function p(f) taking a
vector f = f(x) of feature statistics at any point x. This is defined as:
p_theta(x) = exp(theta.f(x)) / Z

bigmodel.resample (self) (Re)samples the matrix F of sample features.

bigmodel.setsampleFgen (self, sam-
pler[, staticsample])

Initializes the Monte Carlo sampler to use the supplied generator of
samples’ features and log probabilities. This is an alternative to defining
a sampler in terms of a (fixed size) feature matrix sampleF and
accompanying vector samplelogprobs of log probabilities.

bigmodel.settestsamples (self, F_list, log-
prob_list[, testevery, priorlog-
prob_list])

Requests that the model be tested every ‘testevery’ iterations during
fitting using the provided list F_list of feature matrices, each
representing a sample {x_j} from an auxiliary distribution q, together
with the corresponding log probabiltiy mass or density values log
{q(x_j)} in logprob_list. This is useful as an external check on the
fitting process with sample path optimization, which could otherwise
reflect the vagaries of the single sample being used for optimization,
rather than the population as a whole.

bigmodel.stochapprox (self, K) Tries to fit the model to the feature expectations K using stochastic
approximation, with the Robbins-Monro stochastic approximation
algorithm: theta_{k+1} = theta_k + a_k g_k - a_k e_k where g_k is the
gradient vector (= feature expectations E - K) evaluated at the point
theta_k, a_k is the sequence a_k = a_0 / k, where a_0 is some step size
parameter defined as self.a_0 in the model, and e_k is an unknown error
term representing the uncertainty of the estimate of g_k. We assume e_k
has nice enough properties for the algorithm to converge.

bigmodel.test (self) Estimate the dual and gradient on the external samples, keeping track of
the parameters that yield the minimum such dual. The vector of desired
(target) feature expectations is stored as self.K.

estimate()
This function approximates both the feature expectation vector E_p f(X) and the log of the normalization term
Z with importance sampling.

It also computes the sample variance of the component estimates of the feature expectations as: varE = var(E_1,
..., E_T) where T is self.matrixtrials and E_t is the estimate of E_p f(X) approximated using the ‘t’th auxiliary
feature matrix.

It doesn’t return anything, but stores the member variables logZapprox, mu and varE. (This is done because
some optimization algorithms retrieve the dual fn and gradient fn in separate function calls, but we can compute

3.8. Maximum entropy models (scipy.maxentropy) 179

SciPy Reference Guide, Release 0.7

them more efficiently together.)

It uses a supplied generator sampleFgen whose .next() method returns features of random observations s_j
generated according to an auxiliary distribution aux_dist. It uses these either in a matrix (with multiple runs)
or with a sequential procedure, with more updating overhead but potentially stopping earlier (needing fewer
samples). In the matrix case, the features F={f_i(s_j)} and vector [log_aux_dist(s_j)] of log probabilities are
generated by calling resample().

We use [Rosenfeld01Wholesentence]’s estimate of E_p[f_i] as:

{sum_j p(s_j)/aux_dist(s_j) f_i(s_j) }
/ {sum_j p(s_j) / aux_dist(s_j)}.

Note that this is consistent but biased.

This equals:

{sum_j p_dot(s_j)/aux_dist(s_j) f_i(s_j) }
/ {sum_j p_dot(s_j) / aux_dist(s_j)}

Compute the estimator E_p f_i(X) in log space as:
num_i / denom,

where

num_i = exp(logsumexp(theta.f(s_j) - log aux_dist(s_j)

• log f_i(s_j)))

and
denom = [n * Zapprox]

where Zapprox = exp(self.lognormconst()).

We can compute the denominator n*Zapprox directly as:

exp(logsumexp(log p_dot(s_j) - log aux_dist(s_j)))

= exp(logsumexp(theta.f(s_j) - log aux_dist(s_j)))

logpdf(fx, log_prior_x=None)
Returns the log of the estimated density p(x) = p_theta(x) at the point x. If log_prior_x is None, this is defined
as:

log p(x) = theta.f(x) - log Z

where f(x) is given by the (m x 1) array fx.

If, instead, fx is a 2-d (m x n) array, this function interprets each of its rows j=0,...,n-1 as a feature vector f(x_j),
and returns an array containing the log pdf value of each point x_j under the current model.

log Z is estimated using the sample provided with setsampleFgen().

The optional argument log_prior_x is the log of the prior density p_0 at the point x (or at each point x_j if fx is
2-dimensional). The log pdf of the model is then defined as

180 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

log p(x) = log p0(x) + theta.f(x) - log Z

and p then represents the model of minimum KL divergence D(p||p0) instead of maximum entropy.

pdf(fx)
Returns the estimated density p_theta(x) at the point x with feature statistic fx = f(x). This is defined as

p_theta(x) = exp(theta.f(x)) / Z(theta),

where Z is the estimated value self.normconst() of the partition function.

pdf_function()
Returns the estimated density p_theta(x) as a function p(f) taking a vector f = f(x) of feature statistics at any
point x. This is defined as:

p_theta(x) = exp(theta.f(x)) / Z

resample()
(Re)samples the matrix F of sample features.

setsampleFgen(sampler, staticsample=True)
Initializes the Monte Carlo sampler to use the supplied generator of samples’ features and log probabilities.
This is an alternative to defining a sampler in terms of a (fixed size) feature matrix sampleF and accompanying
vector samplelogprobs of log probabilities.

Calling sampler.next() should generate tuples (F, lp), where F is an (m x n) matrix of features of the n sample
points x_1,...,x_n, and lp is an array of length n containing the (natural) log probability density (pdf or pmf) of
each point under the auxiliary sampling distribution.

The output of sampler.next() can optionally be a 3-tuple (F, lp, sample) instead of a 2-tuple (F, lp). In this case
the value ‘sample’ is then stored as a class variable self.sample. This is useful for inspecting the output and
understanding the model characteristics.

If matrixtrials > 1 and staticsample = True, (which is useful for estimating variance between the different feature
estimates), sampler.next() will be called once for each trial (0,...,matrixtrials) for each iteration. This allows
using a set of feature matrices, each of which stays constant over all iterations.

We now insist that sampleFgen.next() return the entire sample feature matrix to be used each iteration to avoid
overhead in extra function calls and memory copying (and extra code).

An alternative was to supply a list of samplers, sampler=[sampler0, sampler1, ..., sampler_{m-1}, samplerZ],
one for each feature and one for estimating the normalization constant Z. But this code was unmaintained, and
has now been removed (but it’s in Ed’s CVS repository :).

Example use: >>> import spmatrix >>> model = bigmodel() >>> def sampler(): ... n = 0 ... while True:
... f = spmatrix.ll_mat(1,3) ... f[0,0] = n+1; f[0,1] = n+1; f[0,2] = n+1 ... yield f, 1.0 ... n += 1 ... >>>
model.setsampleFgen(sampler()) >>> type(model.sampleFgen) <type ‘generator’> >>> [model.sampleF[0,i]
for i in range(3)] [1.0, 1.0, 1.0]

We now set matrixtrials as a class property instead, rather than passing it as an argument to this function, where
it can be written over (perhaps with the default function argument by accident) when we re-call this func (e.g.
to change the matrix size.)

settestsamples(F_list, logprob_list, testevery=1, priorlogprob_list=None)
Requests that the model be tested every ‘testevery’ iterations during fitting using the provided list F_list of
feature matrices, each representing a sample {x_j} from an auxiliary distribution q, together with the corre-
sponding log probabiltiy mass or density values log {q(x_j)} in logprob_list. This is useful as an external check
on the fitting process with sample path optimization, which could otherwise reflect the vagaries of the single
sample being used for optimization, rather than the population as a whole.

If self.testevery > 1, only perform the test every self.testevery calls.

If priorlogprob_list is not None, it should be a list of arrays of log(p0(x_j)) values, j = 0,. ..., n - 1, specifying
the prior distribution p0 for the sample points x_j for each of the test samples.

3.8. Maximum entropy models (scipy.maxentropy) 181

SciPy Reference Guide, Release 0.7

stochapprox(K)
Tries to fit the model to the feature expectations K using stochastic approximation, with the Robbins-Monro
stochastic approximation algorithm: theta_{k+1} = theta_k + a_k g_k - a_k e_k where g_k is the gradient
vector (= feature expectations E - K) evaluated at the point theta_k, a_k is the sequence a_k = a_0 / k, where
a_0 is some step size parameter defined as self.a_0 in the model, and e_k is an unknown error term representing
the uncertainty of the estimate of g_k. We assume e_k has nice enough properties for the algorithm to converge.

test()
Estimate the dual and gradient on the external samples, keeping track of the parameters that yield the minimum
such dual. The vector of desired (target) feature expectations is stored as self.K.

class conditionalmodel(F, counts, numcontexts)
A conditional maximum-entropy (exponential-form) model p(x|w) on a discrete sample space. This is useful
for classification problems: given the context w, what is the probability of each class x?

The form of such a model is

p(x | w) = exp(theta . f(w, x)) / Z(w; theta)

where Z(w; theta) is a normalization term equal to

Z(w; theta) = sum_x exp(theta . f(w, x)).

The sum is over all classes x in the set Y, which must be supplied to the constructor as the parameter ‘sam-
plespace’.

Such a model form arises from maximizing the entropy of a conditional model p(x | w) subject to the constraints:

K_i = E f_i(W, X)

where the expectation is with respect to the distribution

q(w) p(x | w)

where q(w) is the empirical probability mass function derived from observations of the context w in a training
set. Normally the vector K = {K_i} of expectations is set equal to the expectation of f_i(w, x) with respect to
the empirical distribution.

This method minimizes the Lagrangian dual L of the entropy, which is defined for conditional models as

L(theta) = sum_w q(w) log Z(w; theta)

• sum_{w,x} q(w,x) [theta . f(w,x)]

Note that both sums are only over the training set {w,x}, not the entire sample space, since q(w,x) = 0 for all w,x
not in the training set.

The partial derivatives of L are:
dL / dtheta_i = K_i - E f_i(X, Y)

where the expectation is as defined above.

182 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

conditionalmodel.dual (self[, params, ig-
norepenalty])

The entropy dual function is defined for conditional models as

conditionalmodel.expectations (self)The vector of expectations of the features with respect to the distribution
p_tilde(w) p(x | w), where p_tilde(w) is the empirical probability mass function
value stored as self.p_tilde_context[w].

conditionalmodel.fit (self[, al-
gorithm])

Fits the conditional maximum entropy model subject to the constraints

conditionalmodel.lognormconst (self)Compute the elementwise log of the normalization constant (partition function)
Z(w)=sum_{y in Y(w)} exp(theta . f(w, y)). The sample space must be discrete
and finite. This is a vector with one element for each context w.

conditionalmodel.logpmf (self)Returns a (sparse) row vector of logarithms of the conditional probability mass
function (pmf) values p(x | c) for all pairs (c, x), where c are contexts and x are
points in the sample space. The order of these is log p(x | c) = logpmf()[c *
numsamplepoints + x].

dual(params=None, ignorepenalty=False)
The entropy dual function is defined for conditional models as

L(theta) = sum_w q(w) log Z(w; theta)

• sum_{w,x} q(w,x) [theta . f(w,x)]

or equivalently as

L(theta) = sum_w q(w) log Z(w; theta) - (theta . k)

where K_i = sum_{w, x} q(w, x) f_i(w, x), and where q(w) is the empirical probability mass function derived
from observations of the context w in a training set. Normally q(w, x) will be 1, unless the same class label is
assigned to the same context more than once.

Note that both sums are only over the training set {w,x}, not the entire sample space, since q(w,x) = 0 for all w,x
not in the training set.

The entropy dual function is proportional to the negative log likelihood.

Compare to the entropy dual of an unconditional model:
L(theta) = log(Z) - theta^T . K

expectations()
The vector of expectations of the features with respect to the distribution p_tilde(w) p(x | w), where p_tilde(w)
is the empirical probability mass function value stored as self.p_tilde_context[w].

fit(algorithm=’CG’)
Fits the conditional maximum entropy model subject to the constraints

sum_{w, x} p_tilde(w) p(x | w) f_i(w, x) = k_i

for i=1,...,m, where k_i is the empirical expectation
k_i = sum_{w, x} p_tilde(w, x) f_i(w, x).

3.8. Maximum entropy models (scipy.maxentropy) 183

SciPy Reference Guide, Release 0.7

lognormconst()
Compute the elementwise log of the normalization constant (partition function) Z(w)=sum_{y in Y(w)}
exp(theta . f(w, y)). The sample space must be discrete and finite. This is a vector with one element for each
context w.

logpmf()
Returns a (sparse) row vector of logarithms of the conditional probability mass function (pmf) values p(x | c)
for all pairs (c, x), where c are contexts and x are points in the sample space. The order of these is log p(x | c) =
logpmf()[c * numsamplepoints + x].

184 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

3.8. Maximum entropy models (scipy.maxentropy) 185

SciPy Reference Guide, Release 0.7

3.8.3 Utilities

arrayexp (x) Returns the elementwise antilog of the real array x. We try to exponentiate with
numpy.exp() and, if that fails, with python’s math.exp(). numpy.exp() is about 10
times faster but throws an OverflowError exception for numerical underflow (e.g.
exp(-800), whereas python’s math.exp() just returns zero, which is much more
helpful.

arrayexpcomplex (x) Returns the elementwise antilog of the vector x. We try to exponentiate with
numpy.exp() and, if that fails, with python’s math.exp(). numpy.exp() is about 10
times faster but throws an OverflowError exception for numerical underflow (e.g.
exp(-800), whereas python’s math.exp() just returns zero, which is much more
helpful.

columnmeans (A) This is a wrapper for general dense or sparse dot products. It is only necessary as a
common interface for supporting ndarray, scipy spmatrix, and PySparse arrays.

columnvariances (A) This is a wrapper for general dense or sparse dot products. It is not necessary except
as a common interface for supporting ndarray, scipy spmatrix, and PySparse arrays.

densefeaturematrix (f, sam-
ple)

Returns an (m x n) dense array of non-zero evaluations of the scalar functions fi in the
list f at the points x_1,...,x_n in the list sample.

densefeatures (f, x) Returns a dense array of non-zero evaluations of the functions fi in the list f at the
point x.

dotprod (u, v) This is a wrapper around general dense or sparse dot products. It is not necessary
except as a common interface for supporting ndarray, scipy spmatrix, and PySparse
arrays.

flatten (a) Flattens the sparse matrix or dense array/matrix ‘a’ into a 1-dimensional array

innerprod (A, v) This is a wrapper around general dense or sparse dot products. It is not necessary
except as a common interface for supporting ndarray, scipy spmatrix, and PySparse
arrays.

innerprodtranspose (A, v)This is a wrapper around general dense or sparse dot products. It is not necessary
except as a common interface for supporting ndarray, scipy spmatrix, and PySparse
arrays.

logsumexp (a) Compute the log of the sum of exponentials log(e^{a_1}+...e^{a_n}) of the
components of the array a, avoiding numerical overflow.

logsumexp_naive (val-
ues)

For testing logsumexp(). Subject to numerical overflow for large values (e.g. 720).

robustlog (x) Returns log(x) if x > 0, the complex log cmath.log(x) if x < 0, or float(‘-inf’) if x == 0.

rowmeans (A) This is a wrapper for general dense or sparse dot products. It is only necessary as a
common interface for supporting ndarray, scipy spmatrix, and PySparse arrays.

sample_wr (popula-
tion, k)

Chooses k random elements (with replacement) from a population. (From the Python
Cookbook).

sparsefeaturematrix (f, sam-
ple[, format])

Returns an (m x n) sparse matrix of non-zero evaluations of the scalar or vector
functions f_1,...,f_m in the list f at the points x_1,...,x_n in the sequence ‘sample’.

sparsefeatures (f, x[, for-
mat])

Returns an Mx1 sparse matrix of non-zero evaluations of the scalar functions
f_1,...,f_m in the list f at the point x.

186 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

arrayexp(x)
Returns the elementwise antilog of the real array x. We try to exponentiate with numpy.exp() and, if that
fails, with python’s math.exp(). numpy.exp() is about 10 times faster but throws an OverflowError exception
for numerical underflow (e.g. exp(-800), whereas python’s math.exp() just returns zero, which is much more
helpful.

arrayexpcomplex(x)
Returns the elementwise antilog of the vector x. We try to exponentiate with numpy.exp() and, if that fails, with
python’s math.exp(). numpy.exp() is about 10 times faster but throws an OverflowError exception for numerical
underflow (e.g. exp(-800), whereas python’s math.exp() just returns zero, which is much more helpful.

columnmeans(A)
This is a wrapper for general dense or sparse dot products. It is only necessary as a common interface for
supporting ndarray, scipy spmatrix, and PySparse arrays.

Returns a dense (1 x n) vector with the column averages of A, which can be an (m x n) sparse or dense matrix.

>>> a = numpy.array([[1,2],[3,4]],’d’)
>>> columnmeans(a)
array([2., 3.])

columnvariances(A)
This is a wrapper for general dense or sparse dot products. It is not necessary except as a common interface for
supporting ndarray, scipy spmatrix, and PySparse arrays.

Returns a dense (1 x n) vector with unbiased estimators for the column variances for each column of the (m x
n) sparse or dense matrix A. (The normalization is by (m - 1).)

>>> a = numpy.array([[1,2], [3,4]], ’d’)
>>> columnvariances(a)
array([2., 2.])

densefeaturematrix(f, sample)
Returns an (m x n) dense array of non-zero evaluations of the scalar functions fi in the list f at the points
x_1,...,x_n in the list sample.

densefeatures(f, x)
Returns a dense array of non-zero evaluations of the functions fi in the list f at the point x.

dotprod(u, v)
This is a wrapper around general dense or sparse dot products. It is not necessary except as a common interface
for supporting ndarray, scipy spmatrix, and PySparse arrays.

Returns the dot product of the (1 x m) sparse array u with the (m x 1) (dense) numpy array v.

flatten(a)
Flattens the sparse matrix or dense array/matrix ‘a’ into a 1-dimensional array

innerprod(A, v)
This is a wrapper around general dense or sparse dot products. It is not necessary except as a common interface
for supporting ndarray, scipy spmatrix, and PySparse arrays.

Returns the inner product of the (m x n) dense or sparse matrix A with the n-element dense array v. This is a
wrapper for A.dot(v) for dense arrays and spmatrix objects, and for A.matvec(v, result) for PySparse matrices.

innerprodtranspose(A, v)
This is a wrapper around general dense or sparse dot products. It is not necessary except as a common interface
for supporting ndarray, scipy spmatrix, and PySparse arrays.

Computes A^T V, where A is a dense or sparse matrix and V is a numpy array. If A is sparse, V must be a
rank-1 array, not a matrix. This function is efficient for large matrices A. This is a wrapper for u.T.dot(v) for
dense arrays and spmatrix objects, and for u.matvec_transp(v, result) for pysparse matrices.

3.8. Maximum entropy models (scipy.maxentropy) 187

SciPy Reference Guide, Release 0.7

logsumexp(a)
Compute the log of the sum of exponentials log(e^{a_1}+...e^{a_n}) of the components of the array a, avoiding
numerical overflow.

logsumexp_naive(values)
For testing logsumexp(). Subject to numerical overflow for large values (e.g. 720).

robustlog(x)
Returns log(x) if x > 0, the complex log cmath.log(x) if x < 0, or float(‘-inf’) if x == 0.

rowmeans(A)
This is a wrapper for general dense or sparse dot products. It is only necessary as a common interface for
supporting ndarray, scipy spmatrix, and PySparse arrays.

Returns a dense (m x 1) vector representing the mean of the rows of A, which be an (m x n) sparse or dense
matrix.

>>> a = numpy.array([[1,2],[3,4]], float)
>>> rowmeans(a)
array([1.5, 3.5])

sample_wr(population, k)
Chooses k random elements (with replacement) from a population. (From the Python Cookbook).

sparsefeaturematrix(f, sample, format=’csc_matrix’)
Returns an (m x n) sparse matrix of non-zero evaluations of the scalar or vector functions f_1,...,f_m in the list f
at the points x_1,...,x_n in the sequence ‘sample’.

If format=’ll_mat’, the PySparse module (or a symlink to it) must be available in the Python site-packages/ di-
rectory. A trimmed-down version, patched for NumPy compatibility, is available in the SciPy sandbox/pysparse
directory.

sparsefeatures(f, x, format=’csc_matrix’)
Returns an Mx1 sparse matrix of non-zero evaluations of the scalar functions f_1,...,f_m in the list f at the point
x.

If format=’ll_mat’, the PySparse module (or a symlink to it) must be available in the Python site-packages/ di-
rectory. A trimmed-down version, patched for NumPy compatibility, is available in the SciPy sandbox/pysparse
directory.

3.9 Miscellaneous routines (scipy.misc)

Warning: This documentation is work-in-progress and unorganized.

Various utilities that don’t have another home.

who(vardict=None)
Print the Numpy arrays in the given dictionary.

If there is no dictionary passed in or vardict is None then returns Numpy arrays in the globals() dictionary (all
Numpy arrays in the namespace).

Parameters
vardict : dict, optional

A dictionary possibly containing ndarrays. Default is globals().

Returns
out : None

Returns ‘None’.

188 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

Notes

Prints out the name, shape, bytes and type of all of the ndarrays present in vardict.

Examples

>>> d = {’x’: arange(2.0), ’y’: arange(3.0), ’txt’: ’Some str’, ’idx’: 5}
>>> np.whos(d)
Name Shape Bytes Type
===
<BLANKLINE>
y 3 24 float64
x 2 16 float64
<BLANKLINE>
Upper bound on total bytes = 40

source(object, output=<open file ’<stdout>’, mode ’w’ at 0x2aaaaaac9198>)
Print or write to a file the source code for a Numpy object.

Parameters
object : numpy object

Input object.

output : file object, optional

If output not supplied then source code is printed to screen (sys.stdout). File object
must be created with either write ‘w’ or append ‘a’ modes.

info(object=None, maxwidth=76, output=<open file ’<stdout>’, mode ’w’ at 0x2aaaaaac9198>,
toplevel=’scipy’)

Get help information for a function, class, or module.

Parameters
object : optional

Input object to get information about.

maxwidth : int, optional

Printing width.

output : file like object open for writing, optional

Write into file like object.

toplevel : string, optional

Start search at this level.

Examples

>>> np.info(np.polyval) # doctest: +SKIP

polyval(p, x)

Evaluate the polymnomial p at x.
...

fromimage(im, flatten=0)
Return a copy of a PIL image as a numpy array.

3.9. Miscellaneous routines (scipy.misc) 189

SciPy Reference Guide, Release 0.7

Parameters

im
[PIL image] Input image.

flatten
[bool] If true, convert the output to grey-scale.

Returns

img_array
[ndarray] The different colour bands/channels are stored in the third dimension, such that
a grey-image is MxN, an RGB-image MxNx3 and an RGBA-image MxNx4.

toimage(arr, high=255, low=0, cmin=None, cmax=None, pal=None, mode=None, channel_axis=None)
Takes a numpy array and returns a PIL image. The mode of the PIL image depends on the array shape, the pal
keyword, and the mode keyword.

For 2-D arrays, if pal is a valid (N,3) byte-array giving the RGB values (from 0 to 255) then mode=’P’, otherwise
mode=’L’, unless mode is given as ‘F’ or ‘I’ in which case a float and/or integer array is made

For 3-D arrays, the channel_axis argument tells which dimension of the
array holds the channel data.

For 3-D arrays if one of the dimensions is 3, the mode is ‘RGB’
by default or ‘YCbCr’ if selected.

if the

The numpy array must be either 2 dimensional or 3 dimensional.

imsave(name, arr)
Save an array to an image file.

imread(name, flatten=0)
Read an image file from a filename.

Optional arguments:

•flatten (0): if true, the image is flattened by calling convert(‘F’) on

the resulting image object. This flattens the color layers into a single grayscale layer.

imrotate(arr, angle, interp=’bilinear’)
Rotate an image counter-clockwise by angle degrees.

Interpolation methods can be:
‘nearest’ : for nearest neighbor ‘bilinear’ : for bilinear ‘cubic’ or ‘bicubic’ : for bicubic

imresize(arr, size)
Resize an image.

If size is an integer it is a percentage of current size. If size is a float it is a fraction of current size. If size is a
tuple it is the size of the output image.

imshow(arr)
Simple showing of an image through an external viewer.

imfilter(arr, ftype)
Simple filtering of an image.

190 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

type can be:
‘blur’, ‘contour’, ‘detail’, ‘edge_enhance’, ‘edge_enhance_more’, ‘emboss’, ‘find_edges’, ‘smooth’,
‘smooth_more’, ‘sharpen’

factorial(n, exact=0)
n! = special.gamma(n+1)

If exact==0, then floating point precision is used, otherwise exact long integer is computed.

Notes:

• Array argument accepted only for exact=0 case.

• If n<0, the return value is 0.

factorial2(n, exact=0)

n!! = special.gamma(n/2+1)*2**((m+1)/2)/sqrt(pi) n odd
= 2**(n) * n! n even

If exact==0, then floating point precision is used, otherwise exact long integer is computed.

Notes:

• Array argument accepted only for exact=0 case.

• If n<0, the return value is 0.

factorialk(n, k, exact=1)
n(!!...!) = multifactorial of order k k times

comb(N, k, exact=0)
Combinations of N things taken k at a time.

If exact==0, then floating point precision is used, otherwise exact long integer is computed.

Notes:

• Array arguments accepted only for exact=0 case.

• If k > N, N < 0, or k < 0, then a 0 is returned.

central_diff_weights(Np, ndiv=1)
Return weights for an Np-point central derivative of order ndiv assuming equally-spaced function points.

If weights are in the vector w, then derivative is w[0] * f(x-ho*dx) + ... + w[-1] * f(x+h0*dx)

Can be inaccurate for large number of points.

derivative(func, x0, dx=1.0, n=1, args=(), order=3)
Given a function, use a central difference formula with spacing dx to compute the nth derivative at x0.

order is the number of points to use and must be odd.

Warning: Decreasing the step size too small can result in round-off error.

pade(an, m)
Given Taylor series coefficients in an, return a Pade approximation to the function as the ratio of two polynomials
p / q where the order of q is m.

3.9. Miscellaneous routines (scipy.misc) 191

SciPy Reference Guide, Release 0.7

3.10 Multi-dimensional image processing (scipy.ndimage)

Functions for multi-dimensional image processing.

192 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

3.10. Multi-dimensional image processing (scipy.ndimage) 193

SciPy Reference Guide, Release 0.7

3.10.1 Filters scipy.ndimage.filters

convolve (input, weights[, out-
put, mode, cval, ...])

Multi-dimensional convolution.

convolve1d (input, weights[, axis, out-
put, mode, ...])

Calculate a one-dimensional convolution along the given axis.

correlate (input, weights[, out-
put, mode, cval, ...])

Multi-dimensional correlation.

correlate1d (input, weights[, axis, out-
put, mode, ...])

Calculate a one-dimensional correlation along the given axis.

gaussian_filter (input, sigma[, or-
der, output, mode, ...])

Multi-dimensional Gaussian filter.

gaussian_filter1d (in-
put, sigma[, axis, order, output, ...])

One-dimensional Gaussian filter.

gaussian_gradient_magnitude (in-
put, sigma[, output, mode, cval])

Calculate a multidimensional gradient magnitude using
gaussian derivatives.

gaussian_laplace (input, sigma[, out-
put, mode, cval])

Calculate a multidimensional laplace filter using gaussian
second derivatives.

generic_filter (input, func-
tion[, size, footprint, ...])

Calculates a multi-dimensional filter using the given function.

generic_filter1d (input, function, fil-
ter_size[, axis, output, mode, ...])

Calculate a one-dimensional filter along the given axis.

generic_gradient_magnitude (in-
put, derivative[, output, mode, cval, ...])

Calculate a gradient magnitude using the provided function for
the gradient.

generic_laplace (input, derivative2[, out-
put, mode, cval, ...])

Calculate a multidimensional laplace filter using the provided
second derivative function.

laplace (input[, output, mode, cval]) Calculate a multidimensional laplace filter using an estimation
for the second derivative based on differences.

maximum_filter (input[, size, foot-
print, ...])

Calculates a multi-dimensional maximum filter.

maximum_filter1d (input, size[, axis, out-
put, mode, ...])

Calculate a one-dimensional maximum filter along the given
axis.

median_filter (input[, size, footprint, ...]) Calculates a multi-dimensional median filter.

minimum_filter (input[, size, foot-
print, ...])

Calculates a multi-dimensional minimum filter.

minimum_filter1d (input, size[, axis, out-
put, mode, ...])

Calculate a one-dimensional minimum filter along the given
axis.

percentile_filter (input, per-
centile[, size, footprint, ...])

Calculates a multi-dimensional percentile filter.

prewitt (input[, axis, output, mode, ...]) Calculate a Prewitt filter.

rank_filter (input, rank[, size, foot-
print, ...])

Calculates a multi-dimensional rank filter.

sobel (input[, axis, output, mode, ...]) Calculate a Sobel filter.

uniform_filter (input[, size, out-
put, mode, ...])

Multi-dimensional uniform filter.

uniform_filter1d (input, size[, axis, out-
put, mode, ...])

Calculate a one-dimensional uniform filter along the given axis.

194 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

convolve(input, weights, output=None, mode=’reflect’, cval=0.0, origin=0)
Multi-dimensional convolution.

The array is convolved with the given kernel.

Parameters
input : array-like

input array to filter

weights : ndarray

array of weights, same number of dimensions as input

output : array, optional

The output parameter passes an array in which to store the filter output.

mode : {‘reflect’,’constant’,’nearest’,’mirror’, ‘wrap’}, optional

The mode parameter determines how the array borders are handled, where cval is
the value when mode is equal to ‘constant’. Default is ‘reflect’

cval : scalar, optional

Value to fill past edges of input if mode is ‘constant’. Default is 0.0

origin : scalar, optional
The ‘‘origin‘‘ parameter controls the placement of the filter. Default 0 :

convolve1d(input, weights, axis=-1, output=None, mode=’reflect’, cval=0.0, origin=0)
Calculate a one-dimensional convolution along the given axis.

The lines of the array along the given axis are convolved with the given weights.

Parameters
input : array-like

input array to filter

weights : ndarray

one-dimensional sequence of numbers

axis : integer, optional

axis of input along which to calculate. Default is -1

output : array, optional

The output parameter passes an array in which to store the filter output.

mode : {‘reflect’,’constant’,’nearest’,’mirror’, ‘wrap’}, optional

The mode parameter determines how the array borders are handled, where cval is
the value when mode is equal to ‘constant’. Default is ‘reflect’

cval : scalar, optional

Value to fill past edges of input if mode is ‘constant’. Default is 0.0

origin : scalar, optional
The ‘‘origin‘‘ parameter controls the placement of the filter. Default 0 :

correlate(input, weights, output=None, mode=’reflect’, cval=0.0, origin=0)
Multi-dimensional correlation.

The array is correlated with the given kernel.

Parameters
input : array-like

3.10. Multi-dimensional image processing (scipy.ndimage) 195

SciPy Reference Guide, Release 0.7

input array to filter

weights : ndarray

array of weights, same number of dimensions as input

output : array, optional

The output parameter passes an array in which to store the filter output.

mode : {‘reflect’,’constant’,’nearest’,’mirror’, ‘wrap’}, optional

The mode parameter determines how the array borders are handled, where cval is
the value when mode is equal to ‘constant’. Default is ‘reflect’

cval : scalar, optional

Value to fill past edges of input if mode is ‘constant’. Default is 0.0

origin : scalar, optional
The ‘‘origin‘‘ parameter controls the placement of the filter. Default 0 :

correlate1d(input, weights, axis=-1, output=None, mode=’reflect’, cval=0.0, origin=0)
Calculate a one-dimensional correlation along the given axis.

The lines of the array along the given axis are correlated with the given weights.

Parameters
input : array-like

input array to filter

weights : array

one-dimensional sequence of numbers

axis : integer, optional

axis of input along which to calculate. Default is -1

output : array, optional

The output parameter passes an array in which to store the filter output.

mode : {‘reflect’,’constant’,’nearest’,’mirror’, ‘wrap’}, optional

The mode parameter determines how the array borders are handled, where cval is
the value when mode is equal to ‘constant’. Default is ‘reflect’

cval : scalar, optional

Value to fill past edges of input if mode is ‘constant’. Default is 0.0

origin : scalar, optional
The ‘‘origin‘‘ parameter controls the placement of the filter. Default 0 :

gaussian_filter(input, sigma, order=0, output=None, mode=’reflect’, cval=0.0)
Multi-dimensional Gaussian filter.

Parameters
input : array-like

input array to filter

sigma : scalar or sequence of scalars

standard deviation for Gaussian kernel. The standard deviations of the Gaussian
filter are given for each axis as a sequence, or as a single number, in which case it is
equal for all axes.

order : {0, 1, 2, 3} or sequence from same set, optional

196 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

The order of the filter along each axis is given as a sequence of integers, or as a single
number. An order of 0 corresponds to convolution with a Gaussian kernel. An order
of 1, 2, or 3 corresponds to convolution with the first, second or third derivatives of
a Gaussian. Higher order derivatives are not implemented

output : array, optional

The output parameter passes an array in which to store the filter output.

mode : {‘reflect’,’constant’,’nearest’,’mirror’, ‘wrap’}, optional

The mode parameter determines how the array borders are handled, where cval is
the value when mode is equal to ‘constant’. Default is ‘reflect’

cval : scalar, optional

Value to fill past edges of input if mode is ‘constant’. Default is 0.0

Notes

The multi-dimensional filter is implemented as a sequence of one-dimensional convolution filters. The interme-
diate arrays are stored in the same data type as the output. Therefore, for output types with a limited precision,
the results may be imprecise because intermediate results may be stored with insufficient precision.

gaussian_filter1d(input, sigma, axis=-1, order=0, output=None, mode=’reflect’, cval=0.0)
One-dimensional Gaussian filter.

Parameters
input : array-like

input array to filter

sigma : scalar

standard deviation for Gaussian kernel

axis : integer, optional

axis of input along which to calculate. Default is -1

order : {0, 1, 2, 3}, optional

An order of 0 corresponds to convolution with a Gaussian kernel. An order of 1, 2, or
3 corresponds to convolution with the first, second or third derivatives of a Gaussian.
Higher order derivatives are not implemented

output : array, optional

The output parameter passes an array in which to store the filter output.

mode : {‘reflect’,’constant’,’nearest’,’mirror’, ‘wrap’}, optional

The mode parameter determines how the array borders are handled, where cval is
the value when mode is equal to ‘constant’. Default is ‘reflect’

cval : scalar, optional

Value to fill past edges of input if mode is ‘constant’. Default is 0.0

gaussian_gradient_magnitude(input, sigma, output=None, mode=’reflect’, cval=0.0)
Calculate a multidimensional gradient magnitude using gaussian derivatives.

Parameters
input : array-like

input array to filter

sigma : scalar or sequence of scalars

The standard deviations of the Gaussian filter are given for each axis as a sequence,
or as a single number, in which case it is equal for all axes..

3.10. Multi-dimensional image processing (scipy.ndimage) 197

SciPy Reference Guide, Release 0.7

output : array, optional

The output parameter passes an array in which to store the filter output.

mode : {‘reflect’,’constant’,’nearest’,’mirror’, ‘wrap’}, optional

The mode parameter determines how the array borders are handled, where cval is
the value when mode is equal to ‘constant’. Default is ‘reflect’

cval : scalar, optional

Value to fill past edges of input if mode is ‘constant’. Default is 0.0

gaussian_laplace(input, sigma, output=None, mode=’reflect’, cval=0.0)
Calculate a multidimensional laplace filter using gaussian second derivatives.

Parameters
input : array-like

input array to filter

sigma : scalar or sequence of scalars

The standard deviations of the Gaussian filter are given for each axis as a sequence,
or as a single number, in which case it is equal for all axes..

output : array, optional

The output parameter passes an array in which to store the filter output.

mode : {‘reflect’,’constant’,’nearest’,’mirror’, ‘wrap’}, optional

The mode parameter determines how the array borders are handled, where cval is
the value when mode is equal to ‘constant’. Default is ‘reflect’

cval : scalar, optional

Value to fill past edges of input if mode is ‘constant’. Default is 0.0

generic_filter(input, function, size=None, footprint=None, output=None, mode=’reflect’, cval=0.0, origin=0,
extra_arguments=(), extra_keywords=None)

Calculates a multi-dimensional filter using the given function.

At each element the provided function is called. The input values within the filter footprint at that element are
passed to the function as a 1D array of double values.

Parameters
input : array-like

input array to filter

function : callable

function to apply at each element

size : scalar or tuple, optional

See footprint, below

footprint : array, optional

Either size or footprint must be defined. size gives the shape that is taken
from the input array, at every element position, to define the input to the filter
function. footprint is a boolean array that specifies (implicitly) a shape, but
also which of the elements within this shape will get passed to the filter function.
Thus size=(n,m) is equivalent to footprint=np.ones((n,m)). We adjust
size to the number of dimensions of the input array, so that, if the input array is
shape (10,10,10), and size is 2, then the actual size used is (2,2,2).

output : array, optional

198 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

The output parameter passes an array in which to store the filter output.

mode : {‘reflect’,’constant’,’nearest’,’mirror’, ‘wrap’}, optional

The mode parameter determines how the array borders are handled, where cval is
the value when mode is equal to ‘constant’. Default is ‘reflect’

cval : scalar, optional

Value to fill past edges of input if mode is ‘constant’. Default is 0.0

origin : scalar, optional
The ‘‘origin‘‘ parameter controls the placement of the filter. Default 0 :
extra_arguments : sequence, optional

Sequence of extra positional arguments to pass to passed function

extra_keywords : dict, optional

dict of extra keyword arguments to pass to passed function

generic_filter1d(input, function, filter_size, axis=-1, output=None, mode=’reflect’, cval=0.0, origin=0, ex-
tra_arguments=(), extra_keywords=None)

Calculate a one-dimensional filter along the given axis.

generic_filter1d iterates over the lines of the array, calling the given function at each line. The arguments of the
line are the input line, and the output line. The input and output lines are 1D double arrays. The input line is
extended appropriately according to the filter size and origin. The output line must be modified in-place with
the result.

Parameters
input : array-like

input array to filter

function : callable

function to apply along given axis

filter_size : scalar

length of the filter

axis : integer, optional

axis of input along which to calculate. Default is -1

output : array, optional

The output parameter passes an array in which to store the filter output.

mode : {‘reflect’,’constant’,’nearest’,’mirror’, ‘wrap’}, optional

The mode parameter determines how the array borders are handled, where cval is
the value when mode is equal to ‘constant’. Default is ‘reflect’

cval : scalar, optional

Value to fill past edges of input if mode is ‘constant’. Default is 0.0

origin : scalar, optional
The ‘‘origin‘‘ parameter controls the placement of the filter. Default 0 :
extra_arguments : sequence, optional

Sequence of extra positional arguments to pass to passed function

extra_keywords : dict, optional

dict of extra keyword arguments to pass to passed function

generic_gradient_magnitude(input, derivative, output=None, mode=’reflect’, cval=0.0, ex-
tra_arguments=(), extra_keywords=None)

Calculate a gradient magnitude using the provided function for the gradient.

3.10. Multi-dimensional image processing (scipy.ndimage) 199

SciPy Reference Guide, Release 0.7

Parameters
input : array-like

input array to filter

derivative : callable

Callable with the following signature::

derivative(input, axis, output, mode, cval,
*extra_arguments, **extra_keywords)

See extra_arguments, extra_keywords below derivative can assume
that input and output are ndarrays. Note that the output from derivative is
modified inplace; be careful to copy important inputs before returning them.

output : array, optional

The output parameter passes an array in which to store the filter output.

mode : {‘reflect’,’constant’,’nearest’,’mirror’, ‘wrap’}, optional

The mode parameter determines how the array borders are handled, where cval is
the value when mode is equal to ‘constant’. Default is ‘reflect’

cval : scalar, optional

Value to fill past edges of input if mode is ‘constant’. Default is 0.0

extra_keywords : dict, optional

dict of extra keyword arguments to pass to passed function

extra_arguments : sequence, optional

Sequence of extra positional arguments to pass to passed function

generic_laplace(input, derivative2, output=None, mode=’reflect’, cval=0.0, extra_arguments=(), ex-
tra_keywords=None)

Calculate a multidimensional laplace filter using the provided second derivative function.

Parameters
input : array-like

input array to filter

derivative2 : callable

Callable with the following signature::

derivative2(input, axis, output, mode, cval,
*extra_arguments, **extra_keywords)

See extra_arguments, extra_keywords below

output : array, optional

The output parameter passes an array in which to store the filter output.

mode : {‘reflect’,’constant’,’nearest’,’mirror’, ‘wrap’}, optional

The mode parameter determines how the array borders are handled, where cval is
the value when mode is equal to ‘constant’. Default is ‘reflect’

cval : scalar, optional

Value to fill past edges of input if mode is ‘constant’. Default is 0.0

extra_keywords : dict, optional

dict of extra keyword arguments to pass to passed function

extra_arguments : sequence, optional

200 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

Sequence of extra positional arguments to pass to passed function

laplace(input, output=None, mode=’reflect’, cval=0.0)
Calculate a multidimensional laplace filter using an estimation for the second derivative based on differences.

Parameters
input : array-like

input array to filter

output : array, optional

The output parameter passes an array in which to store the filter output.

mode : {‘reflect’,’constant’,’nearest’,’mirror’, ‘wrap’}, optional

The mode parameter determines how the array borders are handled, where cval is
the value when mode is equal to ‘constant’. Default is ‘reflect’

cval : scalar, optional

Value to fill past edges of input if mode is ‘constant’. Default is 0.0

maximum_filter(input, size=None, footprint=None, output=None, mode=’reflect’, cval=0.0, origin=0)
Calculates a multi-dimensional maximum filter.

Parameters
input : array-like

input array to filter

size : scalar or tuple, optional

See footprint, below

footprint : array, optional

Either size or footprint must be defined. size gives the shape that is taken
from the input array, at every element position, to define the input to the filter
function. footprint is a boolean array that specifies (implicitly) a shape, but
also which of the elements within this shape will get passed to the filter function.
Thus size=(n,m) is equivalent to footprint=np.ones((n,m)). We adjust
size to the number of dimensions of the input array, so that, if the input array is
shape (10,10,10), and size is 2, then the actual size used is (2,2,2).

output : array, optional

The output parameter passes an array in which to store the filter output.

mode : {‘reflect’,’constant’,’nearest’,’mirror’, ‘wrap’}, optional

The mode parameter determines how the array borders are handled, where cval is
the value when mode is equal to ‘constant’. Default is ‘reflect’

cval : scalar, optional

Value to fill past edges of input if mode is ‘constant’. Default is 0.0

origin : scalar, optional
The ‘‘origin‘‘ parameter controls the placement of the filter. Default 0 :

maximum_filter1d(input, size, axis=-1, output=None, mode=’reflect’, cval=0.0, origin=0)
Calculate a one-dimensional maximum filter along the given axis.

The lines of the array along the given axis are filtered with a maximum filter of given size.

Parameters
input : array-like

3.10. Multi-dimensional image processing (scipy.ndimage) 201

SciPy Reference Guide, Release 0.7

input array to filter

size : int

length along which to calculate 1D maximum

axis : integer, optional

axis of input along which to calculate. Default is -1

output : array, optional

The output parameter passes an array in which to store the filter output.

mode : {‘reflect’,’constant’,’nearest’,’mirror’, ‘wrap’}, optional

The mode parameter determines how the array borders are handled, where cval is
the value when mode is equal to ‘constant’. Default is ‘reflect’

cval : scalar, optional

Value to fill past edges of input if mode is ‘constant’. Default is 0.0

origin : scalar, optional
The ‘‘origin‘‘ parameter controls the placement of the filter. Default 0 :

median_filter(input, size=None, footprint=None, output=None, mode=’reflect’, cval=0.0, origin=0)
Calculates a multi-dimensional median filter.

Parameters
input : array-like

input array to filter

size : scalar or tuple, optional

See footprint, below

footprint : array, optional

Either size or footprint must be defined. size gives the shape that is taken
from the input array, at every element position, to define the input to the filter
function. footprint is a boolean array that specifies (implicitly) a shape, but
also which of the elements within this shape will get passed to the filter function.
Thus size=(n,m) is equivalent to footprint=np.ones((n,m)). We adjust
size to the number of dimensions of the input array, so that, if the input array is
shape (10,10,10), and size is 2, then the actual size used is (2,2,2).

output : array, optional

The output parameter passes an array in which to store the filter output.

mode : {‘reflect’,’constant’,’nearest’,’mirror’, ‘wrap’}, optional

The mode parameter determines how the array borders are handled, where cval is
the value when mode is equal to ‘constant’. Default is ‘reflect’

cval : scalar, optional

Value to fill past edges of input if mode is ‘constant’. Default is 0.0

origin : scalar, optional
The ‘‘origin‘‘ parameter controls the placement of the filter. Default 0 :

minimum_filter(input, size=None, footprint=None, output=None, mode=’reflect’, cval=0.0, origin=0)
Calculates a multi-dimensional minimum filter.

Parameters
input : array-like

input array to filter

202 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

size : scalar or tuple, optional

See footprint, below

footprint : array, optional

Either size or footprint must be defined. size gives the shape that is taken
from the input array, at every element position, to define the input to the filter
function. footprint is a boolean array that specifies (implicitly) a shape, but
also which of the elements within this shape will get passed to the filter function.
Thus size=(n,m) is equivalent to footprint=np.ones((n,m)). We adjust
size to the number of dimensions of the input array, so that, if the input array is
shape (10,10,10), and size is 2, then the actual size used is (2,2,2).

output : array, optional

The output parameter passes an array in which to store the filter output.

mode : {‘reflect’,’constant’,’nearest’,’mirror’, ‘wrap’}, optional

The mode parameter determines how the array borders are handled, where cval is
the value when mode is equal to ‘constant’. Default is ‘reflect’

cval : scalar, optional

Value to fill past edges of input if mode is ‘constant’. Default is 0.0

origin : scalar, optional
The ‘‘origin‘‘ parameter controls the placement of the filter. Default 0 :

minimum_filter1d(input, size, axis=-1, output=None, mode=’reflect’, cval=0.0, origin=0)
Calculate a one-dimensional minimum filter along the given axis.

The lines of the array along the given axis are filtered with a minimum filter of given size.

Parameters
input : array-like

input array to filter

size : int

length along which to calculate 1D minimum

axis : integer, optional

axis of input along which to calculate. Default is -1

output : array, optional

The output parameter passes an array in which to store the filter output.

mode : {‘reflect’,’constant’,’nearest’,’mirror’, ‘wrap’}, optional

The mode parameter determines how the array borders are handled, where cval is
the value when mode is equal to ‘constant’. Default is ‘reflect’

cval : scalar, optional

Value to fill past edges of input if mode is ‘constant’. Default is 0.0

origin : scalar, optional
The ‘‘origin‘‘ parameter controls the placement of the filter. Default 0 :

percentile_filter(input, percentile, size=None, footprint=None, output=None, mode=’reflect’, cval=0.0, ori-
gin=0)

Calculates a multi-dimensional percentile filter.

Parameters
input : array-like

3.10. Multi-dimensional image processing (scipy.ndimage) 203

SciPy Reference Guide, Release 0.7

input array to filter

percentile : scalar

The percentile parameter may be less then zero, i.e., percentile = -20 equals per-
centile = 80

size : scalar or tuple, optional

See footprint, below

footprint : array, optional

Either size or footprint must be defined. size gives the shape that is taken
from the input array, at every element position, to define the input to the filter
function. footprint is a boolean array that specifies (implicitly) a shape, but
also which of the elements within this shape will get passed to the filter function.
Thus size=(n,m) is equivalent to footprint=np.ones((n,m)). We adjust
size to the number of dimensions of the input array, so that, if the input array is
shape (10,10,10), and size is 2, then the actual size used is (2,2,2).

output : array, optional

The output parameter passes an array in which to store the filter output.

mode : {‘reflect’,’constant’,’nearest’,’mirror’, ‘wrap’}, optional

The mode parameter determines how the array borders are handled, where cval is
the value when mode is equal to ‘constant’. Default is ‘reflect’

cval : scalar, optional

Value to fill past edges of input if mode is ‘constant’. Default is 0.0

origin : scalar, optional
The ‘‘origin‘‘ parameter controls the placement of the filter. Default 0 :

prewitt(input, axis=-1, output=None, mode=’reflect’, cval=0.0)
Calculate a Prewitt filter.

Parameters
input : array-like

input array to filter

axis : integer, optional

axis of input along which to calculate. Default is -1

output : array, optional

The output parameter passes an array in which to store the filter output.

mode : {‘reflect’,’constant’,’nearest’,’mirror’, ‘wrap’}, optional

The mode parameter determines how the array borders are handled, where cval is
the value when mode is equal to ‘constant’. Default is ‘reflect’

cval : scalar, optional

Value to fill past edges of input if mode is ‘constant’. Default is 0.0

rank_filter(input, rank, size=None, footprint=None, output=None, mode=’reflect’, cval=0.0, origin=0)
Calculates a multi-dimensional rank filter.

Parameters
input : array-like

input array to filter

rank : integer

204 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

The rank parameter may be less then zero, i.e., rank = -1 indicates the largest ele-
ment.

size : scalar or tuple, optional

See footprint, below

footprint : array, optional

Either size or footprint must be defined. size gives the shape that is taken
from the input array, at every element position, to define the input to the filter
function. footprint is a boolean array that specifies (implicitly) a shape, but
also which of the elements within this shape will get passed to the filter function.
Thus size=(n,m) is equivalent to footprint=np.ones((n,m)). We adjust
size to the number of dimensions of the input array, so that, if the input array is
shape (10,10,10), and size is 2, then the actual size used is (2,2,2).

output : array, optional

The output parameter passes an array in which to store the filter output.

mode : {‘reflect’,’constant’,’nearest’,’mirror’, ‘wrap’}, optional

The mode parameter determines how the array borders are handled, where cval is
the value when mode is equal to ‘constant’. Default is ‘reflect’

cval : scalar, optional

Value to fill past edges of input if mode is ‘constant’. Default is 0.0

origin : scalar, optional
The ‘‘origin‘‘ parameter controls the placement of the filter. Default 0 :

sobel(input, axis=-1, output=None, mode=’reflect’, cval=0.0)
Calculate a Sobel filter.

Parameters
input : array-like

input array to filter

axis : integer, optional

axis of input along which to calculate. Default is -1

output : array, optional

The output parameter passes an array in which to store the filter output.

mode : {‘reflect’,’constant’,’nearest’,’mirror’, ‘wrap’}, optional

The mode parameter determines how the array borders are handled, where cval is
the value when mode is equal to ‘constant’. Default is ‘reflect’

cval : scalar, optional

Value to fill past edges of input if mode is ‘constant’. Default is 0.0

uniform_filter(input, size=3, output=None, mode=’reflect’, cval=0.0, origin=0)
Multi-dimensional uniform filter.

Parameters
input : array-like

input array to filter

size : int or sequence of ints

The sizes of the uniform filter are given for each axis as a sequence, or as a single
number, in which case the size is equal for all axes.

3.10. Multi-dimensional image processing (scipy.ndimage) 205

SciPy Reference Guide, Release 0.7

output : array, optional

The output parameter passes an array in which to store the filter output.

mode : {‘reflect’,’constant’,’nearest’,’mirror’, ‘wrap’}, optional

The mode parameter determines how the array borders are handled, where cval is
the value when mode is equal to ‘constant’. Default is ‘reflect’

cval : scalar, optional

Value to fill past edges of input if mode is ‘constant’. Default is 0.0

origin : scalar, optional
The ‘‘origin‘‘ parameter controls the placement of the filter. Default 0 :

Notes

The multi-dimensional filter is implemented as a sequence of one-dimensional uniform filters. The intermediate
arrays are stored in the same data type as the output. Therefore, for output types with a limited precision, the
results may be imprecise because intermediate results may be stored with insufficient precision.

uniform_filter1d(input, size, axis=-1, output=None, mode=’reflect’, cval=0.0, origin=0)
Calculate a one-dimensional uniform filter along the given axis.

The lines of the array along the given axis are filtered with a uniform filter of given size.

Parameters
input : array-like

input array to filter

size : integer

length of uniform filter

axis : integer, optional

axis of input along which to calculate. Default is -1

output : array, optional

The output parameter passes an array in which to store the filter output.

mode : {‘reflect’,’constant’,’nearest’,’mirror’, ‘wrap’}, optional

The mode parameter determines how the array borders are handled, where cval is
the value when mode is equal to ‘constant’. Default is ‘reflect’

cval : scalar, optional

Value to fill past edges of input if mode is ‘constant’. Default is 0.0

origin : scalar, optional
The ‘‘origin‘‘ parameter controls the placement of the filter. Default 0 :

3.10.2 Fourier filters scipy.ndimage.fourier

fourier_ellipsoid (input, size[, n, axis, output]) Multi-dimensional ellipsoid fourier filter.

fourier_gaussian (input, sigma[, n, axis, output]) Multi-dimensional Gaussian fourier filter.

fourier_shift (input, shift[, n, axis, output]) Multi-dimensional fourier shift filter.

fourier_uniform (input, size[, n, axis, output]) Multi-dimensional Uniform fourier filter.

206 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

fourier_ellipsoid(input, size, n=-1, axis=-1, output=None)
Multi-dimensional ellipsoid fourier filter.

The array is multiplied with the fourier transform of a ellipsoid of given sizes. If the parameter n is negative,
then the input is assumed to be the result of a complex fft. If n is larger or equal to zero, the input is assumed
to be the result of a real fft, and n gives the length of the of the array before transformation along the the real
transform direction. The axis of the real transform is given by the axis parameter. This function is implemented
for arrays of rank 1, 2, or 3.

fourier_gaussian(input, sigma, n=-1, axis=-1, output=None)
Multi-dimensional Gaussian fourier filter.

The array is multiplied with the fourier transform of a Gaussian kernel. If the parameter n is negative, then the
input is assumed to be the result of a complex fft. If n is larger or equal to zero, the input is assumed to be the
result of a real fft, and n gives the length of the of the array before transformation along the the real transform
direction. The axis of the real transform is given by the axis parameter.

fourier_shift(input, shift, n=-1, axis=-1, output=None)
Multi-dimensional fourier shift filter.

The array is multiplied with the fourier transform of a shift operation If the parameter n is negative, then the
input is assumed to be the result of a complex fft. If n is larger or equal to zero, the input is assumed to be the
result of a real fft, and n gives the length of the of the array before transformation along the the real transform
direction. The axis of the real transform is given by the axis parameter.

fourier_uniform(input, size, n=-1, axis=-1, output=None)
Multi-dimensional Uniform fourier filter.

The array is multiplied with the fourier transform of a box of given sizes. If the parameter n is negative, then the
input is assumed to be the result of a complex fft. If n is larger or equal to zero, the input is assumed to be the
result of a real fft, and n gives the length of the of the array before transformation along the the real transform
direction. The axis of the real transform is given by the axis parameter.

3.10.3 Interpolation scipy.ndimage.interpolation

affine_transform (input, matrix[, offset, out-
put_shape, ...])

Apply an affine transformation.

geometric_transform (input, mapping[, out-
put_shape, output_type, ...])

Apply an arbritrary geometric transform.

map_coordinates (input, coordinates[, output_type, out-
put, ...])

Map the input array to new coordinates by
interpolation.

rotate (input, angle[, axes, 0), reshape, ...]) Rotate an array.

shift (input, shift[, output_type, output, ...]) Shift an array.

spline_filter (input[, order, output, output_type]) Multi-dimensional spline filter.

spline_filter1d (input[, order, axis, output, ...]) Calculates a one-dimensional spline filter along
the given axis.

zoom (input, zoom[, output_type, output, ...]) Zoom an array.

affine_transform(input, matrix, offset=0.0, output_shape=None, output_type=None, output=None, order=3,
mode=’constant’, cval=0.0, prefilter=True)

3.10. Multi-dimensional image processing (scipy.ndimage) 207

SciPy Reference Guide, Release 0.7

Apply an affine transformation.

The given matrix and offset are used to find for each point in the output the corresponding coordinates in the input
by an affine transformation. The value of the input at those coordinates is determined by spline interpolation of
the requested order. Points outside the boundaries of the input are filled according to the given mode. The output
shape can optionally be given. If not given it is equal to the input shape. The parameter prefilter determines if
the input is pre-filtered before interpolation, if False it is assumed that the input is already filtered.

The matrix must be two-dimensional or can also be given as a one-dimensional sequence or array. In the latter
case, it is assumed that the matrix is diagonal. A more efficient algorithms is then applied that exploits the
separability of the problem.

geometric_transform(input, mapping, output_shape=None, output_type=None, output=None, order=3,
mode=’constant’, cval=0.0, prefilter=True, extra_arguments=(), extra_keywords={})

Apply an arbritrary geometric transform.

The given mapping function is used to find, for each point in the output, the corresponding coordinates in the
input. The value of the input at those coordinates is determined by spline interpolation of the requested order.

mapping must be a callable object that accepts a tuple of length equal to the output array rank and returns the
corresponding input coordinates as a tuple of length equal to the input array rank. Points outside the boundaries
of the input are filled according to the given mode (‘constant’, ‘nearest’, ‘reflect’ or ‘wrap’). The output shape
can optionally be given. If not given, it is equal to the input shape. The parameter prefilter determines if the
input is pre-filtered before interpolation (necessary for spline interpolation of order > 1). If False it is assumed
that the input is already filtered. The extra_arguments and extra_keywords arguments can be used to provide
extra arguments and keywords that are passed to the mapping function at each call.

map_coordinates(input, coordinates, output_type=None, output=None, order=3, mode=’constant’, cval=0.0,
prefilter=True)

Map the input array to new coordinates by interpolation.

The array of coordinates is used to find, for each point in the output, the corresponding coordinates in the input.
The value of the input at those coordinates is determined by spline interpolation of the requested order.

The shape of the output is derived from that of the coordinate array by dropping the first axis. The values of the
array along the first axis are the coordinates in the input array at which the output value is found.

Parameters
input : ndarray

The input array

coordinates : array_like

The coordinates at which input is evaluated.

output_type : deprecated

Use output instead.

output : dtype, optional

If the output has to have a certain type, specify the dtype. The default behavior is for
the output to have the same type as input.

order : int, optional

The order of the spline interpolation, default is 3. The order has to be in the range
0-5.

mode : str, optional

Points outside the boundaries of the input are filled according to the given mode
(‘constant’, ‘nearest’, ‘reflect’ or ‘wrap’). Default is ‘constant’.

cval : scalar, optional

Value used for points outside the boundaries of the input if mode=’constant. Default
is 0.0

208 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

prefilter : bool, optional

The parameter prefilter determines if the input is pre-filtered with ‘spline_filter‘_
before interpolation (necessary for spline interpolation of order > 1). If False, it is
assumed that the input is already filtered.

Returns
return_value : ndarray

The result of transforming the input. The shape of the output is derived from that of
coordinates by dropping the first axis.

See Also:
spline_filter, geometric_transform, scipy.interpolate

Examples

>>> import scipy.ndimage
>>> a = np.arange(12.).reshape((4,3))
>>> print a
array([[0., 1., 2.],

[3., 4., 5.],
[6., 7., 8.],
[9., 10., 11.]])

>>> sp.ndimage.map_coordinates(a, [[0.5, 2], [0.5, 1]], order=1)
[2. 7.]

Above, the interpolated value of a[0.5, 0.5] gives output[0], while a[2, 1] is output[1].

>>> inds = np.array([[0.5, 2], [0.5, 4]])
>>> sp.ndimage.map_coordinates(a, inds, order=1, cval=-33.3)
array([2. , -33.3])
>>> sp.ndimage.map_coordinates(a, inds, order=1, mode=’nearest’)
array([2., 8.])
>>> sp.ndimage.map_coordinates(a, inds, order=1, cval=0, output=bool)
array([True, False], dtype=bool

rotate(input, angle, axes=(1, 0), reshape=True, output_type=None, output=None, order=3, mode=’constant’,
cval=0.0, prefilter=True)

Rotate an array.

The array is rotated in the plane defined by the two axes given by the axes parameter using spline interpolation of
the requested order. The angle is given in degrees. Points outside the boundaries of the input are filled according
to the given mode. If reshape is true, the output shape is adapted so that the input array is contained completely
in the output. The parameter prefilter determines if the input is pre- filtered before interpolation, if False it is
assumed that the input is already filtered.

shift(input, shift, output_type=None, output=None, order=3, mode=’constant’, cval=0.0, prefilter=True)
Shift an array.

The array is shifted using spline interpolation of the requested order. Points outside the boundaries of the input
are filled according to the given mode. The parameter prefilter determines if the input is pre-filtered before
interpolation, if False it is assumed that the input is already filtered.

spline_filter(input, order=3, output=<type ’numpy.float64’>, output_type=None)
Multi-dimensional spline filter.

Note: The multi-dimensional filter is implemented as a sequence of one-dimensional spline filters. The interme-
diate arrays are stored in the same data type as the output. Therefore, for output types with a limited precision,
the results may be imprecise because intermediate results may be stored with insufficient precision.

3.10. Multi-dimensional image processing (scipy.ndimage) 209

SciPy Reference Guide, Release 0.7

spline_filter1d(input, order=3, axis=-1, output=<type ’numpy.float64’>, output_type=None)
Calculates a one-dimensional spline filter along the given axis.

The lines of the array along the given axis are filtered by a spline filter. The order of the spline must be >= 2 and
<= 5.

zoom(input, zoom, output_type=None, output=None, order=3, mode=’constant’, cval=0.0, prefilter=True)
Zoom an array.

The array is zoomed using spline interpolation of the requested order. Points outside the boundaries of the input
are filled according to the given mode. The parameter prefilter determines if the input is pre- filtered before
interpolation, if False it is assumed that the input is already filtered.

3.10.4 Measurements scipy.ndimage.measurements

center_of_mass (input[, labels, index]) Calculate the center of mass of of the array.

extrema (input[, labels, index]) Calculate the minimum, the maximum and their positions of the
values of the array.

find_objects (input[, max_label]) Find objects in a labeled array.

histogram (input, min, max, bins[, la-
bels, index])

Calculate a histogram of of the array.

label (input[, structure, output]) Label an array of objects.

maximum (input[, labels, index]) Return the maximum input value.

maximum_position (input[, labels, in-
dex])

Find the position of the maximum of the values of the array.

mean (input[, labels, index]) Calculate the mean of the values of the array.

minimum (input[, labels, index]) Calculate the minimum of the values of the array.

minimum_position (input[, labels, in-
dex])

Find the position of the minimum of the values of the array.

standard_deviation (input[, la-
bels, index])

Calculate the standard deviation of the values of the array.

sum (input[, labels, index]) Calculate the sum of the values of the array.

variance (input[, labels, index]) Calculate the variance of the values of the array.

watershed_ift (input, markers[, struc-
ture, output])

Apply watershed from markers using a iterative forest transform
algorithm.

center_of_mass(input, labels=None, index=None)
Calculate the center of mass of of the array.

The index parameter is a single label number or a sequence of label numbers of the objects to be measured. If
index is None, all values are used where labels is larger than zero.

210 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

extrema(input, labels=None, index=None)

Calculate the minimum, the maximum and their positions of the
values of the array.

The index parameter is a single label number or a sequence of label numbers of the objects to be measured. If
index is None, all values are used where labels is larger than zero.

find_objects(input, max_label=0)
Find objects in a labeled array.

The input must be an array with labeled objects. A list of slices into the array is returned that contain the objects.
The list represents a sequence of the numbered objects. If a number is missing, None is returned instead of a
slice. If max_label > 0, it gives the largest object number that is searched for, otherwise all are returned.

histogram(input, min, max, bins, labels=None, index=None)
Calculate a histogram of of the array.

The histogram is defined by its minimum and maximum value and the number of bins.

The index parameter is a single label number or a sequence of label numbers of the objects to be measured. If
index is None, all values are used where labels is larger than zero.

label(input, structure=None, output=None)
Label an array of objects.

The structure that defines the object connections must be symmetric. If no structuring element is provided an
element is generated with a squared connectivity equal to one. This function returns a tuple consisting of the
array of labels and the number of objects found. If an output array is provided only the number of objects found
is returned.

maximum(input, labels=None, index=None)
Return the maximum input value.

The index parameter is a single label number or a sequence of label numbers of the objects to be measured. If
index is None, all values are used where labels is larger than zero.

maximum_position(input, labels=None, index=None)
Find the position of the maximum of the values of the array.

The index parameter is a single label number or a sequence of label numbers of the objects to be measured. If
index is None, all values are used where labels is larger than zero.

mean(input, labels=None, index=None)
Calculate the mean of the values of the array.

The index parameter is a single label number or a sequence of label numbers of the objects to be measured. If
index is None, all values are used where labels is larger than zero.

minimum(input, labels=None, index=None)
Calculate the minimum of the values of the array.

The index parameter is a single label number or a sequence of label numbers of the objects to be measured. If
index is None, all values are used where labels is larger than zero.

minimum_position(input, labels=None, index=None)
Find the position of the minimum of the values of the array.

The index parameter is a single label number or a sequence of label numbers of the objects to be measured. If
index is None, all values are used where labels is larger than zero.

standard_deviation(input, labels=None, index=None)
Calculate the standard deviation of the values of the array.

The index parameter is a single label number or a sequence of label numbers of the objects to be measured. If
index is None, all values are used where labels is larger than zero.

3.10. Multi-dimensional image processing (scipy.ndimage) 211

SciPy Reference Guide, Release 0.7

sum(input, labels=None, index=None)
Calculate the sum of the values of the array.

Parameters

labels
[array of integers, same shape as input] Assign labels to the values of the array.

index
[scalar or array] A single label number or a sequence of label numbers of the objects to
be measured. If index is None, all values are used where ‘labels’ is larger than zero.

Examples

>>> input = [0,1,2,3]
>>> labels = [1,1,2,2]
>>> sum(input, labels, index=[1,2])
[1.0, 5.0]

variance(input, labels=None, index=None)
Calculate the variance of the values of the array.

The index parameter is a single label number or a sequence of label numbers of the objects to be measured. If
index is None, all values are used where labels is larger than zero.

watershed_ift(input, markers, structure=None, output=None)
Apply watershed from markers using a iterative forest transform algorithm.

Negative markers are considered background markers which are processed after the other markers. A structuring
element defining the connectivity of the object can be provided. If none is provided an element is generated iwth
a squared connecitiviy equal to one. An output array can optionally be provided.

212 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

3.10.5 Morphology scipy.ndimage.morphology

binary_closing (input[, structure, iterations, ...]) Multi-dimensional binary closing with the given
structure.

binary_dilation (input[, structure, iterations, ...]) Multi-dimensional binary dilation with the given
structure.

binary_erosion (input[, structure, iterations, ...]) Multi-dimensional binary erosion with the given
structure.

binary_fill_holes (input[, structure, output, ...]) Fill the holes in binary objects.

binary_hit_or_miss (input[, structure1, struc-
ture2, ...])

Multi-dimensional binary hit-or-miss transform.

binary_opening (input[, structure, iterations, ...]) Multi-dimensional binary opening with the given
structure.

binary_propagation (input[, structure, mask, ...]) Multi-dimensional binary propagation with the
given structure.

black_tophat (input[, size, footprint, ...]) Multi-dimensional black tophat filter.

distance_transform_bf (input[, metric, sam-
pling, ...])

Distance transform function by a brute force
algorithm.

distance_transform_cdt (input[, metric, re-
turn_distances, ...])

Distance transform for chamfer type of transforms.

distance_transform_edt (input[, sampling, re-
turn_distances, ...])

Exact euclidean distance transform.

generate_binary_structure (rank, connectivity) Generate a binary structure for binary
morphological operations.

grey_closing (input[, size, footprint, ...]) Multi-dimensional grey valued closing.

grey_dilation (input[, size, footprint, ...]) Calculate a grey values dilation.

grey_erosion (input[, size, footprint, ...]) Calculate a grey values erosion.

grey_opening (input[, size, footprint, ...]) Multi-dimensional grey valued opening.

iterate_structure (structure, iterations[, origin]) Iterate a structure by dilating it with itself.

morphological_gradient (input[, size, foot-
print, ...])

Multi-dimensional morphological gradient.

morphological_laplace (input[, size, footprint, ...]) Multi-dimensional morphological laplace.

white_tophat (input[, size, footprint, ...]) Multi-dimensional white tophat filter.

3.10. Multi-dimensional image processing (scipy.ndimage) 213

SciPy Reference Guide, Release 0.7

binary_closing(input, structure=None, iterations=1, output=None, origin=0)
Multi-dimensional binary closing with the given structure.

An output array can optionally be provided. The origin parameter controls the placement of the filter. If no
structuring element is provided an element is generated with a squared connectivity equal to one. The iterations
parameter gives the number of times the dilations and then the erosions are done.

binary_dilation(input, structure=None, iterations=1, mask=None, output=None, border_value=0, origin=0,
brute_force=False)

Multi-dimensional binary dilation with the given structure.

An output array can optionally be provided. The origin parameter controls the placement of the filter. If no
structuring element is provided an element is generated with a squared connectivity equal to one. The dilation
operation is repeated iterations times. If iterations is less than 1, the dilation is repeated until the result does not
change anymore. If a mask is given, only those elements with a true value at the corresponding mask element
are modified at each iteration.

binary_erosion(input, structure=None, iterations=1, mask=None, output=None, border_value=0, origin=0,
brute_force=False)

Multi-dimensional binary erosion with the given structure.

An output array can optionally be provided. The origin parameter controls the placement of the filter. If no struc-
turing element is provided an element is generated with a squared connectivity equal to one. The border_value
parameter gives the value of the array outside the border. The erosion operation is repeated iterations times. If
iterations is less than 1, the erosion is repeated until the result does not change anymore. If a mask is given, only
those elements with a true value at the corresponding mask element are modified at each iteration.

binary_fill_holes(input, structure=None, output=None, origin=0)
Fill the holes in binary objects.

An output array can optionally be provided. The origin parameter controls the placement of the filter. If no
structuring element is provided an element is generated with a squared connectivity equal to one.

binary_hit_or_miss(input, structure1=None, structure2=None, output=None, origin1=0, origin2=None)
Multi-dimensional binary hit-or-miss transform.

An output array can optionally be provided. The origin parameters controls the placement of the structuring
elements. If the first structuring element is not given one is generated with a squared connectivity equal to one.
If the second structuring element is not provided, it set equal to the inverse of the first structuring element. If the
origin for the second structure is equal to None it is set equal to the origin of the first.

binary_opening(input, structure=None, iterations=1, output=None, origin=0)
Multi-dimensional binary opening with the given structure.

An output array can optionally be provided. The origin parameter controls the placement of the filter. If no
structuring element is provided an element is generated with a squared connectivity equal to one. The iterations
parameter gives the number of times the erosions and then the dilations are done.

binary_propagation(input, structure=None, mask=None, output=None, border_value=0, origin=0)
Multi-dimensional binary propagation with the given structure.

An output array can optionally be provided. The origin parameter controls the placement of the filter. If no
structuring element is provided an element is generated with a squared connectivity equal to one. If a mask is
given, only those elements with a true value at the corresponding mask element are.

This function is functionally equivalent to calling binary_dilation with the number of iterations less then one:
iterative dilation until the result does not change anymore.

black_tophat(input, size=None, footprint=None, structure=None, output=None, mode=’reflect’, cval=0.0, ori-
gin=0)

Multi-dimensional black tophat filter.

Either a size or a footprint, or the structure must be provided. An output array can optionally be provided. The
origin parameter controls the placement of the filter. The mode parameter determines how the array borders are
handled, where cval is the value when mode is equal to ‘constant’.

214 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

distance_transform_bf(input, metric=’euclidean’, sampling=None, return_distances=True, re-
turn_indices=False, distances=None, indices=None)

Distance transform function by a brute force algorithm.

This function calculates the distance transform of the input, by replacing each background element (zero values),
with its shortest distance to the foreground (any element non-zero). Three types of distance metric are supported:
‘euclidean’, ‘taxicab’ and ‘chessboard’.

In addition to the distance transform, the feature transform can be calculated. In this case the index of the closest
background element is returned along the first axis of the result.

The return_distances, and return_indices flags can be used to indicate if the distance transform, the feature
transform, or both must be returned.

Optionally the sampling along each axis can be given by the sampling parameter which should be a sequence of
length equal to the input rank, or a single number in which the sampling is assumed to be equal along all axes.
This parameter is only used in the case of the euclidean distance transform.

This function employs a slow brute force algorithm, see also the function distance_transform_cdt for more
efficient taxicab and chessboard algorithms.

the distances and indices arguments can be used to give optional output arrays that must be of the correct size
and type (float64 and int32).

distance_transform_cdt(input, metric=’chessboard’, return_distances=True, return_indices=False, dis-
tances=None, indices=None)

Distance transform for chamfer type of transforms.

The metric determines the type of chamfering that is done. If the metric is equal to ‘taxicab’ a structure is gen-
erated using generate_binary_structure with a squared distance equal to 1. If the metric is equal to ‘chessboard’,
a metric is generated using generate_binary_structure with a squared distance equal to the rank of the array.
These choices correspond to the common interpretations of the taxicab and the chessboard distance metrics in
two dimensions.

In addition to the distance transform, the feature transform can be calculated. In this case the index of the closest
background element is returned along the first axis of the result.

The return_distances, and return_indices flags can be used to indicate if the distance transform, the feature
transform, or both must be returned.

The distances and indices arguments can be used to give optional output arrays that must be of the correct size
and type (both int32).

distance_transform_edt(input, sampling=None, return_distances=True, return_indices=False, dis-
tances=None, indices=None)

Exact euclidean distance transform.

In addition to the distance transform, the feature transform can be calculated. In this case the index of the closest
background element is returned along the first axis of the result.

The return_distances, and return_indices flags can be used to indicate if the distance transform, the feature
transform, or both must be returned.

Optionally the sampling along each axis can be given by the sampling parameter which should be a sequence of
length equal to the input rank, or a single number in which the sampling is assumed to be equal along all axes.

the distances and indices arguments can be used to give optional output arrays that must be of the correct size
and type (float64 and int32).

generate_binary_structure(rank, connectivity)
Generate a binary structure for binary morphological operations.

The inputs are the rank of the array to which the structure will be applied and the square of the connectivity of
the structure.

grey_closing(input, size=None, footprint=None, structure=None, output=None, mode=’reflect’, cval=0.0, ori-
gin=0)

Multi-dimensional grey valued closing.

3.10. Multi-dimensional image processing (scipy.ndimage) 215

SciPy Reference Guide, Release 0.7

Either a size or a footprint, or the structure must be provided. An output array can optionally be provided. The
origin parameter controls the placement of the filter. The mode parameter determines how the array borders are
handled, where cval is the value when mode is equal to ‘constant’.

grey_dilation(input, size=None, footprint=None, structure=None, output=None, mode=’reflect’, cval=0.0, ori-
gin=0)

Calculate a grey values dilation.

Either a size or a footprint, or the structure must be provided. An output array can optionally be provided. The
origin parameter controls the placement of the filter. The mode parameter determines how the array borders are
handled, where cval is the value when mode is equal to ‘constant’.

grey_erosion(input, size=None, footprint=None, structure=None, output=None, mode=’reflect’, cval=0.0, ori-
gin=0)

Calculate a grey values erosion.

Either a size or a footprint, or the structure must be provided. An output array can optionally be provided. The
origin parameter controls the placement of the filter. The mode parameter determines how the array borders are
handled, where cval is the value when mode is equal to ‘constant’.

grey_opening(input, size=None, footprint=None, structure=None, output=None, mode=’reflect’, cval=0.0, ori-
gin=0)

Multi-dimensional grey valued opening.

Either a size or a footprint, or the structure must be provided. An output array can optionally be provided. The
origin parameter controls the placement of the filter. The mode parameter determines how the array borders are
handled, where cval is the value when mode is equal to ‘constant’.

iterate_structure(structure, iterations, origin=None)
Iterate a structure by dilating it with itself.

If origin is None, only the iterated structure is returned. If not, a tuple of the iterated structure and the modified
origin is returned.

morphological_gradient(input, size=None, footprint=None, structure=None, output=None, mode=’reflect’,
cval=0.0, origin=0)

Multi-dimensional morphological gradient.

Either a size or a footprint, or the structure must be provided. An output array can optionally be provided. The
origin parameter controls the placement of the filter. The mode parameter determines how the array borders are
handled, where cval is the value when mode is equal to ‘constant’.

morphological_laplace(input, size=None, footprint=None, structure=None, output=None, mode=’reflect’,
cval=0.0, origin=0)

Multi-dimensional morphological laplace.

Either a size or a footprint, or the structure must be provided. An output array can optionally be provided. The
origin parameter controls the placement of the filter. The mode parameter determines how the array borders are
handled, where cval is the value when mode is equal to ‘constant’.

white_tophat(input, size=None, footprint=None, structure=None, output=None, mode=’reflect’, cval=0.0, ori-
gin=0)

Multi-dimensional white tophat filter.

Either a size or a footprint, or the structure must be provided. An output array can optionally be provided. The
origin parameter controls the placement of the filter. The mode parameter determines how the array borders are
handled, where cval is the value when mode is equal to ‘constant’.

3.11 Orthogonal distance regression (scipy.odr)

Orthogonal Distance Regression

216 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

3.11.1 Introduction

Why Orthogonal Distance Regression (ODR)? Sometimes one has measurement errors in the explanatory variable,
not just the response variable. Ordinary Least Squares (OLS) fitting procedures treat the data for explanatory variables
as fixed. Furthermore, OLS procedures require that the response variable be an explicit function of the explanatory
variables; sometimes making the equation explicit is unwieldy and introduces errors. ODR can handle both of these
cases with ease and can even reduce to the OLS case if necessary.

ODRPACK is a FORTRAN-77 library for performing ODR with possibly non-linear fitting functions. It uses a mod-
ified trust-region Levenberg-Marquardt-type algorithm to estimate the function parameters. The fitting functions are
provided by Python functions operating on NumPy arrays. The required derivatives may be provided by Python func-
tions as well or may be numerically estimated. ODRPACK can do explicit or implicit ODR fits or can do OLS. Input
and output variables may be multi-dimensional. Weights can be provided to account for different variances of the
observations (even covariances between dimensions of the variables).

odr provides two interfaces: a single function and a set of high-level classes that wrap that function. Please refer to
their docstrings for more information. While the docstring of the function, odr, does not have a full explanation of its
arguments, the classes do, and the arguments with the same name usually have the same requirements. Furthermore,
it is highly suggested that one at least skim the ODRPACK User’s Guide. Know Thy Algorithm.

3.11.2 Use

See the docstrings of odr.odrpack and the functions and classes for usage instructions. The ODRPACK User’s Guide
is also quite helpful. It can be found on one of the ODRPACK’s original author’s website:

http://www.boulder.nist.gov/mcsd/Staff/JRogers/odrpack.html

Robert Kern robert.kern@gmail.com

class Data(x, y=None, we=None, wd=None, fix=None, meta={})
The Data class stores the data to fit.

Each argument is attached to the member of the instance of the same name. The structures of x and y are
described in the Model class docstring. If y is an integer, then the Data instance can only be used to fit with
implicit models where the dimensionality of the response is equal to the specified value of y. The structures of
wd and we are described below. meta is an freeform dictionary for application-specific use.

we weights the effect a deviation in the response variable has on the fit. wd weights the effect a deviation
in the input variable has on the fit. To handle multidimensional inputs and responses easily, the structure of
these arguments has the n’th dimensional axis first. These arguments heavily use the structured arguments
feature of ODRPACK to conveniently and flexibly support all options. See the ODRPACK User’s Guide for a
full explanation of how these weights are used in the algorithm. Basically, a higher value of the weight for a
particular data point makes a deviation at that point more detrimental to the fit.

we – if we is a scalar, then that value is used for all data points (and
all dimensions of the response variable).
If we is a rank-1 array of length q (the dimensionality of the response variable), then this
vector is the diagonal of the covariant weighting matrix for all data points.
If we is a rank-1 array of length n (the number of data points), then the i’th element is the
weight for the i’th response variable observation (single-dimensional only).
If we is a rank-2 array of shape (q, q), then this is the full covariant weighting matrix broadcast
to each observation.
If we is a rank-2 array of shape (q, n), then we[:,i] is the diagonal of the covariant weighting
matrix for the i’th observation.
If we is a rank-3 array of shape (q, q, n), then we[:,:,i] is the full specification of the covariant
weighting matrix for each observation.

3.11. Orthogonal distance regression (scipy.odr) 217

http://www.boulder.nist.gov/mcsd/Staff/JRogers/odrpack.html
mailto:robert.kern@gmail.com

SciPy Reference Guide, Release 0.7

If the fit is implicit, then only a positive scalar value is used.

wd – if wd is a scalar, then that value is used for all data points
(and all dimensions of the input variable). If wd = 0, then the covariant weighting matrix for
each observation is set to the identity matrix (so each dimension of each observation has the
same weight).
If wd is a rank-1 array of length m (the dimensionality of the input variable), then this vector
is the diagonal of the covariant weighting matrix for all data points.
If wd is a rank-1 array of length n (the number of data points), then the i’th element is the
weight for the i’th input variable observation (single-dimensional only).
If wd is a rank-2 array of shape (m, m), then this is the full covariant weighting matrix broad-
cast to each observation.
If wd is a rank-2 array of shape (m, n), then wd[:,i] is the diagonal of the covariant weighting
matrix for the i’th observation.
If wd is a rank-3 array of shape (m, m, n), then wd[:,:,i] is the full specification of the covariant
weighting matrix for each observation.

fix – fix is the same as ifixx in the class ODR. It is an array of integers
with the same shape as data.x that determines which input observations are treated as fixed.
One can use a sequence of length m (the dimensionality of the input observations) to fix some
dimensions for all observations. A value of 0 fixes the observation, a value > 0 makes it free.

meta – optional, freeform dictionary for metadata

set_meta(**kwds)
Update the metadata dictionary with the keywords and data provided by keywords.

class Model(fcn, fjacb=None, fjacd=None, extra_args=None, estimate=None, implicit=0, meta=None)
The Model class stores information about the function you wish to fit.

It stores the function itself, at the least, and optionally stores functions which compute the Jacobians used
during fitting. Also, one can provide a function that will provide reasonable starting values for the fit parameters
possibly given the set of data.

The initialization method stores these into members of the same name.

fcn – fit function: fcn(beta, x) –> y

fjacb – Jacobian of fcn wrt the fit parameters beta:
fjacb(beta, x) –> @f_i(x,B)/@B_j

fjacd – Jacobian of fcn wrt the (possibly multidimensional) input variable:
fjacd(beta, x) –> @f_i(x,B)/@x_j

extra_args – if specified, extra_args should be a tuple of extra
arguments to pass to fcn, fjacb, and fjacd. Each will be called like the following: apply(fcn,
(beta, x) + extra_args)

estimate – provide estimates of the fit parameters from the data:
estimate(data) –> estbeta

implicit – boolean variable which, if TRUE, specifies that the model
is implicit; i.e fcn(beta, x) ~= 0 and there is no y data to fit against.

meta – an optional, freeform dictionary of metadata for the model

Note that the fcn, fjacb, and fjacd operate on NumPy arrays and return a NumPy array. estimate takes an instance
of the Data class.

Here are the rules for the shapes of the argument and return arrays:

218 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

x – if the input data is single-dimensional, then x is rank-1
array; i.e. x = array([1, 2, 3, ...]); x.shape = (n,) If the input data is multi-dimensional, then x
is a rank-2 array; i.e. x = array([[1, 2, ...], [2, 4, ...]]); x.shape = (m, n) In all cases, it has the
same shape as the input data array passed to odr(). m is the dimensionality of the input data,
n is the number of observations.

y – if the response variable is single-dimensional, then y is a rank-1
array; i.e. y = array([2, 4, ...]); y.shape = (n,) If the response variable is multi-dimensional,
then y is a rank-2 array; i.e. y = array([[2, 4, ...], [3, 6, ...]]); y.shape = (q, n) where q is the
dimensionality of the response variable.

beta – rank-1 array of length p where p is the number of parameters;
i.e. beta = array([B_1, B_2, ..., B_p])

fjacb – if the response variable is multi-dimensional, then the return
array’s shape is (q, p, n) such that fjacb(x,beta)[l,k,i] = @f_l(X,B)/@B_k evaluated at the i’th
data point. If q == 1, then the return array is only rank-2 and with shape (p, n).

fjacd – as with fjacb, only the return array’s shape is (q, m, n) such that
fjacd(x,beta)[l,j,i] = @f_l(X,B)/@X_j at the i’th data point. If q == 1, then the return array’s
shape is (m, n). If m == 1, the shape is (q, n). If m == q == 1, the shape is (n,).

set_meta(**kwds)
Update the metadata dictionary with the keywords and data provided here.

class ODR(data, model, beta0=None, delta0=None, ifixb=None, ifixx=None, job=None, iprint=None, errfile=None,
rptfile=None, ndigit=None, taufac=None, sstol=None, partol=None, maxit=None, stpb=None,
stpd=None, sclb=None, scld=None, work=None, iwork=None)

The ODR class gathers all information and coordinates the running of the main fitting routine.

Members of instances of the ODR class have the same names as the arguments to the initialization routine.

Parameters
Required: :

data – instance of the Data class
model – instance of the Model class
beta0 – a rank-1 sequence of initial parameter values. Optional if

model provides an “estimate” function to estimate these values.
Optional:

delta0 – a (double-precision) float array to hold the initial values of
the errors in the input variables. Must be same shape as data.x .

ifixb – sequence of integers with the same length as beta0 that determines

which parameters are held fixed. A value of 0 fixes the parameter, a value > 0
makes the parameter free.

ifixx – an array of integers with the same shape as data.x that determines
which input observations are treated as fixed. One can use a sequence of
length m (the dimensionality of the input observations) to fix some dimen-
sions for all observations. A value of 0 fixes the observation, a value > 0
makes it free.

job – an integer telling ODRPACK what tasks to perform. See p. 31 of the

ODRPACK User’s Guide if you absolutely must set the value here. Use the
method set_job post-initialization for a more readable interface.

iprint – an integer telling ODRPACK what to print. See pp. 33-34 of the
ODRPACK User’s Guide if you absolutely must set the value here. Use the
method set_iprint post-initialization for a more readable interface.

3.11. Orthogonal distance regression (scipy.odr) 219

SciPy Reference Guide, Release 0.7

errfile – string with the filename to print ODRPACK errors to. *Do Not Open

This File Yourself!*
rptfile – string with the filename to print ODRPACK summaries to. *Do Not

Open This File Yourself!*
ndigit – integer specifying the number of reliable digits in the computation

of the function.
taufac – float specifying the initial trust region. The default value is 1.

The initial trust region is equal to taufac times the length of the first computed
Gauss-Newton step. taufac must be less than 1.

sstol – float specifying the tolerance for convergence based on the relative
change in the sum-of-squares. The default value is eps**(1/2) where eps is
the smallest value such that 1 + eps > 1 for double precision computation on
the machine. sstol must be less than 1.

partol – float specifying the tolerance for convergence based on the relative

change in the estimated parameters. The default value is eps**(2/3) for
explicit models and eps**(1/3) for implicit models. partol must be less than
1.

maxit – integer specifying the maximum number of iterations to perform. For

first runs, maxit is the total number of iterations performed and defaults to
50. For restarts, maxit is the number of additional iterations to perform and
defaults to 10.

stpb – sequence (len(stpb) == len(beta0)) of relative step sizes to compute
finite difference derivatives wrt the parameters.

stpd – array (stpd.shape == data.x.shape or stpd.shape == (m,)) of relative

step sizes to compute finite difference derivatives wrt the input variable
errors. If stpd is a rank-1 array with length m (the dimensionality of the input
variable), then the values are broadcast to all observations.

sclb – sequence (len(stpb) == len(beta0)) of scaling factors for the
parameters. The purpose of these scaling factors are to scale all of the parame-
ters to around unity. Normally appropriate scaling factors are computed if this
argument is not specified. Specify them yourself if the automatic procedure
goes awry.

scld – array (scld.shape == data.x.shape or scld.shape == (m,)) of scaling
factors for the errors in the input variables. Again, these factors are automat-
ically computed if you do not provide them. If scld.shape == (m,), then the
scaling factors are broadcast to all observations.

work – array to hold the double-valued working data for ODRPACK. When

restarting, takes the value of self.output.work .
iwork – array to hold the integer-valued working data for ODRPACK. When

restarting, takes the value of self.output.iwork .
Other Members (not supplied as initialization arguments):

output – an instance if the Output class containing all of the returned
data from an invocation of ODR.run() or ODR.restart()

220 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

restart(iter=None)
Restarts the run with iter more iterations.

Parameters
iter : int, optional

ODRPACK’s default for the number of new iterations is 10.
Returns

output : Output instance
This object is also assigned to the attribute .output .

run()
Run the fitting routine with all of the information given.

Returns
output : Output instance

This object is also assigned to the attribute .output .

set_iprint(init=None, so_init=None, iter=None, so_iter=None, iter_step=None, final=None, so_final=None)
Set the iprint parameter for the printing of computation reports.

If any of the arguments are specified here, then they are set in the iprint member. If iprint is not set
manually or with this method, then ODRPACK defaults to no printing. If no filename is specified with the
member rptfile, then ODRPACK prints to stdout. One can tell ODRPACK to print to stdout in addition
to the specified filename by setting the so_* arguments to this function, but one cannot specify to print to
stdout but not a file since one can do that by not specifying a rptfile filename.

There are three reports: initialization, iteration, and final reports. They are represented by the arguments
init, iter, and final respectively. The permissible values are 0, 1, and 2 representing “no report”, “short
report”, and “long report” respectively.

The argument iter_step (0 <= iter_step <= 9) specifies how often to make the iteration report; the report
will be made for every iter_step’th iteration starting with iteration one. If iter_step == 0, then no iteration
report is made, regardless of the other arguments.

If the rptfile is None, then any so_* arguments supplied will raise an exception.

set_job(fit_type=None, deriv=None, var_calc=None, del_init=None, restart=None)
Sets the “job” parameter is a hopefully comprehensible way.

If an argument is not specified, then the value is left as is. The default value from class initialization is for
all of these options set to 0.

Pa-
rame-
ter

Value Meaning

fit_type 0 1
2

explicit ODR implicit ODR ordinary least-squares

deriv 0 1
2
3

forward finite differences central finite differences user-supplied derivatives (Jacobians) with
results checked by ODRPACK user-supplied derivatives, no checking

var_calc 0
1
2

calculate asymptotic covariance matrix and fit parameter uncertainties (V_B, s_B) using
derivatives recomputed at the final solution calculate V_B and s_B using derivatives from last
iteration do not calculate V_B and s_B

del_init 0 1 initial input variable offsets set to 0 initial offsets provided by user in variable “work”
restart 0 1 fit is not a restart fit is a restart

The permissible values are different from those given on pg. 31 of the ODRPACK User’s Guide only in
that one cannot specify numbers greater than the last value for each variable.

If one does not supply functions to compute the Jacobians, the fitting procedure will change deriv to 0,
finite differences, as a default. To initialize the input variable offsets by yourself, set del_init to 1 and put
the offsets into the “work” variable correctly.

3.11. Orthogonal distance regression (scipy.odr) 221

SciPy Reference Guide, Release 0.7

class Output(output)
The Output class stores the output of an ODR run.

Takes one argument for initialization: the return value from the function odr().

Attributes
beta – estimated parameter values [beta.shape == (q,)] :

sd_beta – standard errors of the estimated parameters
[sd_beta.shape == (p,)]

cov_beta – covariance matrix of the estimated parameters
[cov_beta.shape == (p, p)]

pprint()
Pretty-print important results.

exception odr_error

exception odr_stop

odr(fcn, beta0, y, x, we=None, wd=None, fjacb=None, fjacd=None, extra_args=None, ifixx=None, ifixb=None,
job=0, iprint=0, errfile=None, rptfile=None, ndigit=0, taufac=0.0, sstol=-1.0, partol=-1.0, maxit=-1,
stpb=None, stpd=None, sclb=None, scld=None, work=None, iwork=None, full_output=0)

3.12 Optimization and root finding (scipy.optimize)

3.12.1 Optimization

General-purpose

fmin (func, x0[, args=(), xtol, ftol, ...]) Minimize a function using the downhill simplex algorithm.

fmin_powell (func, x0[, args=(), xtol, ftol, ...]) Minimize a function using modified Powell’s method.

fmin_cg (f, x0[, fprime, args=(), ...]) Minimize a function using a nonlinear conjugate gradient
algorithm.

fmin_bfgs (f, x0[, fprime, args=(), ...]) Minimize a function using the BFGS algorithm.

fmin_ncg (f, x0, fprime[, fhess_p, fhess, ...]) Minimize a function using the Newton-CG method.

leastsq (func, x0[, args=(), Dfun, full_output, ...])Minimize the sum of squares of a set of equations.

fmin(func, x0, args=(), xtol=0.0001, ftol=0.0001, maxiter=None, maxfun=None, full_output=0, disp=1, retall=0,
callback=None)

Minimize a function using the downhill simplex algorithm.

Parameters

func
[callable func(x,*args)] The objective function to be minimized.

x0
[ndarray] Initial guess.

222 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

args
[tuple] Extra arguments passed to func, i.e. f(x,*args).

callback
[callable] Called after each iteration, as callback(xk), where xk is the current parameter
vector.

Returns
(xopt, {fopt, iter, funcalls, warnflag})

xopt
[ndarray] Parameter that minimizes function.

fopt
[float] Value of function at minimum: fopt = func(xopt).

iter
[int] Number of iterations performed.

funcalls
[int] Number of function calls made.

warnflag
[int] 1 : Maximum number of function evaluations made. 2 : Maximum number of
iterations reached.

allvecs
[list] Solution at each iteration.

Other Parameters:

xtol
[float] Relative error in xopt acceptable for convergence.

ftol
[number] Relative error in func(xopt) acceptable for convergence.

maxiter
[int] Maximum number of iterations to perform.

maxfun
[number] Maximum number of function evaluations to make.

full_output
[bool] Set to True if fval and warnflag outputs are desired.

disp
[bool] Set to True to print convergence messages.

retall
[bool] Set to True to return list of solutions at each iteration.

Notes
Uses a Nelder-Mead simplex algorithm to find the minimum of function of one or more vari-
ables.

fmin_powell(func, x0, args=(), xtol=0.0001, ftol=0.0001, maxiter=None, maxfun=None, full_output=0, disp=1,
retall=0, callback=None, direc=None)

Minimize a function using modified Powell’s method.

Parameters

func
[callable f(x,*args)] Objective function to be minimized.

3.12. Optimization and root finding (scipy.optimize) 223

SciPy Reference Guide, Release 0.7

x0
[ndarray] Initial guess.

args
[tuple] Eextra arguments passed to func.

callback
[callable] An optional user-supplied function, called after each iteration. Called as
callback(xk), where xk is the current parameter vector.

direc
[ndarray] Initial direction set.

Returns
(xopt, {fopt, xi, direc, iter, funcalls, warnflag}, {allvecs})

xopt
[ndarray] Parameter which minimizes func.

fopt
[number] Value of function at minimum: fopt = func(xopt).

direc
[ndarray] Current direction set.

iter
[int] Number of iterations.

funcalls
[int] Number of function calls made.

warnflag
[int]
Integer warning flag:

1 : Maximum number of function evaluations. 2 : Maximum number of iterations.
allvecs

[list] List of solutions at each iteration.

Other Parameters:

xtol
[float] Line-search error tolerance.

ftol
[float] Relative error in func(xopt) acceptable for convergence.

maxiter
[int] Maximum number of iterations to perform.

maxfun
[int] Maximum number of function evaluations to make.

full_output
[bool] If True, fopt, xi, direc, iter, funcalls, and warnflag are returned.

disp
[bool] If True, print convergence messages.

retall
[bool] If True, return a list of the solution at each iteration.

Notes
Uses a modification of Powell’s method to find the minimum of a function of N variables.

fmin_cg(f, x0, fprime=None, args=(), gtol=1.0000000000000001e-05, norm=inf, epsilon=1.4901161193847656e-
08, maxiter=None, full_output=0, disp=1, retall=0, callback=None)

Minimize a function using a nonlinear conjugate gradient algorithm.

224 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

Parameters

f
[callable f(x,*args)] Objective function to be minimized.

x0
[ndarray] Initial guess.

fprime
[callable f’(x,*args)] Function which computes the gradient of f.

args
[tuple] Extra arguments passed to f and fprime.

gtol
[float] Stop when norm of gradient is less than gtol.

norm
[float] Order of vector norm to use. -Inf is min, Inf is max.

epsilon
[float or ndarray] If fprime is approximated, use this value for the step size (can be scalar
or vector).

callback
[callable] An optional user-supplied function, called after each iteration. Called as call-
back(xk), where xk is the current parameter vector.

Returns
(xopt, {fopt, func_calls, grad_calls, warnflag}, {allvecs})

xopt
[ndarray] Parameters which minimize f, i.e. f(xopt) == fopt.

fopt
[float] Minimum value found, f(xopt).

func_calls
[int] The number of function_calls made.

grad_calls
[int] The number of gradient calls made.

warnflag
[int] 1 : Maximum number of iterations exceeded. 2 : Gradient and/or function calls not
changing.

allvecs
[ndarray] If retall is True (see other parameters below), then this vector containing the
result at each iteration is returned.

Other Parameters:

maxiter
[int] Maximum number of iterations to perform.

full_output
[bool] If True then return fopt, func_calls, grad_calls, and warnflag in addition to xopt.

disp
[bool] Print convergence message if True.

retall
[bool] return a list of results at each iteration if True.

3.12. Optimization and root finding (scipy.optimize) 225

SciPy Reference Guide, Release 0.7

Notes
Optimize the function, f, whose gradient is given by fprime using the nonlinear conjugate
gradient algorithm of Polak and Ribiere See Wright, and Nocedal ‘Numerical Optimization’,
1999, pg. 120-122.

fmin_bfgs(f, x0, fprime=None, args=(), gtol=1.0000000000000001e-05, norm=inf,
epsilon=1.4901161193847656e-08, maxiter=None, full_output=0, disp=1, retall=0, callback=None)

Minimize a function using the BFGS algorithm.

Parameters

f
[callable f(x,*args)] Objective function to be minimized.

x0
[ndarray] Initial guess.

fprime
[callable f’(x,*args)] Gradient of f.

args
[tuple] Extra arguments passed to f and fprime.

gtol
[float] Gradient norm must be less than gtol before succesful termination.

norm
[float] Order of norm (Inf is max, -Inf is min)

epsilon
[int or ndarray] If fprime is approximated, use this value for the step size.

callback
[callable] An optional user-supplied function to call after each iteration. Called as call-
back(xk), where xk is the current parameter vector.

Returns
(xopt, {fopt, gopt, Hopt, func_calls, grad_calls, warnflag}, <allvecs>)

xopt
[ndarray] Parameters which minimize f, i.e. f(xopt) == fopt.

fopt
[float] Minimum value.

gopt
[ndarray] Value of gradient at minimum, f’(xopt), which should be near 0.

Bopt
[ndarray] Value of 1/f’‘(xopt), i.e. the inverse hessian matrix.

func_calls
[int] Number of function_calls made.

grad_calls
[int] Number of gradient calls made.

warnflag
[integer] 1 : Maximum number of iterations exceeded. 2 : Gradient and/or function calls
not changing.

allvecs
[list] Results at each iteration. Only returned if retall is True.

Other Parameters:

226 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

maxiter
[int] Maximum number of iterations to perform.

full_output
[bool] If True,return fopt, func_calls, grad_calls, and warnflag in addition to xopt.

disp
[bool] Print convergence message if True.

retall
[bool] Return a list of results at each iteration if True.

Notes
Optimize the function, f, whose gradient is given by fprime using the quasi-Newton method
of Broyden, Fletcher, Goldfarb, and Shanno (BFGS) See Wright, and Nocedal ‘Numerical
Optimization’, 1999, pg. 198.

See Also:

scikits.openopt
[SciKit which offers a unified syntax to call] this and other solvers.

fmin_ncg(f, x0, fprime, fhess_p=None, fhess=None, args=(), avextol=1.0000000000000001e-05,
epsilon=1.4901161193847656e-08, maxiter=None, full_output=0, disp=1, retall=0, callback=None)

Minimize a function using the Newton-CG method.

Parameters

f
[callable f(x,*args)] Objective function to be minimized.

x0
[ndarray] Initial guess.

fprime
[callable f’(x,*args)] Gradient of f.

fhess_p
[callable fhess_p(x,p,*args)] Function which computes the Hessian of f times an arbitrary
vector, p.

fhess
[callable fhess(x,*args)] Function to compute the Hessian matrix of f.

args
[tuple] Extra arguments passed to f, fprime, fhess_p, and fhess (the same set of extra
arguments is supplied to all of these functions).

epsilon
[float or ndarray] If fhess is approximated, use this value for the step size.

callback
[callable] An optional user-supplied function which is called after each iteration. Called
as callback(xk), where xk is the current parameter vector.

Returns
(xopt, {fopt, fcalls, gcalls, hcalls, warnflag},{allvecs})

xopt
[ndarray] Parameters which minimizer f, i.e. f(xopt) == fopt.

fopt
[float] Value of the function at xopt, i.e. fopt = f(xopt).

3.12. Optimization and root finding (scipy.optimize) 227

SciPy Reference Guide, Release 0.7

fcalls
[int] Number of function calls made.

gcalls
[int] Number of gradient calls made.

hcalls
[int] Number of hessian calls made.

warnflag
[int] Warnings generated by the algorithm. 1 : Maximum number of iterations exceeded.

allvecs
[list] The result at each iteration, if retall is True (see below).

Other Parameters:

avextol
[float] Convergence is assumed when the average relative error in the minimizer falls below
this amount.

maxiter
[int] Maximum number of iterations to perform.

full_output
[bool] If True, return the optional outputs.

disp
[bool] If True, print convergence message.

retall
[bool] If True, return a list of results at each iteration.

Notes

1. scikits.openopt offers a unified syntax to call this and other solvers.

2. Only one of fhess_p or fhess need to be given. If fhess is provided, then fhess_p will be
ignored. If neither fhess nor fhess_p is provided, then the hessian product will be approximated
using finite differences on fprime. fhess_p must compute the hessian times an arbitrary vector.
If it is not given, finite-differences on fprime are used to compute it. See Wright, and Nocedal
‘Numerical Optimization’, 1999, pg. 140.

leastsq(func, x0, args=(), Dfun=None, full_output=0, col_deriv=0, ftol=1.49012e-08, xtol=1.49012e-08,
gtol=0.0, maxfev=0, epsfcn=0.0, factor=100, diag=None, warning=True)

Minimize the sum of squares of a set of equations.

Description:

Return the point which minimizes the sum of squares of M (non-linear) equations in N unknowns
given a starting estimate, x0, using a modification of the Levenberg-Marquardt algorithm.

x = arg min(sum(func(y)**2,axis=0))
y

Inputs:

func – A Python function or method which takes at least one
(possibly length N vector) argument and returns M floating point numbers.

x0 – The starting estimate for the minimization. args – Any extra arguments to func are placed in
this tuple. Dfun – A function or method to compute the Jacobian of func with

228 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

derivatives across the rows. If this is None, the Jacobian will be estimated.

full_output – non-zero to return all optional outputs. col_deriv – non-zero to specify that the Jaco-
bian function

computes derivatives down the columns (faster, because there is no transpose
operation).

warning – True to print a warning message when the call is
unsuccessful; False to suppress the warning message.

Outputs: (x, {cov_x, infodict, mesg}, ier)

x – the solution (or the result of the last iteration for an
unsuccessful call.

cov_x – uses the fjac and ipvt optional outputs to construct an
estimate of the covariance matrix of the solution. None if a singular matrix encountered
(indicates infinite covariance in some direction).

infodict – a dictionary of optional outputs with the keys:
‘nfev’ : the number of function calls ‘fvec’ : the function evaluated at the output ‘fjac’ : A
permutation of the R matrix of a QR

factorization of the final approximate Jacobian matrix, stored column wise. Together
with ipvt, the covariance of the estimate can be approximated.

‘ipvt’
[an integer array of length N which defines] a permutation matrix, p, such that fjac*p
= q*r, where r is upper triangular with diagonal elements of nonincreasing magnitude.
Column j of p is column ipvt(j) of the identity matrix.

‘qtf’ : the vector (transpose(q) * fvec).

mesg – a string message giving information about the cause of failure. ier – an integer flag. If it is
equal to 1, 2, 3 or 4, the

solution was found. Otherwise, the solution was not found. In either case, the optional
output variable ‘mesg’ gives more information.

Extended Inputs:

ftol – Relative error desired in the sum of squares. xtol – Relative error desired in the approximate
solution. gtol – Orthogonality desired between the function vector

and the columns of the Jacobian.

maxfev – The maximum number of calls to the function. If zero,
then 100*(N+1) is the maximum where N is the number of elements in x0.

epsfcn – A suitable step length for the forward-difference
approximation of the Jacobian (for Dfun=None). If epsfcn is less than the machine precision,
it is assumed that the relative errors in the functions are of the order of the machine precision.

factor – A parameter determining the initial step bound
(factor * || diag * x||). Should be in interval (0.1,100).

diag – A sequency of N positive entries that serve as a
scale factors for the variables.

Remarks:

3.12. Optimization and root finding (scipy.optimize) 229

SciPy Reference Guide, Release 0.7

“leastsq” is a wrapper around MINPACK’s lmdif and lmder algorithms.

See also:

scikits.openopt, which offers a unified syntax to call this and other solvers

fmin, fmin_powell, fmin_cg,
fmin_bfgs, fmin_ncg – multivariate local optimizers

fmin_l_bfgs_b, fmin_tnc,
fmin_cobyla – constrained multivariate optimizers

anneal, brute – global optimizers

fminbound, brent, golden, bracket – local scalar minimizers

fsolve – n-dimenstional root-finding

brentq, brenth, ridder, bisect, newton – one-dimensional root-finding

fixed_point – scalar and vector fixed-point finder

Constrained (multivariate)

fmin_l_bfgs_b (func, x0[, fprime, args=(), ...])

Minimize a function func using the L-BFGS-B algorithm.

fmin_tnc (func, x0[, fprime, args=(), ...])Minimize a function with variables subject to bounds, using gradient
information.

fmin_cobyla (func, x0, cons[, args=(), con-
sargs, ...])

Minimize a function using the Constrained Optimization BY Linear
Approximation (COBYLA) method

nnls (A, b)

Solve || Ax - b ||_2 -> min with x>=0

fmin_l_bfgs_b(func, x0, fprime=None, args=(), approx_grad=0, bounds=None, m=10, factr=10000000.0,
pgtol=1.0000000000000001e-05, epsilon=1e-08, iprint=-1, maxfun=15000)

Minimize a function func using the L-BFGS-B algorithm.

Arguments:

func – function to minimize. Called as func(x, *args)

x0 – initial guess to minimum

fprime – gradient of func. If None, then func returns the function
value and the gradient (f, g = func(x, *args)), unless approx_grad is True then func returns
only f. Called as fprime(x, *args)

args – arguments to pass to function

approx_grad – if true, approximate the gradient numerically and func returns
only function value.

bounds – a list of (min, max) pairs for each element in x, defining
the bounds on that parameter. Use None for one of min or max when there is no bound in that
direction

230 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

m – the maximum number of variable metric corrections
used to define the limited memory matrix. (the limited memory BFGS method does not store
the full hessian but uses this many terms in an approximation to it).

factr – The iteration stops when
(f^k - f^{k+1})/max{|f^k|,|f^{k+1}|,1} <= factr*epsmch
where epsmch is the machine precision, which is automatically generated by the code. Typical
values for factr: 1e12 for low accuracy; 1e7 for moderate accuracy; 10.0 for extremely high
accuracy.

pgtol – The iteration will stop when

max{|proj g_i | i = 1, ..., n} <= pgtol

where pg_i is the ith component of the projected gradient.

epsilon – step size used when approx_grad is true, for numerically
calculating the gradient

iprint – controls the frequency of output. <0 means no output.

maxfun – maximum number of function evaluations.

Returns: x, f, d = fmin_lbfgs_b(func, x0, ...)

x – position of the minimum f – value of func at the minimum d – dictionary of information from
routine

d[’warnflag’] is
0 if converged, 1 if too many function evaluations, 2 if stopped for another reason,
given in d[’task’]

d[’grad’] is the gradient at the minimum (should be 0 ish) d[’funcalls’] is the number of
function calls made.

fmin_tnc(func, x0, fprime=None, args=(), approx_grad=0, bounds=None, epsilon=1e-08, scale=None, off-
set=None, messages=15, maxCGit=-1, maxfun=None, eta=-1, stepmx=0, accuracy=0, fmin=0, ftol=-1,
xtol=-1, pgtol=-1, rescale=-1)

Minimize a function with variables subject to bounds, using gradient information.

Parameters

func
[callable func(x, *args)] Function to minimize. Should return f and g, where f is the
value of the function and g its gradient (a list of floats). If the function returns None, the
minimization is aborted.

x0
[list of floats] Initial estimate of minimum.

fprime
[callable fprime(x, *args)] Gradient of func. If None, then func must return the function
value and the gradient (f,g = func(x, *args)).

args
[tuple] Arguments to pass to function.

approx_grad
[bool] If true, approximate the gradient numerically.

bounds
[list] (min, max) pairs for each element in x, defining the bounds on that parameter. Use
None or +/-inf for one of min or max when there is no bound in that direction.

3.12. Optimization and root finding (scipy.optimize) 231

SciPy Reference Guide, Release 0.7

scale
[list of floats] Scaling factors to apply to each variable. If None, the factors are up-low
for interval bounded variables and 1+|x] fo the others. Defaults to None

offset
[float] Value to substract from each variable. If None, the offsets are (up+low)/2 for
interval bounded variables and x for the others.

messages :
Bit mask used to select messages display during minimization values defined in the
MSGS dict. Defaults to MGS_ALL.

maxCGit
[int] Maximum number of hessian*vector evaluations per main iteration. If maxCGit ==
0, the direction chosen is -gradient if maxCGit < 0, maxCGit is set to max(1,min(50,n/2)).
Defaults to -1.

maxfun
[int] Maximum number of function evaluation. if None, maxfun is set to max(100,
10*len(x0)). Defaults to None.

eta
[float] Severity of the line search. if < 0 or > 1, set to 0.25. Defaults to -1.

stepmx
[float] Maximum step for the line search. May be increased during call. If too small, it
will be set to 10.0. Defaults to 0.

accuracy
[float] Relative precision for finite difference calculations. If <= machine_precision, set
to sqrt(machine_precision). Defaults to 0.

fmin
[float] Minimum function value estimate. Defaults to 0.

ftol
[float] Precision goal for the value of f in the stoping criterion. If ftol < 0.0, ftol is set to
0.0 defaults to -1.

xtol
[float] Precision goal for the value of x in the stopping criterion (after applying x scaling
factors). If xtol < 0.0, xtol is set to sqrt(machine_precision). Defaults to -1.

pgtol
[float] Precision goal for the value of the projected gradient in the stopping criterion (after
applying x scaling factors). If pgtol < 0.0, pgtol is set to 1e-2 * sqrt(accuracy). Setting it
to 0.0 is not recommended. Defaults to -1.

rescale
[float] Scaling factor (in log10) used to trigger f value rescaling. If 0, rescale at each
iteration. If a large value, never rescale. If < 0, rescale is set to 1.3.

Returns

x
[list of floats] The solution.

nfeval
[int] The number of function evaluations.

rc :
Return code as defined in the RCSTRINGS dict.

Seealso

• scikits.openopt, which offers a unified syntax to call this and other solvers

232 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

• fmin, fmin_powell, fmin_cg, fmin_bfgs, fmin_ncg :
multivariate local optimizers

• leastsq : nonlinear least squares minimizer
• fmin_l_bfgs_b, fmin_tnc, fmin_cobyla : constrained multivariate optimizers
• anneal, brute : global optimizers
• fminbound, brent, golden, bracket : local scalar minimizers
• fsolve : n-dimenstional root-finding
• brentq, brenth, ridder, bisect, newton : one-dimensional root-finding
• fixed_point : scalar fixed-point finder

fmin_cobyla(func, x0, cons, args=(), consargs=None, rhobeg=1.0, rhoend=0.0001, iprint=1, maxfun=1000)
Minimize a function using the Constrained Optimization BY Linear Approximation (COBYLA) method

Arguments:

func – function to minimize. Called as func(x, *args)

x0 – initial guess to minimum

cons – a sequence of functions that all must be >=0 (a single function
if only 1 constraint)

args – extra arguments to pass to function

consargs – extra arguments to pass to constraints (default of None means
use same extra arguments as those passed to func). Use () for no extra arguments.

rhobeg – reasonable initial changes to the variables

rhoend – final accuracy in the optimization (not precisely guaranteed)

iprint – controls the frequency of output: 0 (no output),1,2,3

maxfun – maximum number of function evaluations.

Returns:

x – the minimum

See also:

scikits.openopt, which offers a unified syntax to call this and other solvers

fmin, fmin_powell, fmin_cg,
fmin_bfgs, fmin_ncg – multivariate local optimizers

leastsq – nonlinear least squares minimizer

fmin_l_bfgs_b, fmin_tnc,
fmin_cobyla – constrained multivariate optimizers

anneal, brute – global optimizers

fminbound, brent, golden, bracket – local scalar minimizers

fsolve – n-dimenstional root-finding

brentq, brenth, ridder, bisect, newton – one-dimensional root-finding

fixed_point – scalar fixed-point finder

nnls(A, b)

3.12. Optimization and root finding (scipy.optimize) 233

SciPy Reference Guide, Release 0.7

Solve || Ax - b ||_2 -> min with x>=0

Inputs:
A – matrix as above b – vector as above

Outputs:
x – solution vector rnorm – residual || Ax-b ||_2

wrapper around NNLS.F code below nnls/ directory

Global

anneal (func, x0[, args=(), schedule, ...]) Minimize a function using simulated annealing.

brute (func, ranges[, args=(), Ns, full_output, ...]) Minimize a function over a given range by brute force.

anneal(func, x0, args=(), schedule=’fast’, full_output=0, T0=None, Tf=9.9999999999999998e-13, maxe-
val=None, maxaccept=None, maxiter=400, boltzmann=1.0, learn_rate=0.5, feps=9.9999999999999995e-
07, quench=1.0, m=1.0, n=1.0, lower=-100, upper=100, dwell=50)

Minimize a function using simulated annealing.

Schedule is a schedule class implementing the annealing schedule. Available ones are ‘fast’, ‘cauchy’, ‘boltz-
mann’

Inputs:

func – Function to be optimized x0 – Parameters to be optimized over args – Extra parameters to function
schedule – Annealing schedule to use (a class) full_output – Return optional outputs T0 – Initial Temperature
(estimated as 1.2 times the largest

cost-function deviation over random points in the range)

Tf – Final goal temperature maxeval – Maximum function evaluations maxaccept – Maximum changes to accept
maxiter – Maximum cooling iterations learn_rate – scale constant for adjusting guesses boltzmann – Boltzmann
constant in acceptance test

(increase for less stringent test at each temperature).

feps – Stopping relative error tolerance for the function value in
last four coolings.

quench, m, n – Parameters to alter fast_sa schedule lower, upper – lower and upper bounds on x0 (scalar or
array). dwell – The number of times to search the space at each temperature.

Outputs: (xmin, {Jmin, T, feval, iters, accept,} retval)

xmin – Point giving smallest value found retval – Flag indicating stopping condition:

0 : Cooled to global optimum 1 : Cooled to final temperature 2 : Maximum function evaluations 3
: Maximum cooling iterations reached 4 : Maximum accepted query locations reached

Jmin – Minimum value of function found T – final temperature feval – Number of function evaluations iters –
Number of cooling iterations accept – Number of tests accepted.

See also:

fmin, fmin_powell, fmin_cg,
fmin_bfgs, fmin_ncg – multivariate local optimizers

leastsq – nonlinear least squares minimizer

234 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

fmin_l_bfgs_b, fmin_tnc,
fmin_cobyla – constrained multivariate optimizers

anneal, brute – global optimizers

fminbound, brent, golden, bracket – local scalar minimizers

fsolve – n-dimenstional root-finding

brentq, brenth, ridder, bisect, newton – one-dimensional root-finding

fixed_point – scalar fixed-point finder

brute(func, ranges, args=(), Ns=20, full_output=0, finish=<function fmin at 0x55f20c8>)
Minimize a function over a given range by brute force.

Parameters

func
[callable f(x,*args)] Objective function to be minimized.

ranges
[tuple] Each element is a tuple of parameters or a slice object to be handed to
numpy.mgrid.

args
[tuple] Extra arguments passed to function.

Ns
[int] Default number of samples, if those are not provided.

full_output
[bool] If True, return the evaluation grid.

Returns
(x0, fval, {grid, Jout})

x0
[ndarray] Value of arguments to func, giving minimum over the grid.

fval
[int] Function value at minimum.

grid
[tuple] Representation of the evaluation grid. It has the same length as x0.

Jout
[ndarray] Function values over grid: Jout = func(*grid).

Notes
Find the minimum of a function evaluated on a grid given by the tuple ranges.

3.12. Optimization and root finding (scipy.optimize) 235

SciPy Reference Guide, Release 0.7

Scalar function minimizers

fminbound (func, x1, x2[, args=(), xtol, max-
fun, ...])

Bounded minimization for scalar functions.

golden (func[, args=(), brack, ...])Given a function of one-variable and a possible bracketing interval, return the
minimum of the function isolated to a fractional precision of tol.

bracket (func[, xa, xb, args=(), ...])Given a function and distinct initial points, search in the downhill direction (as
defined by the initital points) and return new points xa, xb, xc that bracket the
minimum of the function f(xa) > f(xb) < f(xc). It doesn’t always mean that obtained
solution will satisfy xa<=x<=xb

brent (func[, args=(), brack, ...])Given a function of one-variable and a possible bracketing interval, return the
minimum of the function isolated to a fractional precision of tol.

fminbound(func, x1, x2, args=(), xtol=1.0000000000000001e-05, maxfun=500, full_output=0, disp=1)
Bounded minimization for scalar functions.

Parameters

func
[callable f(x,*args)] Objective function to be minimized (must accept and return scalars).

x1, x2
[float or array scalar] The optimization bounds.

args
[tuple] Extra arguments passed to function.

xtol
[float] The convergence tolerance.

maxfun
[int] Maximum number of function evaluations allowed.

full_output
[bool] If True, return optional outputs.

disp
[int]
If non-zero, print messages.

0 : no message printing. 1 : non-convergence notification messages only. 2 : print a
message on convergence too. 3 : print iteration results.

Returns
(xopt, {fval, ierr, numfunc})

xopt
[ndarray] Parameters (over given interval) which minimize the objective function.

fval
[number] The function value at the minimum point.

ierr
[int] An error flag (0 if converged, 1 if maximum number of function calls reached).

numfunc
[int] The number of function calls made.

Notes
Finds a local minimizer of the scalar function func in the interval x1 < xopt < x2 using Brent’s
method. (See brent for auto-bracketing).

236 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

golden(func, args=(), brack=None, tol=1.4901161193847656e-08, full_output=0)
Given a function of one-variable and a possible bracketing interval, return the minimum of the function isolated
to a fractional precision of tol.

Parameters

func
[callable func(x,*args)] Objective function to minimize.

args
[tuple] Additional arguments (if present), passed to func.

brack
[tuple] Triple (a,b,c), where (a<b<c) and func(b) < func(a),func(c). If bracket consists of
two numbers (a, c), then they are assumed to be a starting interval for a downhill bracket
search (see bracket); it doesn’t always mean that obtained solution will satisfy a<=x<=c.

tol
[float] x tolerance stop criterion

full_output
[bool] If True, return optional outputs.

Notes
Uses analog of bisection method to decrease the bracketed interval.

bracket(func, xa=0.0, xb=1.0, args=(), grow_limit=110.0, maxiter=1000)
Given a function and distinct initial points, search in the downhill direction (as defined by the initital points)
and return new points xa, xb, xc that bracket the minimum of the function f(xa) > f(xb) < f(xc). It doesn’t
always mean that obtained solution will satisfy xa<=x<=xb

Parameters

func
[callable f(x,*args)] Objective function to minimize.

xa, xb
[float] Bracketing interval.

args
[tuple] Additional arguments (if present), passed to func.

grow_limit
[float] Maximum grow limit.

maxiter
[int] Maximum number of iterations to perform.

Returns
xa, xb, xc, fa, fb, fc, funcalls

xa, xb, xc
[float] Bracket.

fa, fb, fc
[float] Objective function values in bracket.

funcalls
[int] Number of function evaluations made.

brent(func, args=(), brack=None, tol=1.48e-08, full_output=0, maxiter=500)
Given a function of one-variable and a possible bracketing interval, return the minimum of the function isolated
to a fractional precision of tol.

3.12. Optimization and root finding (scipy.optimize) 237

SciPy Reference Guide, Release 0.7

Parameters

func
[callable f(x,*args)] Objective function.

args
Additional arguments (if present).

brack
[tuple] Triple (a,b,c) where (a<b<c) and func(b) < func(a),func(c). If bracket consists
of two numbers (a,c) then they are assumed to be a starting interval for a downhill
bracket search (see bracket); it doesn’t always mean that the obtained solution will satisfy
a<=x<=c.

full_output
[bool] If True, return all output args (xmin, fval, iter, funcalls).

Returns

xmin
[ndarray] Optimum point.

fval
[float] Optimum value.

iter
[int] Number of iterations.

funcalls
[int] Number of objective function evaluations made.

Notes

Uses inverse parabolic interpolation when possible to speed up convergence of golden section method.

3.12.2 Root finding

fsolve (func, x0[, args=(), fprime, ...]) Find the roots of a function.

fsolve(func, x0, args=(), fprime=None, full_output=0, col_deriv=0, xtol=1.49012e-08, maxfev=0, band=None,
epsfcn=0.0, factor=100, diag=None, warning=True)

Find the roots of a function.

Description:

Return the roots of the (non-linear) equations defined by func(x)=0 given a starting estimate.

Inputs:

func – A Python function or method which takes at least one
(possibly vector) argument.

x0 – The starting estimate for the roots of func(x)=0. args – Any extra arguments to func are placed
in this tuple. fprime – A function or method to compute the Jacobian of func with

derivatives across the rows. If this is None, the Jacobian will be estimated.

full_output – non-zero to return the optional outputs. col_deriv – non-zero to specify that the
Jacobian function

computes derivatives down the columns (faster, because there is no transpose operation).

238 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

warning – True to print a warning message when the call is
unsuccessful; False to suppress the warning message.

Outputs: (x, {infodict, ier, mesg})

x – the solution (or the result of the last iteration for an
unsuccessful call.

infodict – a dictionary of optional outputs with the keys:
‘nfev’ : the number of function calls ‘njev’ : the number of jacobian calls ‘fvec’ : the function
evaluated at the output ‘fjac’ : the orthogonal matrix, q, produced by the

QR factorization of the final approximate Jacobian matrix, stored column wise.

‘r’
[upper triangular matrix produced by QR] factorization of same matrix.

‘qtf’ : the vector (transpose(q) * fvec).

ier – an integer flag. If it is equal to 1 the solution was
found. If it is not equal to 1, the solution was not found and the following message gives more
information.

mesg – a string message giving information about the cause of
failure.

Extended Inputs:

xtol – The calculation will terminate if the relative error
between two consecutive iterates is at most xtol.

maxfev – The maximum number of calls to the function. If zero,
then 100*(N+1) is the maximum where N is the number of elements in x0.

band – If set to a two-sequence containing the number of sub-
and superdiagonals within the band of the Jacobi matrix, the Jacobi matrix is considered
banded (only for fprime=None).

epsfcn – A suitable step length for the forward-difference
approximation of the Jacobian (for fprime=None). If epsfcn is less than the machine precision,
it is assumed that the relative errors in the functions are of the order of the machine precision.

factor – A parameter determining the initial step bound
(factor * || diag * x||). Should be in interval (0.1,100).

diag – A sequency of N positive entries that serve as a
scale factors for the variables.

Remarks:

“fsolve” is a wrapper around MINPACK’s hybrd and hybrj algorithms.

See also:

scikits.openopt, which offers a unified syntax to call this and other solvers

fmin, fmin_powell, fmin_cg,
fmin_bfgs, fmin_ncg – multivariate local optimizers

leastsq – nonlinear least squares minimizer

fmin_l_bfgs_b, fmin_tnc,
fmin_cobyla – constrained multivariate optimizers

3.12. Optimization and root finding (scipy.optimize) 239

SciPy Reference Guide, Release 0.7

anneal, brute – global optimizers

fminbound, brent, golden, bracket – local scalar minimizers

brentq, brenth, ridder, bisect, newton – one-dimensional root-finding

fixed_point – scalar and vector fixed-point finder

Scalar function solvers

brentq (f, a, b[, args=(), xtol, rtol, ...])Find a root of a function in given interval.

brenth (f, a, b[, args=(), xtol, rtol, ...])Find root of f in [a,b].

ridder (f, a, b[, args=(), xtol, rtol, ...])Find a root of a function in an interval.

bisect (f, a, b[, args=(), xtol, rtol, ...])Find root of f in [a,b].

newton (func, x0[, fprime, args=(), ...])Given a function of a single variable and a starting point, find a nearby zero
using Newton-Raphson.

brentq(f, a, b, args=(), xtol=9.9999999999999998e-13, rtol=4.4408920985006262e-16, maxiter=100,
full_output=False, disp=True)

Find a root of a function in given interval.

Return float, a zero of f between a and b. f must be a continuous function, and [a,b] must be a sign changing
interval.

Description: Uses the classic Brent (1973) method to find a zero of the function f on the sign changing interval [a
, b]. Generally considered the best of the rootfinding routines here. It is a safe version of the secant method that
uses inverse quadratic extrapolation. Brent’s method combines root bracketing, interval bisection, and inverse
quadratic interpolation. It is sometimes known as the van Wijngaarden-Deker-Brent method. Brent (1973)
claims convergence is guaranteed for functions computable within [a,b].

[Brent1973] provides the classic description of the algorithm. Another description can be found
in a recent edition of Numerical Recipes, including [PressEtal1992]. Another description is at
http://mathworld.wolfram.com/BrentsMethod.html. It should be easy to understand the algorithm just by read-
ing our code. Our code diverges a bit from standard presentations: we choose a different formula for the
extrapolation step.

Parameters
f : function

Python function returning a number. f must be continuous, and f(a) and f(b) must
have opposite signs.

a : number

One end of the bracketing interval [a,b].

b : number

The other end of the bracketing interval [a,b].

xtol : number, optional

The routine converges when a root is known to lie within xtol of the value return.
Should be >= 0. The routine modifies this to take into account the relative precision
of doubles.

maxiter : number, optional

if convergence is not achieved in maxiter iterations, and error is raised. Must be >=
0.

240 Chapter 3. Reference

http://mathworld.wolfram.com/BrentsMethod.html

SciPy Reference Guide, Release 0.7

args : tuple, optional

containing extra arguments for the function f. f is called by apply(f,
(x)+args).

full_output : bool, optional

If full_output is False, the root is returned. If full_output is True, the return value is
(x, r), where x is the root, and r is a RootResults object.

disp : {True, bool} optional

If True, raise RuntimeError if the algorithm didn’t converge.

Returns
x0 : float

Zero of f between a and b.

r : RootResults (present if full_output = True)

Object containing information about the convergence. In particular, r.converged
is True if the routine converged.

See Also:

multivariate
fmin, fmin_powell, fmin_cg, fmin_bfgs, fmin_ncg

nonlinear
leastsq

constrained
fmin_l_bfgs_b, fmin_tnc, fmin_cobyla

global
anneal, brute

local
fminbound, brent, golden, bracket

n-dimenstional
fsolve

one-dimensional
brentq, brenth, ridder, bisect, newton

scalar
fixed_point

Notes

f must be continuous. f(a) and f(b) must have opposite signs.

brenth(f, a, b, args=(), xtol=9.9999999999999998e-13, rtol=4.4408920985006262e-16, maxiter=100,
full_output=False, disp=True)

Find root of f in [a,b].

A variation on the classic Brent routine to find a zero of the function f between the arguments a and b that uses
hyperbolic extrapolation instead of inverse quadratic extrapolation. There was a paper back in the 1980’s ... f(a)
and f(b) can not have the same signs. Generally on a par with the brent routine, but not as heavily tested. It is a
safe version of the secant method that uses hyperbolic extrapolation. The version here is by Chuck Harris.

Parameters
f : function

3.12. Optimization and root finding (scipy.optimize) 241

SciPy Reference Guide, Release 0.7

Python function returning a number. f must be continuous, and f(a) and f(b) must
have opposite signs.

a : number

One end of the bracketing interval [a,b].

b : number

The other end of the bracketing interval [a,b].

xtol : number, optional

The routine converges when a root is known to lie within xtol of the value return.
Should be >= 0. The routine modifies this to take into account the relative precision
of doubles.

maxiter : number, optional

if convergence is not achieved in maxiter iterations, and error is raised. Must be >=
0.

args : tuple, optional

containing extra arguments for the function f. f is called by apply(f,
(x)+args).

full_output : bool, optional

If full_output is False, the root is returned. If full_output is True, the return value is
(x, r), where x is the root, and r is a RootResults object.

disp : {True, bool} optional

If True, raise RuntimeError if the algorithm didn’t converge.

Returns
x0 : float

Zero of f between a and b.

r : RootResults (present if full_output = True)

Object containing information about the convergence. In particular, r.converged
is True if the routine converged.

ridder(f, a, b, args=(), xtol=9.9999999999999998e-13, rtol=4.4408920985006262e-16, maxiter=100,
full_output=False, disp=True)

Find a root of a function in an interval.

Parameters
f : function

Python function returning a number. f must be continuous, and f(a) and f(b) must
have opposite signs.

a : number

One end of the bracketing interval [a,b].

b : number

The other end of the bracketing interval [a,b].

xtol : number, optional

The routine converges when a root is known to lie within xtol of the value return.
Should be >= 0. The routine modifies this to take into account the relative precision
of doubles.

maxiter : number, optional

242 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

if convergence is not achieved in maxiter iterations, and error is raised. Must be >=
0.

args : tuple, optional

containing extra arguments for the function f. f is called by apply(f,
(x)+args).

full_output : bool, optional

If full_output is False, the root is returned. If full_output is True, the return value is
(x, r), where x is the root, and r is a RootResults object.

disp : {True, bool} optional

If True, raise RuntimeError if the algorithm didn’t converge.

Returns
x0 : float

Zero of f between a and b.

r : RootResults (present if full_output = True)

Object containing information about the convergence. In particular, r.converged
is True if the routine converged.

See Also:
brentq, brenth, bisect, newton

fixed_point
scalar fixed-point finder

Notes
Uses [Ridders1979] method to find a zero of the function f between the arguments a and b. Ridders’ method
is faster than bisection, but not generally as fast as the Brent rountines. [Ridders1979] provides the classic
description and source of the algorithm. A description can also be found in any recent edition of Numerical
Recipes.

The routine used here diverges slightly from standard presentations in order to be a bit more careful of tolerance.

References

bisect(f, a, b, args=(), xtol=9.9999999999999998e-13, rtol=4.4408920985006262e-16, maxiter=100,
full_output=False, disp=True)

Find root of f in [a,b].

Basic bisection routine to find a zero of the function f between the arguments a and b. f(a) and f(b) can not have
the same signs. Slow but sure.

Parameters
f : function

Python function returning a number. f must be continuous, and f(a) and f(b) must
have opposite signs.

a : number

One end of the bracketing interval [a,b].

b : number

The other end of the bracketing interval [a,b].

xtol : number, optional

The routine converges when a root is known to lie within xtol of the value return.
Should be >= 0. The routine modifies this to take into account the relative precision
of doubles.

3.12. Optimization and root finding (scipy.optimize) 243

SciPy Reference Guide, Release 0.7

maxiter : number, optional
if convergence is not achieved in maxiter iterations, and error is raised. Must be >=
0.

args : tuple, optional
containing extra arguments for the function f. f is called by apply(f,
(x)+args).

full_output : bool, optional
If full_output is False, the root is returned. If full_output is True, the return value is
(x, r), where x is the root, and r is a RootResults object.

disp : {True, bool} optional
If True, raise RuntimeError if the algorithm didn’t converge.

Returns
x0 : float

Zero of f between a and b.
r : RootResults (present if full_output = True)

Object containing information about the convergence. In particular, r.converged
is True if the routine converged.

See Also:

fixed_point
scalar fixed-point finder fsolve – n-dimenstional root-finding

newton(func, x0, fprime=None, args=(), tol=1.48e-08, maxiter=50)
Given a function of a single variable and a starting point, find a nearby zero using Newton-Raphson.

fprime is the derivative of the function. If not given, the Secant method is used.

See also:

fmin, fmin_powell, fmin_cg,
fmin_bfgs, fmin_ncg – multivariate local optimizers

leastsq – nonlinear least squares minimizer

fmin_l_bfgs_b, fmin_tnc,
fmin_cobyla – constrained multivariate optimizers

anneal, brute – global optimizers

fminbound, brent, golden, bracket – local scalar minimizers

fsolve – n-dimenstional root-finding

brentq, brenth, ridder, bisect, newton – one-dimensional root-finding

fixed_point – scalar and vector fixed-point finder

Fixed point finding:

fixed_point (func, x0[, args=(), xtol, maxiter]) Find the point where func(x) == x

fixed_point(func, x0, args=(), xtol=1e-08, maxiter=500)
Find the point where func(x) == x

Given a function of one or more variables and a starting point, find a fixed-point of the function: i.e. where
func(x)=x.

Uses Steffensen’s Method using Aitken’s Del^2 convergence acceleration. See Burden, Faires, “Numerical
Analysis”, 5th edition, pg. 80

244 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

General-purpose nonlinear (multidimensional)

broyden1 (F, xin[, iter, alpha, verbose]) Broyden’s first method.

broyden2 (F, xin[, iter, alpha, verbose]) Broyden’s second method.

broyden3 (F, xin[, iter, alpha, verbose]) Broyden’s second method.

broyden_generalized (F, xin[, iter, alpha, M, ...]) Generalized Broyden’s method.

anderson (F, xin[, iter, alpha, M, ...]) Extended Anderson method.

anderson2 (F, xin[, iter, alpha, M, ...]) Anderson method.

broyden1(F, xin, iter=10, alpha=0.10000000000000001, verbose=False)
Broyden’s first method.

Updates Jacobian and computes inv(J) by a matrix inversion at every iteration. It’s very slow.

The best norm |F(x)|=0.005 achieved in ~45 iterations.

broyden2(F, xin, iter=10, alpha=0.40000000000000002, verbose=False)
Broyden’s second method.

Updates inverse Jacobian by an optimal formula. There is NxN matrix multiplication in every iteration.

The best norm |F(x)|=0.003 achieved in ~20 iterations.

Recommended.

broyden3(F, xin, iter=10, alpha=0.40000000000000002, verbose=False)
Broyden’s second method.

Updates inverse Jacobian by an optimal formula. The NxN matrix multiplication is avoided.

The best norm |F(x)|=0.003 achieved in ~20 iterations.

Recommended.

broyden_generalized(F, xin, iter=10, alpha=0.10000000000000001, M=5, verbose=False)
Generalized Broyden’s method.

Computes an approximation to the inverse Jacobian from the last M interations. Avoids NxN matrix multiplica-
tion, it only has MxM matrix multiplication and inversion.

M=0 linear mixing M=1 Anderson mixing with 2 iterations M=2 Anderson mixing with 3 iterations
etc. optimal is M=5

anderson(F, xin, iter=10, alpha=0.10000000000000001, M=5, w0=0.01, verbose=False)
Extended Anderson method.

Computes an approximation to the inverse Jacobian from the last M interations. Avoids NxN matrix multiplica-
tion, it only has MxM matrix multiplication and inversion.

M=0 linear mixing M=1 Anderson mixing with 2 iterations M=2 Anderson mixing with 3 iterations
etc. optimal is M=5

anderson2(F, xin, iter=10, alpha=0.10000000000000001, M=5, w0=0.01, verbose=False)
Anderson method.

M=0 linear mixing M=1 Anderson mixing with 2 iterations M=2 Anderson mixing with 3 iterations
etc. optimal is M=5

3.12. Optimization and root finding (scipy.optimize) 245

SciPy Reference Guide, Release 0.7

3.12.3 Utility Functions

line_search (f, myf-
prime, xk, pk, gfk, old_fval, old_old_fval[, args=(), c1, c2, ...])

Find alpha that satisfies strong Wolfe
conditions.

check_grad (func, grad, x0, *args)

line_search(f, myfprime, xk, pk, gfk, old_fval, old_old_fval, args=(), c1=0.0001, c2=0.90000000000000002,
amax=50)

Find alpha that satisfies strong Wolfe conditions.

Parameters

f
[callable f(x,*args)] Objective function.

myfprime
[callable f’(x,*args)] Objective function gradient (can be None).

xk
[ndarray] Starting point.

pk
[ndarray] Search direction.

gfk
[ndarray] Gradient value for x=xk (xk being the current parameter estimate).

args
[tuple] Additional arguments passed to objective function.

c1
[float] Parameter for Armijo condition rule.

c2
[float] Parameter for curvature condition rule.

Returns

alpha0
[float] Alpha for which x_new = x0 + alpha * pk.

fc
[int] Number of function evaluations made.

gc
[int] Number of gradient evaluations made.

Notes
Uses the line search algorithm to enforce strong Wolfe conditions. See Wright and Nocedal,
‘Numerical Optimization’, 1999, pg. 59-60.
For the zoom phase it uses an algorithm by [...].

check_grad(func, grad, x0, *args)

246 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

3.13 Signal processing (scipy.signal)

3.13.1 Convolution

convolve (in1, in2[, mode]) Convolve two N-dimensional arrays.

correlate (in1, in2[, mode]) Cross-correlate two N-dimensional arrays.

fftconvolve (in1, in2[, mode]) Convolve two N-dimensional arrays using FFT. See convolve.

convolve2d (in1, in2[, mode, boundary, ...]) Convolve two 2-dimensional arrays.

correlate2d (in1, in2[, mode, boundary, ...]) Cross-correlate two 2-dimensional arrays.

sepfir2d () sepfir2d(input, hrow, hcol) -> output

convolve(in1, in2, mode=’full’)
Convolve two N-dimensional arrays.

Description:

Convolve in1 and in2 with output size determined by mode.

Inputs:

in1 – an N-dimensional array. in2 – an array with the same number of dimensions as in1. mode – a
flag indicating the size of the output

‘valid’ (0): The output consists only of those elements that
are computed by scaling the larger array with all the values of the smaller array.

‘same’ (1): The output is the same size as the largest input
centered with respect to the ‘full’ output.

‘full’ (2): The output is the full discrete linear convolution
of the inputs. (Default)

Outputs: (out,)

out – an N-dimensional array containing a subset of the discrete linear
convolution of in1 with in2.

correlate(in1, in2, mode=’full’)
Cross-correlate two N-dimensional arrays.

Description:

Cross-correlate in1 and in2 with the output size determined by mode.

Inputs:

in1 – an N-dimensional array. in2 – an array with the same number of dimensions as in1. mode – a
flag indicating the size of the output

‘valid’ (0): The output consists only of those elements that
do not rely on the zero-padding.

3.13. Signal processing (scipy.signal) 247

SciPy Reference Guide, Release 0.7

‘same’ (1): The output is the same size as the largest input
centered with respect to the ‘full’ output.

‘full’ (2): The output is the full discrete linear
cross-correlation of the inputs. (Default)

Outputs: (out,)

out – an N-dimensional array containing a subset of the discrete linear
cross-correlation of in1 with in2.

fftconvolve(in1, in2, mode=’full’)
Convolve two N-dimensional arrays using FFT. See convolve.

convolve2d(in1, in2, mode=’full’, boundary=’fill’, fillvalue=0)
Convolve two 2-dimensional arrays.

Description:

Convolve in1 and in2 with output size determined by mode and boundary conditions determined by
boundary and fillvalue.

Inputs:

in1 – a 2-dimensional array. in2 – a 2-dimensional array. mode – a flag indicating the size of the
output

‘valid’ (0): The output consists only of those elements that
do not rely on the zero-padding.

‘same’ (1): The output is the same size as the input centered
with respect to the ‘full’ output.

‘full’ (2): The output is the full discrete linear convolution
of the inputs. (Default)

boundary – a flag indicating how to handle boundaries
‘fill’ : pad input arrays with fillvalue. (Default) ‘wrap’ : circular boundary conditions. ‘symm’
: symmetrical boundary conditions.

fillvalue – value to fill pad input arrays with (Default = 0)

Outputs: (out,)

out – a 2-dimensional array containing a subset of the discrete linear
convolution of in1 with in2.

correlate2d(in1, in2, mode=’full’, boundary=’fill’, fillvalue=0)
Cross-correlate two 2-dimensional arrays.

Description:

Cross correlate in1 and in2 with output size determined by mode and boundary conditions deter-
mined by boundary and fillvalue.

Inputs:

in1 – a 2-dimensional array. in2 – a 2-dimensional array. mode – a flag indicating the size of the
output

248 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

‘valid’ (0): The output consists only of those elements that
do not rely on the zero-padding.

‘same’ (1): The output is the same size as the input centered
with respect to the ‘full’ output.

‘full’ (2): The output is the full discrete linear convolution
of the inputs. (Default)

boundary – a flag indicating how to handle boundaries
‘fill’ : pad input arrays with fillvalue. (Default) ‘wrap’ : circular boundary conditions. ‘symm’
: symmetrical boundary conditions.

fillvalue – value to fill pad input arrays with (Default = 0)

Outputs: (out,)

out – a 2-dimensional array containing a subset of the discrete linear
cross-correlation of in1 with in2.

sepfir2d()
sepfir2d(input, hrow, hcol) -> output

Description:

Convolve the rank-2 input array with the separable filter defined by the rank-1 arrays hrow, and
hcol. Mirror symmetric boundary conditions are assumed. This function can be used to find an
image given its B-spline representation.

3.13.2 B-splines

bspline (x, n) bspline(x,n): B-spline basis function of order n. uses numpy.piecewise and
automatic function-generator.

gauss_spline (x, n) Gaussian approximation to B-spline basis function of order n.

cspline1d (sig-
nal[, lamb])

Compute cubic spline coefficients for rank-1 array.

qspline1d (sig-
nal[, lamb])

Compute quadratic spline coefficients for rank-1 array.

cspline2d () cspline2d(input {, lambda, precision}) -> ck

qspline2d () qspline2d(input {, lambda, precision}) -> qk

spline_filter (Iin[, lmbda])Smoothing spline (cubic) filtering of a rank-2 array.

bspline(x, n)
bspline(x,n): B-spline basis function of order n. uses numpy.piecewise and automatic function-generator.

gauss_spline(x, n)
Gaussian approximation to B-spline basis function of order n.

cspline1d(signal, lamb=0.0)
Compute cubic spline coefficients for rank-1 array.

Description:

3.13. Signal processing (scipy.signal) 249

SciPy Reference Guide, Release 0.7

Find the cubic spline coefficients for a 1-D signal assuming mirror-symmetric boundary condi-
tions. To obtain the signal back from the spline representation mirror-symmetric-convolve these
coefficients with a length 3 FIR window [1.0, 4.0, 1.0]/ 6.0 .

Inputs:

signal – a rank-1 array representing samples of a signal. lamb – smoothing coefficient (default =
0.0)

Output:

c – cubic spline coefficients.

qspline1d(signal, lamb=0.0)
Compute quadratic spline coefficients for rank-1 array.

Description:

Find the quadratic spline coefficients for a 1-D signal assuming mirror-symmetric boundary con-
ditions. To obtain the signal back from the spline representation mirror-symmetric-convolve these
coefficients with a length 3 FIR window [1.0, 6.0, 1.0]/ 8.0 .

Inputs:

signal – a rank-1 array representing samples of a signal. lamb – smoothing coefficient (must be zero
for now.)

Output:

c – cubic spline coefficients.

cspline2d()
cspline2d(input {, lambda, precision}) -> ck

Description:

Return the third-order B-spline coefficients over a regularly spacedi input grid for the two-
dimensional input image. The lambda argument specifies the amount of smoothing. The precision
argument allows specifying the precision used when computing the infinite sum needed to apply
mirror- symmetric boundary conditions.

qspline2d()
qspline2d(input {, lambda, precision}) -> qk

Description:

Return the second-order B-spline coefficients over a regularly spaced input grid for the two-
dimensional input image. The lambda argument specifies the amount of smoothing. The precision
argument allows specifying the precision used when computing the infinite sum needed to apply
mirror- symmetric boundary conditions.

spline_filter(Iin, lmbda=5.0)
Smoothing spline (cubic) filtering of a rank-2 array.

Filter an input data set, Iin, using a (cubic) smoothing spline of fall-off lmbda.

250 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

3.13.3 Filtering

order_filter (a, domain, rank) Perform an order filter on an N-dimensional array.

medfilt (volume[, kernel_size]) Perform a median filter on an N-dimensional array.

medfilt2

wiener (im[, mysize, noise]) Perform a Wiener filter on an N-dimensional array.

symiirorder1 () symiirorder1(input, c0, z1 {, precision}) -> output

symiirorder2 () symiirorder2(input, r, omega {, precision}) -> output

lfilter (b, a, x[, axis, zi]) Filter data along one-dimension with an IIR or FIR filter.

deconvolve (signal, divisor) Deconvolves divisor out of signal.

hilbert (x[, N]) Compute the analytic signal.

get_window (window, Nx[, fftbins]) Return a window of length Nx and type window.

detrend (data[, axis, type, bp]) Remove linear trend along axis from data.

resample (x, num[, t, axis, window]) Resample to num samples using Fourier method along the given axis.

order_filter(a, domain, rank)
Perform an order filter on an N-dimensional array.

Description:

Perform an order filter on the array in. The domain argument acts as a mask centered over each
pixel. The non-zero elements of domain are used to select elements surrounding each input pixel
which are placed in a list. The list is sorted, and the output for that pixel is the element correspond-
ing to rank in the sorted list.

Inputs:

in – an N-dimensional input array. domain – a mask array with the same number of dimensions as
in. Each

dimension should have an odd number of elements.

rank – an non-negative integer which selects the element from the
sorted list (0 corresponds to the largest element, 1 is the next largest element, etc.)

Output: (out,)

out – the results of the order filter in an array with the same
shape as in.

medfilt(volume, kernel_size=None)
Perform a median filter on an N-dimensional array.

Description:

3.13. Signal processing (scipy.signal) 251

SciPy Reference Guide, Release 0.7

Apply a median filter to the input array using a local window-size given by kernel_size.

Inputs:

in – An N-dimensional input array. kernel_size – A scalar or an N-length list giving the size of the

median filter window in each dimension. Elements of kernel_size should be odd. If
kernel_size is a scalar, then this scalar is used as the size in each dimension.

Outputs: (out,)

out – An array the same size as input containing the median filtered
result.

wiener(im, mysize=None, noise=None)
Perform a Wiener filter on an N-dimensional array.

Description:

Apply a Wiener filter to the N-dimensional array in.

Inputs:

in – an N-dimensional array. kernel_size – A scalar or an N-length list giving the size of the

median filter window in each dimension. Elements of kernel_size should be odd. If
kernel_size is a scalar, then this scalar is used as the size in each dimension.

noise – The noise-power to use. If None, then noise is estimated as
the average of the local variance of the input.

Outputs: (out,)

out – Wiener filtered result with the same shape as in.

symiirorder1()
symiirorder1(input, c0, z1 {, precision}) -> output

Description:

Implement a smoothing IIR filter with mirror-symmetric boundary conditions using a cascade of
first-order sections. The second section uses a reversed sequence. This implements a system with
the following transfer function and mirror-symmetric boundary conditions.

c0

H(z) = ———————
(1-z1/z) (1 - z1 z)

The resulting signal will have mirror symmetric boundary conditions as well.

Inputs:

input – the input signal. c0, z1 – parameters in the transfer function. precision – specifies the
precision for calculating initial conditions

of the recursive filter based on mirror-symmetric input.

252 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

Output:

output – filtered signal.

symiirorder2()
symiirorder2(input, r, omega {, precision}) -> output

Description:

Implement a smoothing IIR filter with mirror-symmetric boundary conditions using a cascade of
second-order sections. The second section uses a reversed sequence. This implements the following
transfer function:

cs^2

H(z) = —————————————
(1 - a2/z - a3/z^2) (1 - a2 z - a3 z^2)

where a2 = (2 r cos omega)
a3 = - r^2 cs = 1 - 2 r cos omega + r^2

Inputs:

input – the input signal. r, omega – parameters in the transfer function. precision – specifies the
precision for calculating initial conditions

of the recursive filter based on mirror-symmetric input.

Output:

output – filtered signal.

lfilter(b, a, x, axis=-1, zi=None)
Filter data along one-dimension with an IIR or FIR filter.

Description

Filter a data sequence, x, using a digital filter. This works for many fundamental data types (includ-
ing Object type). The filter is a direct form II transposed implementation of the standard difference
equation (see “Algorithm”).

Inputs:

b – The numerator coefficient vector in a 1-D sequence. a – The denominator coefficient vector in
a 1-D sequence. If a[0]

is not 1, then both a and b are normalized by a[0].

x – An N-dimensional input array. axis – The axis of the input data array along which to apply the

linear filter. The filter is applied to each subarray along this axis (Default = -1)

zi – Initial conditions for the filter delays. It is a vector
(or array of vectors for an N-dimensional input) of length max(len(a),len(b)). If zi=None or is
not given then initial rest is assumed. SEE signal.lfiltic for more information.

Outputs: (y, {zf})

3.13. Signal processing (scipy.signal) 253

SciPy Reference Guide, Release 0.7

y – The output of the digital filter. zf – If zi is None, this is not returned, otherwise, zf holds the

final filter delay values.

Algorithm:

The filter function is implemented as a direct II transposed structure. This means that the filter
implements

a[0]*y[n] = b[0]*x[n] + b[1]*x[n-1] + ... + b[nb]*x[n-nb]

• a[1]*y[n-1] - ... - a[na]*y[n-na]

using the following difference equations:

y[m] = b[0]*x[m] + z[0,m-1] z[0,m] = b[1]*x[m] + z[1,m-1] - a[1]*y[m] ... z[n-3,m] = b[n-2]*x[m]
+ z[n-2,m-1] - a[n-2]*y[m] z[n-2,m] = b[n-1]*x[m] - a[n-1]*y[m]

where m is the output sample number and n=max(len(a),len(b)) is the model order.

The rational transfer function describing this filter in the z-transform domain is

-1 -nb
b[0] + b[1]z + ... + b[nb] z

Y(z) = ———————————- X(z)

-1 -na
a[0] + a[1]z + ... + a[na] z

deconvolve(signal, divisor)
Deconvolves divisor out of signal.

hilbert(x, N=None)
Compute the analytic signal.

The transformation is done along the first axis.

Parameters
x : array-like

Signal data

N : int, optional

Number of Fourier components. Default: x.shape[0]

Returns
xa : ndarray, shape (N,) + x.shape[1:]

Analytic signal of x

Notes

The analytic signal x_a(t) of x(t) is:

x_a = F^{-1}(F(x) 2U) = x + i y

where F is the Fourier transform, U the unit step function, and y the Hilbert transform of x. [1]

254 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

References

get_window(window, Nx, fftbins=1)
Return a window of length Nx and type window.

If fftbins is 1, create a “periodic” window ready to use with ifftshift and be multiplied by the result of an fft
(SEE ALSO fftfreq).

Window types: boxcar, triang, blackman, hamming, hanning, bartlett,
parzen, bohman, blackmanharris, nuttall, barthann, kaiser (needs beta), gaussian (needs std), gen-
eral_gaussian (needs power, width), slepian (needs width)

If the window requires no parameters, then it can be a string. If the window requires parameters, the window
argument should be a tuple

with the first argument the string name of the window, and the next arguments the needed parame-
ters.

If window is a floating point number, it is interpreted as the beta
parameter of the kaiser window.

detrend(data, axis=-1, type=’linear’, bp=0)
Remove linear trend along axis from data.

If type is ‘constant’ then remove mean only.

If bp is given, then it is a sequence of points at which to
break a piecewise-linear fit to the data.

resample(x, num, t=None, axis=0, window=None)
Resample to num samples using Fourier method along the given axis.

The resampled signal starts at the same value of x but is sampled with a spacing of len(x) / num * (spacing of
x). Because a Fourier method is used, the signal is assumed periodic.

Window controls a Fourier-domain window that tapers the Fourier spectrum before zero-padding to aleviate
ringing in the resampled values for sampled signals you didn’t intend to be interpreted as band-limited.

If window is a string then use the named window. If window is a float, then it represents a value of beta for a
kaiser window. If window is a tuple, then the first component is a string representing the window, and the next
arguments are parameters for that window.

Possible windows are:
‘blackman’ (‘black’, ‘blk’) ‘hamming’ (‘hamm’, ‘ham’) ‘bartlett’ (‘bart’, ‘brt’) ‘hanning’ (‘hann’, ‘han’)
‘kaiser’ (‘ksr’) # requires parameter (beta) ‘gaussian’ (‘gauss’, ‘gss’) # requires parameter (std.) ‘general
gauss’ (‘general’, ‘ggs’) # requires two parameters

(power, width)

The first sample of the returned vector is the same as the first sample of the input vector, the spacing between
samples is changed from dx to

dx * len(x) / num

If t is not None, then it represents the old sample positions, and the new sample positions will be returned as
well as the new samples.

3.13. Signal processing (scipy.signal) 255

SciPy Reference Guide, Release 0.7

3.13.4 Filter design

remez (numtaps, bands, de-
sired[, weight, Hz, type, ...])

Calculate the minimax optimal filter using Remez exchange
algorithm.

firwin (N, cutoff[, width, window]) FIR Filter Design using windowed ideal filter method.

iirdesign (wp, ws, gpass, gstop[, ana-
log, ftype, output])

Complete IIR digital and analog filter design.

iirfilter (N, Wn[, rp, rs, btype, analog, ...]) IIR digital and analog filter design given order and critical
points.

freqs (b, a[, worN, plot]) Compute frequency response of analog filter.

freqz (b[, a, worN, whole, ...]) Compute frequency response of a digital filter.

unique_roots (p[, tol, rtype]) Determine the unique roots and their multiplicities in two
lists

residue (b, a[, tol, rtype]) Compute partial-fraction expansion of b(s) / a(s).

residuez (b, a[, tol, rtype]) Compute partial-fraction expansion of b(z) / a(z).

invres (r, p, k[, tol, rtype]) Compute b(s) and a(s) from partial fraction expansion: r,p,k

remez(numtaps, bands, desired, weight=None, Hz=1, type=’bandpass’, maxiter=25, grid_density=16)
Calculate the minimax optimal filter using Remez exchange algorithm.

Description:

Calculate the filter-coefficients for the finite impulse response (FIR) filter whose transfer function
minimizes the maximum error between the desired gain and the realized gain in the specified bands
using the remez exchange algorithm.

Inputs:

numtaps – The desired number of taps in the filter. bands – A montonic sequence containing the
band edges. All elements

must be non-negative and less than 1/2 the sampling frequency as given by Hz.

desired – A sequency half the size of bands containing the desired gain
in each of the specified bands

weight – A relative weighting to give to each band region. type — The type of filter:

‘bandpass’ : flat response in bands. ‘differentiator’ : frequency proportional response in
bands.

Outputs: (out,)

out – A rank-1 array containing the coefficients of the optimal
(in a minimax sense) filter.

256 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

firwin(N, cutoff, width=None, window=’hamming’)
FIR Filter Design using windowed ideal filter method.

Parameters
N – order of filter (number of taps) :
cutoff – cutoff frequency of filter (normalized so that 1 corresponds to :

Nyquist or pi radians / sample)

width – if width is not None, then assume it is the approximate width of :

the transition region (normalized so that 1 corresonds to pi) for use in kaiser FIR
filter design.

window – desired window to use. :

Returns
h – coefficients of length N fir filter. :

iirdesign(wp, ws, gpass, gstop, analog=0, ftype=’ellip’, output=’ba’)
Complete IIR digital and analog filter design.

Given passband and stopband frequencies and gains construct an analog or digital IIR filter of minimum order
for a given basic type. Return the output in numerator, denominator (‘ba’) or pole-zero (‘zpk’) form.

Parameters
wp, ws – Passband and stopband edge frequencies, normalized from 0 :

to 1 (1 corresponds to pi radians / sample). For example:
Lowpass: wp = 0.2, ws = 0.3 Highpass: wp = 0.3, ws = 0.2 Bandpass: wp =
[0.2, 0.5], ws = [0.1, 0.6] Bandstop: wp = [0.1, 0.6], ws = [0.2, 0.5]

gpass – The maximum loss in the passband (dB). :
gstop – The minimum attenuation in the stopband (dB). :
analog – Non-zero to design an analog filter (in this case wp and :

ws are in radians / second).

ftype – The type of iir filter to design: :

elliptic : ‘ellip’ Butterworth : ‘butter’, Chebyshev I : ‘cheby1’, Chebyshev II:
‘cheby2’, Bessel : ‘bessel’

output – Type of output: numerator/denominator (‘ba’) or pole-zero (‘zpk’) :

Returns
b,a – Numerator and denominator of the iir filter. :

z,p,k – Zeros, poles, and gain of the iir filter.

iirfilter(N, Wn, rp=None, rs=None, btype=’band’, analog=0, ftype=’butter’, output=’ba’)
IIR digital and analog filter design given order and critical points.

Design an Nth order lowpass digital or analog filter and return the filter coefficients in (B,A) (numerator, de-
nominator) or (Z,P,K) form.

Parameters
N – the order of the filter. :
Wn – a scalar or length-2 sequence giving the critical frequencies. :
rp, rs – For chebyshev and elliptic filters provides the maximum ripple :

in the passband and the minimum attenuation in the stop band.

btype – the type of filter (lowpass, highpass, bandpass, or bandstop). :
analog – non-zero to return an analog filter, otherwise :

3.13. Signal processing (scipy.signal) 257

SciPy Reference Guide, Release 0.7

a digital filter is returned.

ftype – the type of IIR filter (Butterworth, Cauer (Elliptic), :

Bessel, Chebyshev1, Chebyshev2)

output – ‘ba’ for (b,a) output, ‘zpk’ for (z,p,k) output. :
SEE ALSO butterord, cheb1ord, cheb2ord, ellipord :

freqs(b, a, worN=None, plot=None)
Compute frequency response of analog filter.

Given the numerator (b) and denominator (a) of a filter compute its frequency response.

b[0]*(jw)**(nb-1) + b[1]*(jw)**(nb-2) + ... + b[nb-1]

H(w) = ——————————————————–
a[0]*(jw)**(na-1) + a[1]*(jw)**(na-2) + ... + a[na-1]

Parameters
b : ndarray

numerator of a linear filter

a : ndarray

numerator of a linear filter

worN : {None, int}, optional

If None, then compute at 200 frequencies around the interesting parts of the response
curve (determined by pole-zero locations). If a single integer, the compute at that
many frequencies. Otherwise, compute the response at frequencies given in worN.

Returns
w : ndarray

The frequencies at which h was computed.

h : ndarray

The frequency response.

freqz(b, a=1, worN=None, whole=0, plot=None)
Compute frequency response of a digital filter.

Given the numerator (b) and denominator (a) of a digital filter compute its frequency response.

jw -jw -jmw
jw B(e) b[0] + b[1]e + + b[m]e

H(e) = —- = ————————————

jw -jw -jnw

A(e) a[0] + a[2]e + + a[n]e

Parameters
b : ndarray

numerator of a linear filter

a : ndarray

258 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

numerator of a linear filter

worN : {None, int}, optional

If None, then compute at 200 frequencies around the interesting parts of the response
curve (determined by pole-zero locations). If a single integer, the compute at that
many frequencies. Otherwise, compute the response at frequencies given in worN.

whole : {0,1}, optional

Normally, frequencies are computed from 0 to pi (upper-half of unit-circle. If whole
is non-zero compute frequencies from 0 to 2*pi.

Returns
w : ndarray

The frequencies at which h was computed.

h : ndarray

The frequency response.

unique_roots(p, tol=0.001, rtype=’min’)
Determine the unique roots and their multiplicities in two lists

Inputs:

p – The list of roots tol — The tolerance for two roots to be considered equal. rtype — How to
determine the returned root from the close

ones: ‘max’: pick the maximum
‘min’: pick the minimum ‘avg’: average roots

Outputs: (pout, mult)

pout – The list of sorted roots mult – The multiplicity of each root

residue(b, a, tol=0.001, rtype=’avg’)
Compute partial-fraction expansion of b(s) / a(s).

If M = len(b) and N = len(a)

b(s) b[0] s**(M-1) + b[1] s**(M-2) + ... + b[M-1]

H(s) = —— = ———————————————-

a(s) a[0] s**(N-1) + a[1] s**(N-2) + ... + a[N-1]

r[0] r[1] r[-1]

= ——– + ——– + ... + ——— + k(s)
(s-p[0]) (s-p[1]) (s-p[-1])

If there are any repeated roots (closer than tol), then the partial fraction expansion has terms like

r[i] r[i+1] r[i+n-1]

——– + ———– + ... + ———– (s-p[i]) (s-p[i])**2 (s-p[i])**n

Returns
r : ndarray

3.13. Signal processing (scipy.signal) 259

SciPy Reference Guide, Release 0.7

Residues
p : ndarray

Poles
k : ndarray

Coefficients of the direct polynomial term.

See Also:
invres, poly, polyval, unique_roots

residuez(b, a, tol=0.001, rtype=’avg’)
Compute partial-fraction expansion of b(z) / a(z).

If M = len(b) and N = len(a)

b(z) b[0] + b[1] z**(-1) + ... + b[M-1] z**(-M+1)

H(z) = —— = ———————————————-

a(z) a[0] + a[1] z**(-1) + ... + a[N-1] z**(-N+1)
r[0] r[-1]

= ————— + ... + —————- + k[0] + k[1]z**(-1) ...
(1-p[0]z**(-1)) (1-p[-1]z**(-1))

If there are any repeated roots (closer than tol), then the partial fraction expansion has terms like

r[i] r[i+1] r[i+n-1]

————– + —————— + ... + —————— (1-p[i]z**(-1)) (1-p[i]z**(-1))**2 (1-p[i]z**(-
1))**n

See also: invresz, poly, polyval, unique_roots

invres(r, p, k, tol=0.001, rtype=’avg’)
Compute b(s) and a(s) from partial fraction expansion: r,p,k

If M = len(b) and N = len(a)

b(s) b[0] x**(M-1) + b[1] x**(M-2) + ... + b[M-1]

H(s) = —— = ———————————————-

a(s) a[0] x**(N-1) + a[1] x**(N-2) + ... + a[N-1]
r[0] r[1] r[-1]

= ——– + ——– + ... + ——— + k(s)
(s-p[0]) (s-p[1]) (s-p[-1])

If there are any repeated roots (closer than tol), then the partial fraction expansion has terms like

r[i] r[i+1] r[i+n-1]

——– + ———– + ... + ———– (s-p[i]) (s-p[i])**2 (s-p[i])**n

See Also:
residue, poly, polyval, unique_roots

260 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

3.13.5 Matlab-style IIR filter design

butter (N, Wn[, btype, analog, output]) Butterworth digital and analog filter design.

buttord (wp, ws, gpass, gstop[, analog]) Butterworth filter order selection.

cheby1 (N, rp, Wn[, btype, analog, output]) Chebyshev type I digital and analog filter design.

cheb1ord (wp, ws, gpass, gstop[, analog]) Chebyshev type I filter order selection.

cheby2 (N, rs, Wn[, btype, analog, output]) Chebyshev type I digital and analog filter design.

cheb2ord (wp, ws, gpass, gstop[, analog]) Chebyshev type II filter order selection.

ellip (N, rp, rs, Wn[, btype, analog, output]) Elliptic (Cauer) digital and analog filter design.

ellipord (wp, ws, gpass, gstop[, analog]) Elliptic (Cauer) filter order selection.

bessel (N, Wn[, btype, analog, output]) Bessel digital and analog filter design.

butter(N, Wn, btype=’low’, analog=0, output=’ba’)
Butterworth digital and analog filter design.

Description:

Design an Nth order lowpass digital or analog Butterworth filter and return the filter coefficients in
(B,A) or (Z,P,K) form.

See also buttord.

buttord(wp, ws, gpass, gstop, analog=0)
Butterworth filter order selection.

Return the order of the lowest order digital Butterworth filter that loses no more than gpass dB in the passband
and has at least gstop dB attenuation in the stopband.

Parameters
wp, ws – Passband and stopband edge frequencies, normalized from 0 :

to 1 (1 corresponds to pi radians / sample). For example:
Lowpass: wp = 0.2, ws = 0.3 Highpass: wp = 0.3, ws = 0.2 Bandpass: wp =
[0.2, 0.5], ws = [0.1, 0.6] Bandstop: wp = [0.1, 0.6], ws = [0.2, 0.5]

gpass – The maximum loss in the passband (dB). :
gstop – The minimum attenuation in the stopband (dB). :
analog – Non-zero to design an analog filter (in this case wp and :

ws are in radians / second).

Returns
ord – The lowest order for a Butterworth filter which meets specs. :
Wn – The Butterworth natural frequency (i.e. the “3dB frequency”). :

Should be used with scipy.signal.butter to give filter results.

cheby1(N, rp, Wn, btype=’low’, analog=0, output=’ba’)
Chebyshev type I digital and analog filter design.

Description:

3.13. Signal processing (scipy.signal) 261

SciPy Reference Guide, Release 0.7

Design an Nth order lowpass digital or analog Chebyshev type I filter and return the filter coeffi-
cients in (B,A) or (Z,P,K) form.

See also cheb1ord.

cheb1ord(wp, ws, gpass, gstop, analog=0)
Chebyshev type I filter order selection.

Return the order of the lowest order digital Chebyshev Type I filter that loses no more than gpass dB in the
passband and has at least gstop dB attenuation in the stopband.

Parameters
wp, ws – Passband and stopband edge frequencies, normalized from 0 :

to 1 (1 corresponds to pi radians / sample). For example:
Lowpass: wp = 0.2, ws = 0.3 Highpass: wp = 0.3, ws = 0.2 Bandpass: wp =
[0.2, 0.5], ws = [0.1, 0.6] Bandstop: wp = [0.1, 0.6], ws = [0.2, 0.5]

gpass – The maximum loss in the passband (dB). :
gstop – The minimum attenuation in the stopband (dB). :
analog – Non-zero to design an analog filter (in this case wp and :

ws are in radians / second).

Returns
ord – The lowest order for a Chebyshev type I filter that meets specs. :
Wn – The Chebyshev natural frequency (the “3dB frequency”) for :

use with scipy.signal.cheby1 to give filter results.

cheby2(N, rs, Wn, btype=’low’, analog=0, output=’ba’)
Chebyshev type I digital and analog filter design.

Description:

Design an Nth order lowpass digital or analog Chebyshev type I filter and return the filter coeffi-
cients in (B,A) or (Z,P,K) form.

See also cheb2ord.

cheb2ord(wp, ws, gpass, gstop, analog=0)
Chebyshev type II filter order selection.

Description:

Return the order of the lowest order digital Chebyshev Type II filter that loses no more than gpass
dB in the passband and has at least gstop dB attenuation in the stopband.

Parameters
wp, ws – Passband and stopband edge frequencies, normalized from 0 :

to 1 (1 corresponds to pi radians / sample). For example:
Lowpass: wp = 0.2, ws = 0.3 Highpass: wp = 0.3, ws = 0.2 Bandpass: wp =
[0.2, 0.5], ws = [0.1, 0.6] Bandstop: wp = [0.1, 0.6], ws = [0.2, 0.5]

gpass – The maximum loss in the passband (dB). :
gstop – The minimum attenuation in the stopband (dB). :
analog – Non-zero to design an analog filter (in this case wp and :

ws are in radians / second).

262 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

Returns
ord – The lowest order for a Chebyshev type II filter that meets specs. :
Wn – The Chebyshev natural frequency for :

use with scipy.signal.cheby2 to give the filter.

ellip(N, rp, rs, Wn, btype=’low’, analog=0, output=’ba’)
Elliptic (Cauer) digital and analog filter design.

Description:

Design an Nth order lowpass digital or analog elliptic filter and return the filter coefficients in (B,A)
or (Z,P,K) form.

See also ellipord.

ellipord(wp, ws, gpass, gstop, analog=0)
Elliptic (Cauer) filter order selection.

Return the order of the lowest order digital elliptic filter that loses no more than gpass dB in the passband and
has at least gstop dB attenuation in the stopband.

Parameters
wp, ws – Passband and stopband edge frequencies, normalized from 0 :

to 1 (1 corresponds to pi radians / sample). For example:
Lowpass: wp = 0.2, ws = 0.3 Highpass: wp = 0.3, ws = 0.2 Bandpass: wp =
[0.2, 0.5], ws = [0.1, 0.6] Bandstop: wp = [0.1, 0.6], ws = [0.2, 0.5]

gpass – The maximum loss in the passband (dB). :
gstop – The minimum attenuation in the stopband (dB). :
analog – Non-zero to design an analog filter (in this case wp and :

ws are in radians / second).

Returns
ord – The lowest order for an Elliptic (Cauer) filter that meets specs. :
Wn – The natural frequency for use with scipy.signal.ellip :

to give the filter.

bessel(N, Wn, btype=’low’, analog=0, output=’ba’)
Bessel digital and analog filter design.

Description:

Design an Nth order lowpass digital or analog Bessel filter and return the filter coefficients in (B,A)
or (Z,P,K) form.

3.13.6 Linear Systems

lti Linear Time Invariant class which simplifies representation.

lsim (system, U, T[, X0, interp]) Simulate output of a continuous-time linear system.

impulse (system[, X0, T, N]) Impulse response of continuous-time system.

step (system[, X0, T, N]) Step response of continuous-time system.

3.13. Signal processing (scipy.signal) 263

SciPy Reference Guide, Release 0.7

class lti(*args, **kwords)
Linear Time Invariant class which simplifies representation.

lsim(system, U, T, X0=None, interp=1)
Simulate output of a continuous-time linear system.

Inputs:

system – an instance of the LTI class or a tuple describing the
system. The following gives the number of elements in the tuple and the interpretation.

2 (num, den) 3 (zeros, poles, gain) 4 (A, B, C, D)

U – an input array describing the input at each time T
(interpolation is assumed between given times). If there are multiple inputs, then each column
of the rank-2 array represents an input.

T – the time steps at which the input is defined and at which
the output is desired.

X0 – (optional, default=0) the initial conditions on the state vector. interp – linear (1) or zero-order
hold (0) interpolation

Outputs: (T, yout, xout)

T – the time values for the output. yout – the response of the system. xout – the time-evolution of
the state-vector.

impulse(system, X0=None, T=None, N=None)
Impulse response of continuous-time system.

Inputs:

system – an instance of the LTI class or a tuple with 2, 3, or 4
elements representing (num, den), (zero, pole, gain), or (A, B, C, D) representation of the
system.

X0 – (optional, default = 0) inital state-vector. T – (optional) time points (autocomputed if not
given). N – (optional) number of time points to autocompute (100 if not given).

Ouptuts: (T, yout)

T – output time points, yout – impulse response of system (except possible singularities at 0).

step(system, X0=None, T=None, N=None)
Step response of continuous-time system.

Inputs:

system – an instance of the LTI class or a tuple with 2, 3, or 4
elements representing (num, den), (zero, pole, gain), or (A, B, C, D) representation of the
system.

X0 – (optional, default = 0) inital state-vector. T – (optional) time points (autocomputed if not
given). N – (optional) number of time points to autocompute (100 if not given).

Ouptuts: (T, yout)

T – output time points, yout – step response of system.

264 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

3.13.7 LTI Reresentations

tf2zpk (b, a) Return zero, pole, gain (z,p,k) representation from a numerator, denominator
representation of a linear filter.

zpk2tf (z, p, k) Return polynomial transfer function representation from zeros and poles

tf2ss (num, den) Transfer function to state-space representation.

ss2tf (A, B, C, D[, in-
put])

State-space to transfer function.

zpk2ss (z, p, k) Zero-pole-gain representation to state-space representation

ss2zpk (A, B, C, D[, in-
put])

State-space representation to zero-pole-gain representation.

tf2zpk(b, a)
Return zero, pole, gain (z,p,k) representation from a numerator, denominator representation of a linear filter.

Parameters
b : ndarray

numerator polynomial.

a : ndarray

numerator and denominator polynomials.

Returns
z : ndarray

zeros of the transfer function.

p : ndarray

poles of the transfer function.

k : float

system gain.

If some values of b are too close to 0, they are removed. In that case, a :
BadCoefficients warning is emitted. :

zpk2tf(z, p, k)
Return polynomial transfer function representation from zeros and poles

Parameters
z : ndarray

zeros of the transfer function.

p : ndarray

poles of the transfer function.

k : float

system gain.

Returns
b : ndarray

numerator polynomial.

3.13. Signal processing (scipy.signal) 265

SciPy Reference Guide, Release 0.7

a : ndarray

numerator and denominator polynomials.

tf2ss(num, den)
Transfer function to state-space representation.

Inputs:

num, den – sequences representing the numerator and denominator polynomials.

Outputs:

A, B, C, D – state space representation of the system.

ss2tf(A, B, C, D, input=0)
State-space to transfer function.

Inputs:

A, B, C, D – state-space representation of linear system. input – For multiple-input systems, the
input to use.

Outputs:

num, den – Numerator and denominator polynomials (as sequences)
respectively.

zpk2ss(z, p, k)
Zero-pole-gain representation to state-space representation

Inputs:

z, p, k – zeros, poles (sequences), and gain of system

Outputs:

A, B, C, D – state-space matrices.

ss2zpk(A, B, C, D, input=0)
State-space representation to zero-pole-gain representation.

Inputs:

A, B, C, D – state-space matrices. input – for multiple-input systems, the input to use.

Outputs:

z, p, k – zeros and poles in sequences and gain constant.

266 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

3.13.8 Waveforms

sawtooth (t[, width]) Returns a periodic sawtooth waveform with period 2*pi which rises from -1 to 1 on the
interval 0 to width*2*pi and drops from 1 to -1 on the interval width*2*pi to 2*pi width
must be in the interval [0,1]

square (t[, duty]) Returns a periodic square-wave waveform with period 2*pi which is +1 from 0 to
2*pi*duty and -1 from 2*pi*duty to 2*pi duty must be in the interval [0,1]

gausspulse (t[, fc, bw, bwr, tpr, ...])Return a gaussian modulated sinusoid: exp(-a t^2) exp(1j*2*pi*fc)

chirp (t[, f0, t1, f1, method, ...])Frequency-swept cosine generator.

sawtooth(t, width=1)
Returns a periodic sawtooth waveform with period 2*pi which rises from -1 to 1 on the interval 0 to width*2*pi
and drops from 1 to -1 on the interval width*2*pi to 2*pi width must be in the interval [0,1]

square(t, duty=0.5)
Returns a periodic square-wave waveform with period 2*pi which is +1 from 0 to 2*pi*duty and -1 from
2*pi*duty to 2*pi duty must be in the interval [0,1]

gausspulse(t, fc=1000, bw=0.5, bwr=-6, tpr=-60, retquad=0, retenv=0)
Return a gaussian modulated sinusoid: exp(-a t^2) exp(1j*2*pi*fc)

If retquad is non-zero, then return the real and imaginary parts
(inphase and quadrature)

If retenv is non-zero, then return the envelope (unmodulated signal). Otherwise, return the real part of the
modulated sinusoid.

Inputs:

t – Input array. fc – Center frequency (Hz). bw – Fractional bandwidth in frequency domain of
pulse (Hz). bwr – Reference level at which fractional bandwidth is calculated (dB). tpr – If t is
‘cutoff’, then the function returns the cutoff time for when the

pulse amplitude falls below tpr (in dB).

retquad – Return the quadrature (imaginary) as well as the real part of the signal retenv – Return
the envelope of th signal.

chirp(t, f0=0, t1=1, f1=100, method=’linear’, phi=0, qshape=None)
Frequency-swept cosine generator.

Parameters
t : ndarray

Times at which to evaluate the waveform.

f0 : float or ndarray, optional

Frequency (in Hz) of the waveform at time 0. If f0 is an ndarray, it specifies the
frequency change as a polynomial in t (see Notes below).

t1 : float, optional

Time at which f1 is specified.

f1 : float, optional

Frequency (in Hz) of the waveform at time t1.

3.13. Signal processing (scipy.signal) 267

SciPy Reference Guide, Release 0.7

method : {‘linear’, ‘quadratic’, ‘logarithmic’}, optional

Kind of frequency sweep.

phi : float

Phase offset, in degrees.

qshape : {‘convex’, ‘concave’}

If method is ‘quadratic’, qshape specifies its shape.

Notes

If f0 is an array, it forms the coefficients of a polynomial in t (see numpy.polval). The polynomial determines
the waveform frequency change in time. In this case, the values of f1, t1, method, and qshape are ignored.

3.13.9 Window functions

boxcar (M[, sym]) The M-point boxcar window.

triang (M[, sym]) The M-point triangular window.

parzen (M[, sym]) The M-point Parzen window.

bohman (M[, sym]) The M-point Bohman window.

blackman (M[, sym]) The M-point Blackman window.

blackmanharris (M[, sym]) The M-point minimum 4-term Blackman-Harris window.

nuttall (M[, sym]) A minimum 4-term Blackman-Harris window according to Nuttall.

flattop (M[, sym]) The M-point Flat top window.

bartlett (M[, sym]) The M-point Bartlett window.

hann (M[, sym]) The M-point Hanning window.

barthann (M[, sym]) Return the M-point modified Bartlett-Hann window.

hamming (M[, sym]) The M-point Hamming window.

kaiser (M, beta[, sym]) Return a Kaiser window of length M with shape parameter beta.

gaussian (M, std[, sym]) Return a Gaussian window of length M with standard-deviation std.

general_gaussian (M, p, sig[, sym]) Return a window with a generalized Gaussian shape.

slepian (M, width[, sym]) Return the M-point slepian window.

boxcar(M, sym=1)
The M-point boxcar window.

triang(M, sym=1)
The M-point triangular window.

268 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

parzen(M, sym=1)
The M-point Parzen window.

bohman(M, sym=1)
The M-point Bohman window.

blackman(M, sym=1)
The M-point Blackman window.

blackmanharris(M, sym=1)
The M-point minimum 4-term Blackman-Harris window.

nuttall(M, sym=1)
A minimum 4-term Blackman-Harris window according to Nuttall.

flattop(M, sym=1)
The M-point Flat top window.

bartlett(M, sym=1)
The M-point Bartlett window.

hann(M, sym=1)
The M-point Hanning window.

barthann(M, sym=1)
Return the M-point modified Bartlett-Hann window.

hamming(M, sym=1)
The M-point Hamming window.

kaiser(M, beta, sym=1)
Return a Kaiser window of length M with shape parameter beta.

gaussian(M, std, sym=1)
Return a Gaussian window of length M with standard-deviation std.

general_gaussian(M, p, sig, sym=1)
Return a window with a generalized Gaussian shape.

exp(-0.5*(x/sig)**(2*p))

half power point is at (2*log(2)))**(1/(2*p))*sig

slepian(M, width, sym=1)
Return the M-point slepian window.

3.13.10 Wavelets

daub (p) The coefficients for the FIR low-pass filter producing Daubechies wavelets.

qmf (hk) Return high-pass qmf filter from low-pass

cascade (hk[, J]) (x,phi,psi) at dyadic points K/2**J from filter coefficients.

daub(p)
The coefficients for the FIR low-pass filter producing Daubechies wavelets.

p>=1 gives the order of the zero at f=1/2. There are 2p filter coefficients.

qmf(hk)
Return high-pass qmf filter from low-pass

3.13. Signal processing (scipy.signal) 269

SciPy Reference Guide, Release 0.7

cascade(hk, J=7)
(x,phi,psi) at dyadic points K/2**J from filter coefficients.

Inputs:
hk – coefficients of low-pass filter J – values will be computed at grid points $K/2^J$

Outputs:

x – the dyadic points $K/2^J$ for $K=0...N*(2^J)-1$
where len(hk)=len(gk)=N+1

phi – the scaling function phi(x) at x
$phi(x) = sum_{k=0}^{N} h_k phi(2x-k)$

psi – the wavelet function psi(x) at x

$psi(x) = sum_{k=0}^N g_k phi(2x-k)$
Only returned if gk is not None

Algorithm:

Uses the vector cascade algorithm described by Strang and Nguyen in “Wavelets and Filter Banks”

Builds a dictionary of values and slices for quick reuse. Then inserts vectors into final vector at then
end

3.14 Sparse matrices (scipy.sparse)

3.14.1 Sparse Matrices

Scipy 2D sparse matrix module.

Original code by Travis Oliphant. Modified and extended by Ed Schofield, Robert Cimrman, and Nathan Bell.

There are seven available sparse matrix types:

1. csc_matrix: Compressed Sparse Column format

2. csr_matrix: Compressed Sparse Row format

3. bsr_matrix: Block Sparse Row format

4. lil_matrix: List of Lists format

5. dok_matrix: Dictionary of Keys format

6. coo_matrix: COOrdinate format (aka IJV, triplet format)

7. dia_matrix: DIAgonal format

To construct a matrix efficiently, use either lil_matrix (recommended) or dok_matrix. The lil_matrix class supports
basic slicing and fancy indexing with a similar syntax to NumPy arrays. As illustrated below, the COO format may
also be used to efficiently construct matrices.

To perform manipulations such as multiplication or inversion, first convert the matrix to either CSC or CSR format.
The lil_matrix format is row-based, so conversion to CSR is efficient, whereas conversion to CSC is less so.

All conversions among the CSR, CSC, and COO formats are efficient, linear-time operations.

270 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

3.14.2 Example 1

Construct a 1000x1000 lil_matrix and add some values to it:

>>> from scipy import sparse, linsolve
>>> from numpy import linalg
>>> from numpy.random import rand
>>> A = sparse.lil_matrix((1000, 1000))
>>> A[0, :100] = rand(100)
>>> A[1, 100:200] = A[0, :100]
>>> A.setdiag(rand(1000))

Now convert it to CSR format and solve A x = b for x:

>>> A = A.tocsr()
>>> b = rand(1000)
>>> x = linsolve.spsolve(A, b)

Convert it to a dense matrix and solve, and check that the result is the same:

>>> x_ = linalg.solve(A.todense(), b)

Now we can compute norm of the error with:

>>> err = linalg.norm(x-x_)
>>> err < 1e-10
True

It should be small :)

3.14.3 Example 2

Construct a matrix in COO format:

>>> from scipy import sparse
>>> from numpy import array
>>> I = array([0,3,1,0])
>>> J = array([0,3,1,2])
>>> V = array([4,5,7,9])
>>> A = sparse.coo_matrix((V,(I,J)),shape=(4,4))

Notice that the indices do not need to be sorted.

Duplicate (i,j) entries are summed when converting to CSR or CSC.

>>> I = array([0,0,1,3,1,0,0])
>>> J = array([0,2,1,3,1,0,0])
>>> V = array([1,1,1,1,1,1,1])
>>> B = sparse.coo_matrix((V,(I,J)),shape=(4,4)).tocsr()

This is useful for constructing finite-element stiffness and mass matrices.

3.14. Sparse matrices (scipy.sparse) 271

SciPy Reference Guide, Release 0.7

3.14.4 Further Details

CSR column indices are not necessarily sorted. Likewise for CSC row indices. Use the .sorted_indices() and
.sort_indices() methods when sorted indices are required (e.g. when passing data to other libraries).

3.14.5 Sparse matrix classes

csc_matrix Compressed Sparse Column matrix

csr_matrix Compressed Sparse Row matrix

bsr_matrix Block Sparse Row matrix

lil_matrix Row-based linked list sparse matrix

dok_matrix Dictionary Of Keys based sparse matrix.

coo_matrix A sparse matrix in COOrdinate format.

dia_matrix Sparse matrix with DIAgonal storage

class csc_matrix(arg1, shape=None, dtype=None, copy=False, dims=None, nzmax=None)
Compressed Sparse Column matrix

This can be instantiated in several ways:

csc_matrix(D)
with a dense matrix or rank-2 ndarray D

csc_matrix(S)
with another sparse matrix S (equivalent to S.tocsc())

csc_matrix((M, N), [dtype])
to construct an empty matrix with shape (M, N) dtype is optional, defaulting to dtype=’d’.

csc_matrix((data, ij), [shape=(M, N)])
where data and ij satisfy a[ij[0, k], ij[1, k]] = data[k]

csc_matrix((data, indices, indptr), [shape=(M, N)])
is the standard CSC representation where the row indices for column i are stored in
indices[indptr[i]:indices[i+1]] and their corresponding values are stored in
data[indptr[i]:indptr[i+1]]. If the shape parameter is not supplied, the matrix dimen-
sions are inferred from the index arrays.

Notes

Advantages of the CSC format

• efficient arithmetic operations CSC + CSC, CSC * CSC, etc.

• efficient column slicing

• fast matrix vector products (CSR, BSR may be faster)

Examples

272 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

>>> from scipy.sparse import *
>>> from scipy import *
>>> csc_matrix((3,4), dtype=int8).todense()
matrix([[0, 0, 0, 0],

[0, 0, 0, 0],
[0, 0, 0, 0]], dtype=int8)

>>> row = array([0,2,2,0,1,2])
>>> col = array([0,0,1,2,2,2])
>>> data = array([1,2,3,4,5,6])
>>> csc_matrix((data,(row,col)), shape=(3,3)).todense()
matrix([[1, 0, 4],

[0, 0, 5],
[2, 3, 6]])

>>> indptr = array([0,2,3,6])
>>> indices = array([0,2,2,0,1,2])
>>> data = array([1,2,3,4,5,6])
>>> csc_matrix((data,indices,indptr), shape=(3,3)).todense()
matrix([[1, 0, 4],

[0, 0, 5],
[2, 3, 6]])

class csr_matrix(arg1, shape=None, dtype=None, copy=False, dims=None, nzmax=None)
Compressed Sparse Row matrix

This can be instantiated in several ways:

csr_matrix(D)
with a dense matrix or rank-2 ndarray D

csr_matrix(S)
with another sparse matrix S (equivalent to S.tocsr())

csr_matrix((M, N), [dtype])
to construct an empty matrix with shape (M, N) dtype is optional, defaulting to dtype=’d’.

csr_matrix((data, ij), [shape=(M, N)])
where data and ij satisfy a[ij[0, k], ij[1, k]] = data[k]

csr_matrix((data, indices, indptr), [shape=(M, N)])
is the standard CSR representation where the column indices for row i are stored in
indices[indptr[i]:indices[i+1]] and their corresponding values are stored in
data[indptr[i]:indptr[i+1]]. If the shape parameter is not supplied, the matrix dimen-
sions are inferred from the index arrays.

Notes

Advantages of the CSR format

• efficient arithmetic operations CSR + CSR, CSR * CSR, etc.

• efficient row slicing

• fast matrix vector products

Disadvantages of the CSR format

3.14. Sparse matrices (scipy.sparse) 273

SciPy Reference Guide, Release 0.7

• slow column slicing operations (consider CSC)

• changes to the sparsity structure are expensive (consider LIL or DOK)

Examples

>>> from scipy.sparse import *
>>> from scipy import *
>>> csr_matrix((3,4), dtype=int8).todense()
matrix([[0, 0, 0, 0],

[0, 0, 0, 0],
[0, 0, 0, 0]], dtype=int8)

>>> row = array([0,0,1,2,2,2])
>>> col = array([0,2,2,0,1,2])
>>> data = array([1,2,3,4,5,6])
>>> csr_matrix((data,(row,col)), shape=(3,3)).todense()
matrix([[1, 0, 2],

[0, 0, 3],
[4, 5, 6]])

>>> indptr = array([0,2,3,6])
>>> indices = array([0,2,2,0,1,2])
>>> data = array([1,2,3,4,5,6])
>>> csr_matrix((data,indices,indptr), shape=(3,3)).todense()
matrix([[1, 0, 2],

[0, 0, 3],
[4, 5, 6]])

class bsr_matrix(arg1, shape=None, dtype=None, copy=False, blocksize=None)
Block Sparse Row matrix

This can be instantiated in several ways:

bsr_matrix(D, [blocksize=(R,C)])
with a dense matrix or rank-2 ndarray D

bsr_matrix(S, [blocksize=(R,C)])
with another sparse matrix S (equivalent to S.tobsr())

bsr_matrix((M, N), [blocksize=(R,C), dtype])
to construct an empty matrix with shape (M, N) dtype is optional, defaulting to dtype=’d’.

bsr_matrix((data, ij), [blocksize=(R,C), shape=(M, N)])
where data and ij satisfy a[ij[0, k], ij[1, k]] = data[k]

bsr_matrix((data, indices, indptr), [shape=(M, N)])
is the standard BSR representation where the block column indices for row i are stored in
indices[indptr[i]:indices[i+1]] and their corresponding block values are stored in
data[indptr[i]: indptr[i+1]]. If the shape parameter is not supplied, the matrix
dimensions are inferred from the index arrays.

Notes

Summary

274 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

• The Block Compressed Row (BSR) format is very similar to the Compressed Sparse Row (CSR)
format. BSR is appropriate for sparse matrices with dense sub matrices like the last example below.
Block matrices often arise in vector-valued finite element discretizations. In such cases, BSR is
considerably more efficient than CSR and CSC for many sparse arithmetic operations.

Blocksize

• The blocksize (R,C) must evenly divide the shape of the matrix (M,N). That is, R and C must satisfy
the relationship M % R = 0 and N % C = 0.

• If no blocksize is specified, a simple heuristic is applied to determine an appropriate blocksize.

Examples

>>> from scipy.sparse import *
>>> from scipy import *
>>> bsr_matrix((3,4), dtype=int8).todense()
matrix([[0, 0, 0, 0],

[0, 0, 0, 0],
[0, 0, 0, 0]], dtype=int8)

>>> row = array([0,0,1,2,2,2])
>>> col = array([0,2,2,0,1,2])
>>> data = array([1,2,3,4,5,6])
>>> bsr_matrix((data,(row,col)), shape=(3,3)).todense()
matrix([[1, 0, 2],

[0, 0, 3],
[4, 5, 6]])

>>> indptr = array([0,2,3,6])
>>> indices = array([0,2,2,0,1,2])
>>> data = array([1,2,3,4,5,6]).repeat(4).reshape(6,2,2)
>>> bsr_matrix((data,indices,indptr), shape=(6,6)).todense()
matrix([[1, 1, 0, 0, 2, 2],

[1, 1, 0, 0, 2, 2],
[0, 0, 0, 0, 3, 3],
[0, 0, 0, 0, 3, 3],
[4, 4, 5, 5, 6, 6],
[4, 4, 5, 5, 6, 6]])

class lil_matrix(arg1, shape=None, dtype=None, copy=False)
Row-based linked list sparse matrix

This is an efficient structure for constructing sparse matrices incrementally.

This can be instantiated in several ways:

lil_matrix(D)
with a dense matrix or rank-2 ndarray D

lil_matrix(S)
with another sparse matrix S (equivalent to S.tocsc())

lil_matrix((M, N), [dtype])
to construct an empty matrix with shape (M, N) dtype is optional, defaulting to dtype=’d’.

3.14. Sparse matrices (scipy.sparse) 275

SciPy Reference Guide, Release 0.7

Notes

Advantages of the LIL format

• supports flexible slicing

• changes to the matrix sparsity structure are efficient

Disadvantages of the LIL format

• arithmetic operations LIL + LIL are slow (consider CSR or CSC)

• slow column slicing (consider CSC)

• slow matrix vector products (consider CSR or CSC)

Intended Usage

• LIL is a convenient format for constructing sparse matrices

• once a matrix has been constructed, convert to CSR or CSC format for fast arithmetic and matrix
vector operations

• consider using the COO format when constructing large matrices

Data Structure

• An array (self.rows) of rows, each of which is a sorted list of column indices of non-zero ele-
ments.

• The corresponding nonzero values are stored in similar fashion in self.data.

class dok_matrix(arg1, shape=None, dtype=None, copy=False)
Dictionary Of Keys based sparse matrix.

This is an efficient structure for constructing sparse matrices incrementally.

This can be instatiated in several ways:

dok_matrix(D)
with a dense matrix, D

dok_matrix(S)
with a sparse matrix, S

dok_matrix((M,N), [dtype])
create the matrix with initial shape (M,N) dtype is optional, defaulting to dtype=’d’

Notes

Allows for efficient O(1) access of individual elements. Duplicates are not allowed. Can be efficiently converted
to a coo_matrix once constructed.

276 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

Examples

>>> from scipy.sparse import *
>>> from scipy import *
>>> S = dok_matrix((5,5), dtype=float32)
>>> for i in range(5):
>>> for j in range(5):
>>> S[i,j] = i+j # Update element

class coo_matrix(arg1, shape=None, dtype=None, copy=False, dims=None)
A sparse matrix in COOrdinate format.

Also known as the ‘ijv’ or ‘triplet’ format.

This can be instantiated in several ways:

coo_matrix(D)
with a dense matrix D

coo_matrix(S)
with another sparse matrix S (equivalent to S.tocoo())

coo_matrix((M, N), [dtype])
to construct an empty matrix with shape (M, N) dtype is optional, defaulting to dtype=’d’.

coo_matrix((data, ij), [shape=(M, N)])

The arguments ‘data’ and ‘ij’ represent three arrays:

1. data[:] the entries of the matrix, in any order
2. ij[0][:] the row indices of the matrix entries
3. ij[1][:] the column indices of the matrix entries

Where A[ij[0][k], ij[1][k] = data[k]. When shape is not specified, it is inferred from
the index arrays

Notes

Advantages of the COO format

• facilitates fast conversion among sparse formats

• permits duplicate entries (see example)

• very fast conversion to and from CSR/CSC formats

Disadvantages of the COO format

• does not directly support:

– arithmetic operations
– slicing

Examples

3.14. Sparse matrices (scipy.sparse) 277

SciPy Reference Guide, Release 0.7

>>> from scipy.sparse import *
>>> from scipy import *
>>> coo_matrix((3,4), dtype=int8).todense()
matrix([[0, 0, 0, 0],

[0, 0, 0, 0],
[0, 0, 0, 0]], dtype=int8)

>>> row = array([0,3,1,0])
>>> col = array([0,3,1,2])
>>> data = array([4,5,7,9])
>>> coo_matrix((data,(row,col)), shape=(4,4)).todense()
matrix([[4, 0, 9, 0],

[0, 7, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 5]])

>>> # example with duplicates
>>> row = array([0,0,1,3,1,0,0])
>>> col = array([0,2,1,3,1,0,0])
>>> data = array([1,1,1,1,1,1,1])
>>> coo_matrix((data,(row,col)), shape=(4,4)).todense()
matrix([[3, 0, 1, 0],

[0, 2, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 1]])

class dia_matrix(arg1, shape=None, dtype=None, copy=False)
Sparse matrix with DIAgonal storage

This can be instantiated in several ways:

dia_matrix(D)
with a dense matrix

dia_matrix(S)
with another sparse matrix S (equivalent to S.todia())

dia_matrix((M, N), [dtype])
to construct an empty matrix with shape (M, N), dtype is optional, defaulting to dtype=’d’.

dia_matrix((data, offsets), shape=(M, N))
where the data[k,:] stores the diagonal entries for diagonal offsets[k] (See example below)

Examples

>>> from scipy.sparse import *
>>> from scipy import *
>>> dia_matrix((3,4), dtype=int8).todense()
matrix([[0, 0, 0, 0],

[0, 0, 0, 0],
[0, 0, 0, 0]], dtype=int8)

>>> data = array([[1,2,3,4]]).repeat(3,axis=0)
>>> offsets = array([0,-1,2])
>>> dia_matrix((data,offsets), shape=(4,4)).todense()

278 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

matrix([[1, 0, 3, 0],
[1, 2, 0, 4],
[0, 2, 3, 0],
[0, 0, 3, 4]])

3.14.6 Functions

Building sparse matrices:

eye (m, n[, k, dtype, format]) eye(m, n) returns a sparse (m x n) matrix where the k-th diagonal is all ones
and everything else is zeros.

identity (n[, dtype, format]) Identity matrix in sparse format

kron (A, B[, format]) kronecker product of sparse matrices A and B

kronsum (A, B[, format]) kronecker sum of sparse matrices A and B

lil_eye ((r, c)[, k, dtype]) Generate a lil_matrix of dimensions (r,c) with the k-th diagonal set to 1.

lil_diags (diags, off-
sets, (m, n)[, dtype])

Generate a lil_matrix with the given diagonals.

spdiags (data, di-
ags, m, n[, format])

Return a sparse matrix from diagonals.

tril (A[, k, format]) Return the lower triangular portion of a matrix in sparse format

triu (A[, k, format]) Return the upper triangular portion of a matrix in sparse format

bmat (blocks[, format, dtype]) Build a sparse matrix from sparse sub-blocks

hstack (blocks[, for-
mat, dtype])

Stack sparse matrices horizontally (column wise)

vstack (blocks[, for-
mat, dtype])

Stack sparse matrices vertically (row wise)

eye(m, n, k=0, dtype=’d’, format=None)
eye(m, n) returns a sparse (m x n) matrix where the k-th diagonal is all ones and everything else is zeros.

identity(n, dtype=’d’, format=None)
Identity matrix in sparse format

Returns an identity matrix with shape (n,n) using a given sparse format and dtype.

Parameters
n : integer

Shape of the identity matrix.
dtype : :

Data type of the matrix
format : string

Sparse format of the result, e.g. format=”csr”, etc.

3.14. Sparse matrices (scipy.sparse) 279

SciPy Reference Guide, Release 0.7

Examples

>>> identity(3).todense()
matrix([[1., 0., 0.],

[0., 1., 0.],
[0., 0., 1.]])

>>> identity(3, dtype=’int8’, format=’dia’)
<3x3 sparse matrix of type ’<type ’numpy.int8’>’

with 3 stored elements (1 diagonals) in DIAgonal format>

kron(A, B, format=None)
kronecker product of sparse matrices A and B

Parameters
A : sparse or dense matrix

first matrix of the product

B : sparse or dense matrix

second matrix of the product

format : string

format of the result (e.g. “csr”)

Returns
kronecker product in a sparse matrix format :

Examples

>>> A = csr_matrix(array([[0,2],[5,0]]))
>>> B = csr_matrix(array([[1,2],[3,4]]))
>>> kron(A,B).todense()
matrix([[0, 0, 2, 4],

[0, 0, 6, 8],
[5, 10, 0, 0],
[15, 20, 0, 0]])

>>> kron(A,[[1,2],[3,4]]).todense()
matrix([[0, 0, 2, 4],

[0, 0, 6, 8],
[5, 10, 0, 0],
[15, 20, 0, 0]])

kronsum(A, B, format=None)
kronecker sum of sparse matrices A and B

Kronecker sum of two sparse matrices is a sum of two Kronecker products kron(I_n,A) + kron(B,I_m) where
A has shape (m,m) and B has shape (n,n) and I_m and I_n are identity matrices of shape (m,m) and (n,n)
respectively.

Parameters
A :

square matrix

B :

square matrix

format : string

280 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

format of the result (e.g. “csr”)

Returns
kronecker sum in a sparse matrix format :

lil_eye((r, c), k=0, dtype=’d’)
Generate a lil_matrix of dimensions (r,c) with the k-th diagonal set to 1.

Parameters
r,c : int

row and column-dimensions of the output.

k : int

• diagonal offset. In the output matrix,
• out[m,m+k] == 1 for all m.

dtype : dtype

data-type of the output array.

lil_diags(diags, offsets, (m, n), dtype=’d’)
Generate a lil_matrix with the given diagonals.

Parameters
diags : list of list of values e.g. [[1,2,3],[4,5]]

values to be placed on each indicated diagonal.

offsets : list of ints

diagonal offsets. This indicates the diagonal on which the given values should be
placed.

(r,c) : tuple of ints

row and column dimensions of the output.

dtype : dtype

output data-type.

spdiags(data, diags, m, n, format=None)
Return a sparse matrix from diagonals.

Parameters
data : array_like

matrix diagonals stored row-wise

diags : diagonals to set

• k = 0 the main diagonal
• k > 0 the k-th upper diagonal
• k < 0 the k-th lower diagonal

m, n : int

shape of the result

format : format of the result (e.g. “csr”)

By default (format=None) an appropriate sparse matrix format is returned. This
choice is subject to change.

See Also:
The

3.14. Sparse matrices (scipy.sparse) 281

SciPy Reference Guide, Release 0.7

tril(A, k=0, format=None)
Return the lower triangular portion of a matrix in sparse format

Returns the elements on or below the k-th diagonal of the matrix A.

• k = 0 corresponds to the main diagonal

• k > 0 is above the main diagonal

• k < 0 is below the main diagonal

Parameters
A : dense or sparse matrix

Matrix whose lower trianglar portion is desired.

k : integer

The top-most diagonal of the lower triangle.

format : string

Sparse format of the result, e.g. format=”csr”, etc.

Returns
L : sparse matrix

Lower triangular portion of A in sparse format.

See Also:

triu
upper triangle in sparse format

Examples

>>> from scipy.sparse import csr_matrix
>>> A = csr_matrix([[1,2,0,0,3],[4,5,0,6,7],[0,0,8,9,0]], dtype=’int32’)
>>> A.todense()
matrix([[1, 2, 0, 0, 3],

[4, 5, 0, 6, 7],
[0, 0, 8, 9, 0]])

>>> tril(A).todense()
matrix([[1, 0, 0, 0, 0],

[4, 5, 0, 0, 0],
[0, 0, 8, 0, 0]])

>>> tril(A).nnz
4
>>> tril(A, k=1).todense()
matrix([[1, 2, 0, 0, 0],

[4, 5, 0, 0, 0],
[0, 0, 8, 9, 0]])

>>> tril(A, k=-1).todense()
matrix([[0, 0, 0, 0, 0],

[4, 0, 0, 0, 0],
[0, 0, 0, 0, 0]])

>>> tril(A, format=’csc’)
<3x5 sparse matrix of type ’<type ’numpy.int32’>’

with 4 stored elements in Compressed Sparse Column format>

282 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

triu(A, k=0, format=None)
Return the upper triangular portion of a matrix in sparse format

Returns the elements on or above the k-th diagonal of the matrix A.

• k = 0 corresponds to the main diagonal

• k > 0 is above the main diagonal

• k < 0 is below the main diagonal

Parameters
A : dense or sparse matrix

Matrix whose upper trianglar portion is desired.

k : integer

The bottom-most diagonal of the upper triangle.

format : string

Sparse format of the result, e.g. format=”csr”, etc.

Returns
L : sparse matrix

Upper triangular portion of A in sparse format.

See Also:

tril
lower triangle in sparse format

Examples

>>> from scipy.sparse import csr_matrix
>>> A = csr_matrix([[1,2,0,0,3],[4,5,0,6,7],[0,0,8,9,0]], dtype=’int32’)
>>> A.todense()
matrix([[1, 2, 0, 0, 3],

[4, 5, 0, 6, 7],
[0, 0, 8, 9, 0]])

>>> triu(A).todense()
matrix([[1, 2, 0, 0, 3],

[0, 5, 0, 6, 7],
[0, 0, 8, 9, 0]])

>>> triu(A).nnz
8
>>> triu(A, k=1).todense()
matrix([[0, 2, 0, 0, 3],

[0, 0, 0, 6, 7],
[0, 0, 0, 9, 0]])

>>> triu(A, k=-1).todense()
matrix([[1, 2, 0, 0, 3],

[4, 5, 0, 6, 7],
[0, 0, 8, 9, 0]])

>>> triu(A, format=’csc’)
<3x5 sparse matrix of type ’<type ’numpy.int32’>’

with 8 stored elements in Compressed Sparse Column format>

3.14. Sparse matrices (scipy.sparse) 283

SciPy Reference Guide, Release 0.7

bmat(blocks, format=None, dtype=None)
Build a sparse matrix from sparse sub-blocks

Parameters
blocks :

grid of sparse matrices with compatible shapes an entry of None implies an all-zero
matrix

format : sparse format of the result (e.g. “csr”)

by default an appropriate sparse matrix format is returned. This choice is subject to
change.

hstack(blocks, format=None, dtype=None)
Stack sparse matrices horizontally (column wise)

Parameters
blocks :

sequence of sparse matrices with compatible shapes

format : string

sparse format of the result (e.g. “csr”) by default an appropriate sparse matrix format
is returned. This choice is subject to change.

vstack(blocks, format=None, dtype=None)
Stack sparse matrices vertically (row wise)

Parameters
blocks :

sequence of sparse matrices with compatible shapes

format : string

sparse format of the result (e.g. “csr”) by default an appropriate sparse matrix format
is returned. This choice is subject to change.

Identifying sparse matrices:

issparse (x)

isspmatrix (x)

isspmatrix_csc (x)

isspmatrix_csr (x)

isspmatrix_bsr (x)

isspmatrix_lil (x)

isspmatrix_dok (x)

isspmatrix_coo (x)

isspmatrix_dia (x)

284 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

issparse(x)

isspmatrix(x)

isspmatrix_csc(x)

isspmatrix_csr(x)

isspmatrix_bsr(x)

isspmatrix_lil(x)

isspmatrix_dok(x)

isspmatrix_coo(x)

isspmatrix_dia(x)

3.14.7 Exceptions

exception SparseEfficiencyWarning

exception SparseWarning

3.15 Sparse linear algebra (scipy.sparse.linalg)

Warning: This documentation is work-in-progress and unorganized.

3.15.1 Sparse Linear Algebra

The submodules of sparse.linalg:

1. eigen: sparse eigenvalue problem solvers

2. isolve: iterative methods for solving linear systems

3. dsolve: direct factorization methods for solving linear systems

3.15.2 Examples

class LinearOperator(shape, matvec, rmatvec=None, matmat=None, dtype=None)
Common interface for performing matrix vector products

3.15. Sparse linear algebra (scipy.sparse.linalg) 285

SciPy Reference Guide, Release 0.7

Many iterative methods (e.g. cg, gmres) do not need to know the individual entries of a matrix to solve a linear
system A*x=b. Such solvers only require the computation of matrix vector products, A*v where v is a dense
vector. This class serves as an abstract interface between iterative solvers and matrix-like objects.

Parameters
shape : tuple

Matrix dimensions (M,N)

matvec : callable f(v)

Returns returns A * v.

See Also:

aslinearoperator
Construct LinearOperators

Notes

The user-defined matvec() function must properly handle the case where v has shape (N,) as well as the (N,1)
case. The shape of the return type is handled internally by LinearOperator.

Examples

>>> from scipy.sparse.linalg import LinearOperator
>>> from scipy import *
>>> def mv(v):
... return array([2*v[0], 3*v[1]])
...
>>> A = LinearOperator((2,2), matvec=mv)
>>> A
<2x2 LinearOperator with unspecified dtype>
>>> A.matvec(ones(2))
array([2., 3.])
>>> A * ones(2)
array([2., 3.])

matmat(X)
Matrix-matrix multiplication

Performs the operation y=A*X where A is an MxN linear operator and X dense N*K matrix or ndarray.

Parameters
X : {matrix, ndarray}

An array with shape (N,K).
Returns

Y : {matrix, ndarray}
A matrix or ndarray with shape (M,K) depending on the type of the X argument.

Notes

This matmat wraps any user-specified matmat routine to ensure that y has the correct type.

matvec(x)
Matrix-vector multiplication

Performs the operation y=A*x where A is an MxN linear operator and x is a column vector or rank-1
array.

286 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

Parameters
x : {matrix, ndarray}

An array with shape (N,) or (N,1).
Returns

y : {matrix, ndarray}
A matrix or ndarray with shape (M,) or (M,1) depending on the type and shape of
the x argument.

Notes

This matvec wraps the user-specified matvec routine to ensure that y has the correct shape and type.

class Tester(package=None)
Nose test runner.

Usage: NoseTester(<package>).test()

<package> is package path or module Default for package is None. A value of None finds the calling module
path.

This class is made available as numpy.testing.Tester, and a test function is typically added to a package’s
__init__.py like so:

>>> from numpy.testing import Tester
>>> test = Tester().test

Calling this test function finds and runs all tests associated with the package and all its subpackages.

bench(label=’fast’, verbose=1, extra_argv=None)
Run benchmarks for module using nose

Parameters
label : {‘fast’, ‘full’, ‘’, attribute identifer}

Identifies the benchmarks to run. This can be a string to pass to the nosetests
executable with the ‘-A’ option, or one of several special values. Special values
are:

‘fast’ - the default - which corresponds to nosetests -A option
of ‘not slow’.

‘full’ - fast (as above) and slow benchmarks as in the
no -A option to nosetests - same as ‘’

None or ‘’ - run all benchmarks attribute_identifier - string passed directly to
nosetests as ‘-A’

verbose : integer
verbosity value for test outputs, 1-10

extra_argv : list
List with any extra args to pass to nosetests

prepare_test_args(label=’fast’, verbose=1, extra_argv=None, doctests=False, coverage=False)
Run tests for module using nose

%(test_header)s doctests : boolean

If True, run doctests in module, default False

coverage
[boolean] If True, report coverage of NumPy code, default False (Requires the coverage module:

http://nedbatchelder.com/code/modules/coverage.html)

3.15. Sparse linear algebra (scipy.sparse.linalg) 287

http://nedbatchelder.com/code/modules/coverage.html

SciPy Reference Guide, Release 0.7

test(label=’fast’, verbose=1, extra_argv=None, doctests=False, coverage=False)
Run tests for module using nose

Parameters
label : {‘fast’, ‘full’, ‘’, attribute identifer}

Identifies the tests to run. This can be a string to pass to the nosetests executable
with the ‘-A’ option, or one of several special values. Special values are:

‘fast’ - the default - which corresponds to nosetests -A option
of ‘not slow’.

‘full’ - fast (as above) and slow tests as in the
no -A option to nosetests - same as ‘’

None or ‘’ - run all tests attribute_identifier - string passed directly to nosetests as
‘-A’

verbose : integer
verbosity value for test outputs, 1-10

extra_argv : list
List with any extra args to pass to nosetests

doctests : boolean
If True, run doctests in module, default False

coverage : boolean
If True, report coverage of NumPy code, default False (Requires the coverage
module:

http://nedbatchelder.com/code/modules/coverage.html)

aslinearoperator(A)
Return A as a LinearOperator.

‘A’ may be any of the following types:

• ndarray

• matrix

• sparse matrix (e.g. csr_matrix, lil_matrix, etc.)

• LinearOperator

• An object with .shape and .matvec attributes

See the LinearOperator documentation for additonal information.

Examples

>>> from scipy import matrix
>>> M = matrix([[1,2,3],[4,5,6]], dtype=’int32’)
>>> aslinearoperator(M)
<2x3 LinearOperator with dtype=int32>

bicg(A, b, x0=None, tol=1.0000000000000001e-05, maxiter=None, xtype=None, M=None, callback=None)
Use BIConjugate Gradient iteration to solve A x = b

Parameters
A : {sparse matrix, dense matrix, LinearOperator}

The N-by-N matrix of the linear system.

b : {array, matrix}

288 Chapter 3. Reference

http://nedbatchelder.com/code/modules/coverage.html

SciPy Reference Guide, Release 0.7

Right hand side of the linear system. Has shape (N,) or (N,1).

bicgstab(A, b, x0=None, tol=1.0000000000000001e-05, maxiter=None, xtype=None, M=None, callback=None)
Use BIConjugate Gradient STABilized iteration to solve A x = b

Parameters
A : {sparse matrix, dense matrix, LinearOperator}

The N-by-N matrix of the linear system.

b : {array, matrix}

Right hand side of the linear system. Has shape (N,) or (N,1).

cg(A, b, x0=None, tol=1.0000000000000001e-05, maxiter=None, xtype=None, M=None, callback=None)
Use Conjugate Gradient iteration to solve A x = b

Parameters
A : {sparse matrix, dense matrix, LinearOperator}

The N-by-N matrix of the linear system.

b : {array, matrix}

Right hand side of the linear system. Has shape (N,) or (N,1).

cgs(A, b, x0=None, tol=1.0000000000000001e-05, maxiter=None, xtype=None, M=None, callback=None)
Use Conjugate Gradient Squared iteration to solve A x = b

Parameters
A : {sparse matrix, dense matrix, LinearOperator}

The N-by-N matrix of the linear system.

b : {array, matrix}

Right hand side of the linear system. Has shape (N,) or (N,1).

factorized(A)
Return a fuction for solving a sparse linear system, with A pre-factorized.

Example:
solve = factorized(A) # Makes LU decomposition. x1 = solve(rhs1) # Uses the LU factors. x2 = solve(
rhs2) # Uses again the LU factors.

gmres(A, b, x0=None, tol=1.0000000000000001e-05, restrt=20, maxiter=None, xtype=None, M=None, call-
back=None)

Use Generalized Minimal RESidual iteration to solve A x = b

Parameters
A : {sparse matrix, dense matrix, LinearOperator}

The N-by-N matrix of the linear system.

b : {array, matrix}

Right hand side of the linear system. Has shape (N,) or (N,1).

See Also:
LinearOperator

lobpcg(A, X, B=None, M=None, Y=None, tol=None, maxiter=20, largest=True, verbosityLevel=0, retLambdaHis-
tory=False, retResidualNormsHistory=False)

Solve symmetric partial eigenproblems with optional preconditioning

This function implements the Locally Optimal Block Preconditioned Conjugate Gradient Method (LOBPCG).

3.15. Sparse linear algebra (scipy.sparse.linalg) 289

SciPy Reference Guide, Release 0.7

Parameters
A : {sparse matrix, dense matrix, LinearOperator}

The symmetric linear operator of the problem, usually a sparse matrix. Often called
the “stiffness matrix”.

X : array_like

Initial approximation to the k eigenvectors. If A has shape=(n,n) then X should have
shape shape=(n,k).

Returns
w : array

Array of k eigenvalues

v : array

An array of k eigenvectors. V has the same shape as X.

Notes

If both retLambdaHistory and retResidualNormsHistory are True, the return tuple has the following format
(lambda, V, lambda history, residual norms history)

minres(A, b, x0=None, shift=0.0, tol=1.0000000000000001e-05, maxiter=None, xtype=None, M=None, call-
back=None, show=False, check=False)

Use MINimum RESidual iteration to solve Ax=b

MINRES minimizes norm(A*x - b) for the symmetric matrix A. Unlike the Conjugate Gradient method, A can
be indefinite or singular.

If shift != 0 then the method solves (A - shift*I)x = b

Parameters
A : {sparse matrix, dense matrix, LinearOperator}

The N-by-N matrix of the linear system.

b : {array, matrix}

Right hand side of the linear system. Has shape (N,) or (N,1).

Notes

THIS FUNCTION IS EXPERIMENTAL AND SUBJECT TO CHANGE!

References

Solution of sparse indefinite systems of linear equations,
C. C. Paige and M. A. Saunders (1975), SIAM J. Numer. Anal. 12(4), pp. 617-629.
http://www.stanford.edu/group/SOL/software/minres.html

This file is a translation of the following MATLAB implementation:
http://www.stanford.edu/group/SOL/software/minres/matlab/

qmr(A, b, x0=None, tol=1.0000000000000001e-05, maxiter=None, xtype=None, M1=None, M2=None, call-
back=None)
Use Quasi-Minimal Residual iteration to solve A x = b

Parameters
A : {sparse matrix, dense matrix, LinearOperator}

The N-by-N matrix of the linear system.

b : {array, matrix}

Right hand side of the linear system. Has shape (N,) or (N,1).

290 Chapter 3. Reference

http://www.stanford.edu/group/SOL/software/minres.html
http://www.stanford.edu/group/SOL/software/minres/matlab/

SciPy Reference Guide, Release 0.7

See Also:
LinearOperator

splu(A, permc_spec=2, diag_pivot_thresh=1.0, drop_tol=0.0, relax=1, panel_size=10)
A linear solver, for a sparse, square matrix A, using LU decomposition where L is a lower triangular matrix and
U is an upper triagular matrix.

Returns a factored_lu object. (scipy.sparse.linalg.dsolve._superlu.SciPyLUType)

See scipy.sparse.linalg.dsolve._superlu.dgstrf for more info.

spsolve(A, b, permc_spec=2)
Solve the sparse linear system Ax=b

use_solver(**kwargs)

Valid keyword arguments with defaults (other ignored):
useUmfpack = True assumeSortedIndices = False

The default sparse solver is umfpack when available. This can be changed by passing useUmfpack = False,
which then causes the always present SuperLU based solver to be used.

Umfpack requires a CSR/CSC matrix to have sorted column/row indices. If sure that the matrix fulfills this,
pass assumeSortedIndices=True to gain some speed.

3.16 Spatial algorithms and data structures (scipy.spatial)

Warning: This documentation is work-in-progress and unorganized.

3.16.1 Distance computations (scipy.spatial.distance)

Function Reference

Distance matrix computation from a collection of raw observation vectors stored in a rectangular array.

Function Description
pdist pairwise distances between observation vectors.
cdist distances between between two collections of observation vectors.
squareform converts a square distance matrix to a condensed one and vice versa.

Predicates for checking the validity of distance matrices, both condensed and redundant. Also contained in this module
are functions for computing the number of observations in a distance matrix.

Function Description
is_valid_dm checks for a valid distance matrix.
is_valid_y checks for a valid condensed distance matrix.
num_obs_dm # of observations in a distance matrix.
num_obs_y # of observations in a condensed distance matrix.

Distance functions between two vectors u and v. Computing distances over a large collection of vectors is inefficient
for these functions. Use pdist for this purpose.

3.16. Spatial algorithms and data structures (scipy.spatial) 291

SciPy Reference Guide, Release 0.7

Function Description
braycurtis the Bray-Curtis distance.
canberra the Canberra distance.
chebyshev the Chebyshev distance.
cityblock the Manhattan distance.
correlation the Correlation distance.
cosine the Cosine distance.
dice the Dice dissimilarity (boolean).
euclidean the Euclidean distance.
hamming the Hamming distance (boolean).
jaccard the Jaccard distance (boolean).
kulsinski the Kulsinski distance (boolean).
mahalanobis the Mahalanobis distance.
matching the matching dissimilarity (boolean).
minkowski the Minkowski distance.
rogerstanimoto the Rogers-Tanimoto dissimilarity (boolean).
russellrao the Russell-Rao dissimilarity (boolean).
seuclidean the normalized Euclidean distance.
sokalmichener the Sokal-Michener dissimilarity (boolean).
sokalsneath the Sokal-Sneath dissimilarity (boolean).
sqeuclidean the squared Euclidean distance.
yule the Yule dissimilarity (boolean).

References

Copyright Notice

Copyright (C) Damian Eads, 2007-2008. New BSD License.

braycurtis(u, v)
Computes the Bray-Curtis distance between two n-vectors u and v, which is defined as∑

|ui − vi|/
∑

|ui + vi|.

Parameters

u
[ndarray] An n-dimensional vector.

v
[ndarray] An n-dimensional vector.

Returns

d
[double] The Bray-Curtis distance between vectors u and v.

canberra(u, v)
Computes the Canberra distance between two n-vectors u and v, which is defined as∑

i |ui − vi|∑
i |ui|+ |vi|

.

Parameters

292 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

u
[ndarray] An n-dimensional vector.

v
[ndarray] An n-dimensional vector.

Returns

d
[double] The Canberra distance between vectors u and v.

cdist(XA, XB, metric=’euclidean’, p=2, V=None, VI=None, w=None)
Computes distance between each pair of observation vectors in the Cartesian product of two collections of
vectors. XA is a mA by n array while XB is a mB by n array. A mA by mB array is returned. An exception is
thrown if XA and XB do not have the same number of columns.

A rectangular distance matrix Y is returned. For each i and j, the metric dist(u=XA[i], v=XB[j]) is
computed and stored in the ij th entry.

The following are common calling conventions:

1.Y = cdist(XA, XB, ’euclidean’)

Computes the distance between m points using Euclidean distance (2-norm) as the distance metric be-
tween the points. The points are arranged as m n-dimensional row vectors in the matrix X.

2.Y = cdist(XA, XB, ’minkowski’, p)

Computes the distances using the Minkowski distance ||u− v||p (p-norm) where p ≥ 1.

3.Y = cdist(XA, XB, ’cityblock’)

Computes the city block or Manhattan distance between the points.

4.Y = cdist(XA, XB, ’seuclidean’, V=None)

Computes the standardized Euclidean distance. The standardized Euclidean distance between two n-
vectors u and v is √∑

(ui − vi)2/V [xi].

V is the variance vector; V[i] is the variance computed over all
the i’th components of the points. If not passed, it is automatically computed.

5.Y = cdist(XA, XB, ’sqeuclidean’)

Computes the squared Euclidean distance ||u− v||22 between the vectors.

6.Y = cdist(XA, XB, ’cosine’)

Computes the cosine distance between vectors u and v,

1− uvT

|u|2|v|2
where | ∗ |2 is the 2-norm of its argument *.

7.Y = cdist(XA, XB, ’correlation’)

Computes the correlation distance between vectors u and v. This is

1− (u− n|u|1)(v − n|v|1)
T

|(u− n|u|1)|2|(v − n|v|1)|
T

where | ∗ |1 is the Manhattan (or 1-norm) of its argument, and n is the common dimensionality of the
vectors.

3.16. Spatial algorithms and data structures (scipy.spatial) 293

SciPy Reference Guide, Release 0.7

8.Y = cdist(XA, XB, ’hamming’)

Computes the normalized Hamming distance, or the proportion of those vector elements between two
n-vectors u and v which disagree. To save memory, the matrix X can be of type boolean.

9.Y = cdist(XA, XB, ’jaccard’)

Computes the Jaccard distance between the points. Given two vectors, u and v, the Jaccard distance is
the proportion of those elements u[i] and v[i] that disagree where at least one of them is non-zero.

10.Y = cdist(XA, XB, ’chebyshev’)

Computes the Chebyshev distance between the points. The Chebyshev distance between two n-
vectors u and v is the maximum norm-1 distance between their respective elements. More precisely,
the distance is given by

d(u, v) = max
i
|ui − vi|.

1.Y = cdist(XA, XB, ’canberra’)

Computes the Canberra distance between the points. The Canberra distance between two points u
and v is

d(u, v) =
∑

u

|ui − vi|
(|ui|+ |vi|)

1.Y = cdist(XA, XB, ’braycurtis’)

Computes the Bray-Curtis distance between the points. The Bray-Curtis distance between two
points u and v is

d(u, v) =
∑

i(ui − vi)∑
i(ui + vi)

1.Y = cdist(XA, XB, ’mahalanobis’, VI=None)

Computes the Mahalanobis distance between the points. The Mahalanobis distance between two
points u and v is (u − v)(1/V)(u − v)T where (1/V) (the VI variable) is the inverse covariance.
If VI is not None, VI will be used as the inverse covariance matrix.

1.Y = cdist(XA, XB, ’yule’)

Computes the Yule distance between the boolean vectors. (see yule function documentation)

1.Y = cdist(XA, XB, ’matching’)

Computes the matching distance between the boolean vectors. (see matching function documenta-
tion)

1.Y = cdist(XA, XB, ’dice’)

Computes the Dice distance between the boolean vectors. (see dice function documentation)

294 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

1.Y = cdist(XA, XB, ’kulsinski’)

Computes the Kulsinski distance between the boolean vectors. (see kulsinski function documenta-
tion)

1.Y = cdist(XA, XB, ’rogerstanimoto’)

Computes the Rogers-Tanimoto distance between the boolean vectors. (see rogerstanimoto function
documentation)

1.Y = cdist(XA, XB, ’russellrao’)

Computes the Russell-Rao distance between the boolean vectors. (see russellrao function docu-
mentation)

1.Y = cdist(XA, XB, ’sokalmichener’)

Computes the Sokal-Michener distance between the boolean vectors. (see sokalmichener function
documentation)

1.Y = cdist(XA, XB, ’sokalsneath’)

Computes the Sokal-Sneath distance between the vectors. (see sokalsneath function documentation)

1.Y = cdist(XA, XB, ’wminkowski’)

Computes the weighted Minkowski distance between the vectors. (see sokalsneath function docu-
mentation)

1.Y = cdist(XA, XB, f)

Computes the distance between all pairs of vectors in X using the user supplied 2-arity function f.
For example, Euclidean distance between the vectors could be computed as follows:

dm = cdist(XA, XB, (lambda u, v: np.sqrt(((u-v)*(u-v).T).sum())))

Note that you should avoid passing a reference to one of the distance functions defined in this
library. For example,:

dm = cdist(XA, XB, sokalsneath)

would calculate the pair-wise distances between the vectors in X using the Python function
sokalsneath. This would result in sokalsneath being called

(
n
2

)
times, which is inefficient. Instead,

the optimized C version is more efficient, and we call it using the following syntax.:

dm = cdist(XA, XB, ’sokalsneath’)

Parameters

3.16. Spatial algorithms and data structures (scipy.spatial) 295

SciPy Reference Guide, Release 0.7

XA
[ndarray] An mA by n array of mA original observations in an n-dimensional space.

XB
[ndarray] An mB by n array of mB original observations in an n-dimensional space.

metric
[string or function] The distance metric to use. The distance function can be ‘braycurtis’,
‘canberra’, ‘chebyshev’, ‘cityblock’, ‘correlation’, ‘cosine’, ‘dice’, ‘euclidean’, ‘ham-
ming’, ‘jaccard’, ‘kulsinski’, ‘mahalanobis’, ‘matching’, ‘minkowski’, ‘rogerstanimoto’,
‘russellrao’, ‘seuclidean’, ‘sokalmichener’, ‘sokalsneath’, ‘sqeuclidean’, ‘wminkowski’,
‘yule’.

w
[ndarray] The weight vector (for weighted Minkowski).

p
[double] The p-norm to apply (for Minkowski, weighted and unweighted)

V
[ndarray] The variance vector (for standardized Euclidean).

VI
[ndarray] The inverse of the covariance matrix (for Mahalanobis).

Returns

Y
[ndarray] A mA by mB distance matrix.

chebyshev(u, v)
Computes the Chebyshev distance between two n-vectors u and v, which is defined as

max
i
|ui − vi|.

Parameters

u
[ndarray] An n-dimensional vector.

v
[ndarray] An n-dimensional vector.

Returns

d
[double] The Chebyshev distance between vectors u and v.

cityblock(u, v)
Computes the Manhattan distance between two n-vectors u and v, which is defined as∑

i

(ui − vi).

Parameters

u
[ndarray] An n-dimensional vector.

v
[ndarray] An n-dimensional vector.

296 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

Returns

d
[double] The City Block distance between vectors u and v.

correlation(u, v)
Computes the correlation distance between two n-vectors u and v, which is defined as

1− (u− ū)(v − v̄)T

||(u− ū)||2||(v − v̄)||T2

where ū is the mean of a vectors elements and n is the common dimensionality of u and v.

Parameters

u
[ndarray] An n-dimensional vector.

v
[ndarray] An n-dimensional vector.

Returns

d
[double] The correlation distance between vectors u and v.

cosine(u, v)
Computes the Cosine distance between two n-vectors u and v, which is defined as

1− uvT

||u||2||v||2
.

Parameters

u
[ndarray] An n-dimensional vector.

v
[ndarray] An n-dimensional vector.

Returns

d
[double] The Cosine distance between vectors u and v.

dice(u, v)
Computes the Dice dissimilarity between two boolean n-vectors u and v, which is

cTF + cFT

2cTT + cFT + cTF

where cij is the number of occurrences of u[k] = i and v[k] = j for k < n.

Parameters

u
[ndarray] An n-dimensional vector.

3.16. Spatial algorithms and data structures (scipy.spatial) 297

SciPy Reference Guide, Release 0.7

v
[ndarray] An n-dimensional vector.

Returns

d
[double] The Dice dissimilarity between vectors u and v.

euclidean(u, v)
Computes the Euclidean distance between two n-vectors u and v, which is defined as

||u− v||2

Parameters

u
[ndarray] An n-dimensional vector.

v
[ndarray] An n-dimensional vector.

Returns

d
[double] The Euclidean distance between vectors u and v.

hamming(u, v)
Computes the Hamming distance between two n-vectors u and v, which is simply the proportion of disagreeing
components in u and v. If u and v are boolean vectors, the Hamming distance is

c01 + c10

n

where cij is the number of occurrences of u[k] = i and v[k] = j for k < n.

Parameters

u
[ndarray] An n-dimensional vector.

v
[ndarray] An n-dimensional vector.

Returns

d
[double] The Hamming distance between vectors u and v.

is_valid_dm(D, tol=0.0, throw=False, name=’D’, warning=False)
Returns True if the variable D passed is a valid distance matrix. Distance matrices must be 2-dimensional
numpy arrays containing doubles. They must have a zero-diagonal, and they must be symmetric.

Parameters

D
[ndarray] The candidate object to test for validity.

298 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

tol
[double] The distance matrix should be symmetric. tol is the maximum difference be-
tween the :math:‘ij‘th entry and the :math:‘ji‘th entry for the distance metric to be con-
sidered symmetric.

throw
[bool] An exception is thrown if the distance matrix passed is not valid.

name
[string] the name of the variable to checked. This is useful ifa throw is set to True so
the offending variable can be identified in the exception message when an exception is
thrown.

warning
[boolx] Instead of throwing an exception, a warning message is raised.

Returns
Returns True if the variable D passed is a valid distance matrix. Small numerical differences
in D and D.T and non-zeroness of the diagonal are ignored if they are within the tolerance
specified by tol.

is_valid_y(y, warning=False, throw=False, name=None)
Returns True if the variable y passed is a valid condensed distance matrix. Condensed distance matrices must
be 1-dimensional numpy arrays containing doubles. Their length must be a binomial coefficient

(
n
2

)
for some

positive integer n.

Parameters

y
[ndarray] The condensed distance matrix.

warning
[bool] Invokes a warning if the variable passed is not a valid condensed distance matrix.
The warning message explains why the distance matrix is not valid. ‘name’ is used when
referencing the offending variable.

throws
[throw] Throws an exception if the variable passed is not a valid condensed distance
matrix.

name
[bool] Used when referencing the offending variable in the warning or exception message.

jaccard(u, v)
Computes the Jaccard-Needham dissimilarity between two boolean n-vectors u and v, which is

raccTF + cFT cTT + cFT + cTF

where cij is the number of occurrences of u[k] = i and v[k] = j for k < n.

Parameters

u
[ndarray] An n-dimensional vector.

v
[ndarray] An n-dimensional vector.

Returns

d
[double] The Jaccard distance between vectors u and v.

3.16. Spatial algorithms and data structures (scipy.spatial) 299

SciPy Reference Guide, Release 0.7

kulsinski(u, v)
Computes the Kulsinski dissimilarity between two boolean n-vectors u and v, which is defined as

raccTF + cFT − cTT + ncFT + cTF + n

where cij is the number of occurrences of u[k] = i and v[k] = j for k < n.

Parameters

u
[ndarray] An n-dimensional vector.

v
[ndarray] An n-dimensional vector.

Returns

d
[double] The Kulsinski distance between vectors u and v.

mahalanobis(u, v, VI)
Computes the Mahalanobis distance between two n-vectors u and v, which is defiend as

(u− v)V −1(u− v)T

where VI is the inverse covariance matrix V −1.

Parameters

u
[ndarray] An n-dimensional vector.

v
[ndarray] An n-dimensional vector.

Returns

d
[double] The Mahalanobis distance between vectors u and v.

matching(u, v)
Computes the Matching dissimilarity between two boolean n-vectors u and v, which is defined as

cTF + cFT

n

where cij is the number of occurrences of u[k] = i and v[k] = j for k < n.

Parameters

u
[ndarray] An n-dimensional vector.

v
[ndarray] An n-dimensional vector.

Returns

300 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

d
[double] The Matching dissimilarity between vectors u and v.

minkowski(u, v, p)
Computes the Minkowski distance between two vectors u and v, defined as

||u− v||p = (
∑

|ui − vi|p)1/p.

Parameters

u
[ndarray] An n-dimensional vector.

v
[ndarray] An n-dimensional vector.

p
[ndarray] The norm of the difference ||u− v||p.

Returns

d
[double] The Minkowski distance between vectors u and v.

num_obs_dm(d)
Returns the number of original observations that correspond to a square, redudant distance matrix D.

Parameters

d
[ndarray] The target distance matrix.

Returns
The number of observations in the redundant distance matrix.

num_obs_y(Y)
Returns the number of original observations that correspond to a condensed distance matrix Y.

Parameters

Y
[ndarray] The number of original observations in the condensed observation Y.

Returns

n
[int] The number of observations in the condensed distance matrix passed.

pdist(X, metric=’euclidean’, p=2, V=None, VI=None)
Computes the pairwise distances between m original observations in n-dimensional space. Returns a condensed
distance matrix Y. For each i and j (where i < j < n), the metric dist(u=X[i], v=X[j]) is computed
and stored in the :math:‘ij‘th entry.

See squareform for information on how to calculate the index of this entry or to convert the condensed
distance matrix to a redundant square matrix.

The following are common calling conventions.

3.16. Spatial algorithms and data structures (scipy.spatial) 301

SciPy Reference Guide, Release 0.7

1.Y = pdist(X, ’euclidean’)

Computes the distance between m points using Euclidean distance (2-norm) as the distance metric be-
tween the points. The points are arranged as m n-dimensional row vectors in the matrix X.

2.Y = pdist(X, ’minkowski’, p)

Computes the distances using the Minkowski distance ||u− v||p (p-norm) where p ≥ 1.

3.Y = pdist(X, ’cityblock’)

Computes the city block or Manhattan distance between the points.

4.Y = pdist(X, ’seuclidean’, V=None)

Computes the standardized Euclidean distance. The standardized Euclidean distance between two n-
vectors u and v is √∑

(ui − vi)2/V [xi].

V is the variance vector; V[i] is the variance computed over all
the i’th components of the points. If not passed, it is automatically computed.

5.Y = pdist(X, ’sqeuclidean’)

Computes the squared Euclidean distance ||u− v||22 between the vectors.

6.Y = pdist(X, ’cosine’)

Computes the cosine distance between vectors u and v,

1− uvT

|u|2|v|2

where |*|_2 is the 2 norm of its argument *.

7.Y = pdist(X, ’correlation’)

Computes the correlation distance between vectors u and v. This is

1− (u− ū)(v − v̄)T

|(u− ū)||(v − v̄)|T

where v̄ is the mean of the elements of vector v.

8.Y = pdist(X, ’hamming’)

Computes the normalized Hamming distance, or the proportion of those vector elements between two
n-vectors u and v which disagree. To save memory, the matrix X can be of type boolean.

9.Y = pdist(X, ’jaccard’)

Computes the Jaccard distance between the points. Given two vectors, u and v, the Jaccard distance is
the proportion of those elements u[i] and v[i] that disagree where at least one of them is non-zero.

10.Y = pdist(X, ’chebyshev’)

Computes the Chebyshev distance between the points. The Chebyshev distance between two n-
vectors u and v is the maximum norm-1 distance between their respective elements. More precisely,
the distance is given by

d(u, v) = max
i
|ui − vi|.

1.Y = pdist(X, ’canberra’)

302 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

Computes the Canberra distance between the points. The Canberra distance between two points u
and v is

d(u, v) =
∑

u

|ui − vi|
(|ui|+ |vi|)

1.Y = pdist(X, ’braycurtis’)

Computes the Bray-Curtis distance between the points. The Bray-Curtis distance between two
points u and v is

d(u, v) =
∑

i ui − vi∑
i ui + vi

1.Y = pdist(X, ’mahalanobis’, VI=None)

Computes the Mahalanobis distance between the points. The Mahalanobis distance between two
points u and v is (u − v)(1/V)(u − v)T where (1/V) (the VI variable) is the inverse covariance.
If VI is not None, VI will be used as the inverse covariance matrix.

1.Y = pdist(X, ’yule’)

Computes the Yule distance between each pair of boolean vectors. (see yule function documenta-
tion)

1.Y = pdist(X, ’matching’)

Computes the matching distance between each pair of boolean vectors. (see matching function
documentation)

1.Y = pdist(X, ’dice’)

Computes the Dice distance between each pair of boolean vectors. (see dice function documenta-
tion)

1.Y = pdist(X, ’kulsinski’)

Computes the Kulsinski distance between each pair of boolean vectors. (see kulsinski function
documentation)

1.Y = pdist(X, ’rogerstanimoto’)

Computes the Rogers-Tanimoto distance between each pair of boolean vectors. (see rogerstanimoto
function documentation)

1.Y = pdist(X, ’russellrao’)

Computes the Russell-Rao distance between each pair of boolean vectors. (see russellrao function
documentation)

3.16. Spatial algorithms and data structures (scipy.spatial) 303

SciPy Reference Guide, Release 0.7

1.Y = pdist(X, ’sokalmichener’)

Computes the Sokal-Michener distance between each pair of boolean vectors. (see sokalmichener
function documentation)

1.Y = pdist(X, ’sokalsneath’)

Computes the Sokal-Sneath distance between each pair of boolean vectors. (see sokalsneath func-
tion documentation)

1.Y = pdist(X, ’wminkowski’)

Computes the weighted Minkowski distance between each pair of vectors. (see wminkowski func-
tion documentation)

1.Y = pdist(X, f)

Computes the distance between all pairs of vectors in X using the user supplied 2-arity function f.
For example, Euclidean distance between the vectors could be computed as follows:

dm = pdist(X, (lambda u, v: np.sqrt(((u-v)*(u-v).T).sum())))

Note that you should avoid passing a reference to one of the distance functions defined in this
library. For example,:

dm = pdist(X, sokalsneath)

would calculate the pair-wise distances between the vectors in X using the Python function
sokalsneath. This would result in sokalsneath being called

(
n
2

)
times, which is inefficient. Instead,

the optimized C version is more efficient, and we call it using the following syntax.:

dm = pdist(X, ’sokalsneath’)

Parameters

X
[ndarray] An m by n array of m original observations in an n-dimensional space.

metric
[string or function] The distance metric to use. The distance function can be ‘braycurtis’,
‘canberra’, ‘chebyshev’, ‘cityblock’, ‘correlation’, ‘cosine’, ‘dice’, ‘euclidean’, ‘ham-
ming’, ‘jaccard’, ‘kulsinski’, ‘mahalanobis’, ‘matching’, ‘minkowski’, ‘rogerstanimoto’,
‘russellrao’, ‘seuclidean’, ‘sokalmichener’, ‘sokalsneath’, ‘sqeuclidean’, ‘yule’.

w
[ndarray] The weight vector (for weighted Minkowski).

p
[double] The p-norm to apply (for Minkowski, weighted and unweighted)

V
[ndarray] The variance vector (for standardized Euclidean).

VI
[ndarray] The inverse of the covariance matrix (for Mahalanobis).

304 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

Returns

Y
[ndarray] A condensed distance matrix.

Seealso

squareform
[converts between condensed distance matrices and] square distance matrices.

rogerstanimoto(u, v)
Computes the Rogers-Tanimoto dissimilarity between two boolean n-vectors u and v, which is defined as

R

cTT + cFF + R

where cij is the number of occurrences of u[k] = i and v[k] = j for k < n and R = 2(cTF + cFT).

Parameters

u
[ndarray] An n-dimensional vector.

v
[ndarray] An n-dimensional vector.

Returns

d
[double] The Rogers-Tanimoto dissimilarity between vectors u and v.

russellrao(u, v)
Computes the Russell-Rao dissimilarity between two boolean n-vectors u and v, which is defined as

n− cTT

n

where cij is the number of occurrences of u[k] = i and v[k] = j for k < n.

Parameters

u
[ndarray] An n-dimensional vector.

v
[ndarray] An n-dimensional vector.

Returns

d
[double] The Russell-Rao dissimilarity between vectors u and v.

seuclidean(u, v, V)
Returns the standardized Euclidean distance between two n-vectors u and v. V is an m-dimensional vector of
component variances. It is usually computed among a larger collection vectors.

3.16. Spatial algorithms and data structures (scipy.spatial) 305

SciPy Reference Guide, Release 0.7

Parameters

u
[ndarray] An n-dimensional vector.

v
[ndarray] An n-dimensional vector.

Returns

d
[double] The standardized Euclidean distance between vectors u and v.

sokalmichener(u, v)
Computes the Sokal-Michener dissimilarity between two boolean vectors u and v, which is defined as

2R

S + 2R

where cij is the number of occurrences of u[k] = i and v[k] = j for k < n, R = 2 ∗ (cTF + cFT) and
S = cFF + cTT .

Parameters

u
[ndarray] An n-dimensional vector.

v
[ndarray] An n-dimensional vector.

Returns

d
[double] The Sokal-Michener dissimilarity between vectors u and v.

sokalsneath(u, v)
Computes the Sokal-Sneath dissimilarity between two boolean vectors u and v,

2R

cTT + 2R

where cij is the number of occurrences of u[k] = i and v[k] = j for k < n and R = 2(cTF + cFT).

Parameters

u
[ndarray] An n-dimensional vector.

v
[ndarray] An n-dimensional vector.

Returns

d
[double] The Sokal-Sneath dissimilarity between vectors u and v.

sqeuclidean(u, v)
Computes the squared Euclidean distance between two n-vectors u and v, which is defined as

||u− v||22.

306 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

Parameters

u
[ndarray] An n-dimensional vector.

v
[ndarray] An n-dimensional vector.

Returns

d
[double] The squared Euclidean distance between vectors u and v.

squareform(X, force=’no’, checks=True)
Converts a vector-form distance vector to a square-form distance matrix, and vice-versa.

Parameters

X
[ndarray] Either a condensed or redundant distance matrix.

Returns

Y
[ndarray] If a condensed distance matrix is passed, a redundant one is returned, or if a
redundant one is passed, a condensed distance matrix is returned.

force
[string] As with MATLAB(TM), if force is equal to ‘tovector’ or ‘tomatrix’, the input
will be treated as a distance matrix or distance vector respectively.

checks
[bool] If checks is set to False, no checks will be made for matrix symmetry nor
zero diagonals. This is useful if it is known that X - X.T1 is small and diag(X) is
close to zero. These values are ignored any way so they do not disrupt the squareform
transformation.

wminkowski(u, v, p, w)
Computes the weighted Minkowski distance between two vectors u and v, defined as(∑

(wi|ui − vi|p)
)1/p

.

Parameters

u
[ndarray] An n-dimensional vector.

v
[ndarray] An n-dimensional vector.

p
[ndarray] The norm of the difference ||u− v||p.

w
[ndarray] The weight vector.

Returns

d
[double] The Minkowski distance between vectors u and v.

3.16. Spatial algorithms and data structures (scipy.spatial) 307

SciPy Reference Guide, Release 0.7

yule(u, v)
Computes the Yule dissimilarity between two boolean n-vectors u and v, which is defined as

R

cTT + cFF + R
2

where cij is the number of occurrences of u[k] = i and v[k] = j for k < n and R = 2.0 ∗ (cTF + cFT).

Parameters

u
[ndarray] An n-dimensional vector.

v
[ndarray] An n-dimensional vector.

Returns

d
[double] The Yule dissimilarity between vectors u and v.

3.16.2 Spatial data structures and algorithms

Nearest-neighbor queries:

KDTree – class for efficient nearest-neighbor queries distance – module containing many different dis-
tance measures

class KDTree(data, leafsize=10)
kd-tree for quick nearest-neighbor lookup

This class provides an index into a set of k-dimensional points which can be used to rapidly look up the nearest
neighbors of any point.

The algorithm used is described in Maneewongvatana and Mount 1999. The general idea is that the kd-tree is
a binary trie, each of whose nodes represents an axis-aligned hyperrectangle. Each node specifies an axis and
splits the set of points based on whether their coordinate along that axis is greater than or less than a particular
value.

During construction, the axis and splitting point are chosen by the “sliding midpoint” rule, which ensures that
the cells do not all become long and thin.

The tree can be queried for the r closest neighbors of any given point (optionally returning only those within
some maximum distance of the point). It can also be queried, with a substantial gain in efficiency, for the r
approximate closest neighbors.

For large dimensions (20 is already large) do not expect this to run significantly faster than brute force. High-
dimensional nearest-neighbor queries are a substantial open problem in computer science.

The tree also supports all-neighbors queries, both with arrays of points and with other kd-trees. These do use a
reasonably efficient algorithm, but the kd-tree is not necessarily the best data structure for this sort of calculation.

count_neighbors(other, r, p=2.0)
Count how many nearby pairs can be formed.

Count the number of pairs (x1,x2) can be formed, with x1 drawn from self and x2 drawn from other,
and where distance(x1,x2,p)<=r. This is the “two-point correlation” described in Gray and Moore 2000,
“N-body problems in statistical learning”, and the code here is based on their algorithm.

308 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

Parameters
other : KDTree
r : float or one-dimensional array of floats

The radius to produce a count for. Multiple radii are searched with a single tree
traversal.

p : float, 1<=p<=infinity
Which Minkowski p-norm to use

Returns
result : integer or one-dimensional array of integers

The number of pairs. Note that this is internally stored in a numpy int, and so
may overflow if very large (two billion).

query(x, k=1, eps=0, p=2, distance_upper_bound=inf)
query the kd-tree for nearest neighbors

query_ball_point(x, r, p=2.0, eps=0)
Find all points within r of x

Parameters
x : array_like, shape tuple + (self.m,)

The point or points to search for neighbors of
r : positive float

The radius of points to return
p : float 1<=p<=infinity

Which Minkowski p-norm to use
eps : nonnegative float

Approximate search. Branches of the tree are not explored if their nearest points
are further than r/(1+eps), and branches are added in bulk if their furthest points
are nearer than r*(1+eps).

Returns
results : list or array of lists

If x is a single point, returns a list of the indices of the neighbors of x. If x is an
array of points, returns an object array of shape tuple containing lists of neighbors.

Note: if you have many points whose neighbors you want to find, you may save :
substantial amounts of time by putting them in a KDTree and using query_ball_tree.
:

query_ball_tree(other, r, p=2.0, eps=0)
Find all pairs of points whose distance is at most r

Parameters
other : KDTree

The tree containing points to search against
r : positive float

The maximum distance
p : float 1<=p<=infinity

Which Minkowski norm to use
eps : nonnegative float

Approximate search. Branches of the tree are not explored if their nearest points
are further than r/(1+eps), and branches are added in bulk if their furthest points
are nearer than r*(1+eps).

Returns
results : list of lists

3.16. Spatial algorithms and data structures (scipy.spatial) 309

SciPy Reference Guide, Release 0.7

For each element self.data[i] of this tree, results[i] is a list of the indices of its
neighbors in other.data.

sparse_distance_matrix(other, max_distance, p=2.0)
Compute a sparse distance matrix

Computes a distance matrix between two KDTrees, leaving as zero any distance greater than
max_distance.

Parameters
other : KDTree
max_distance : positive float

Returns
result : dok_matrix

Sparse matrix representing the results in “dictionary of keys” format.

class Rectangle(maxes, mins)
Hyperrectangle class.

Represents a Cartesian product of intervals.

max_distance_point(x, p=2.0)
Compute the maximum distance between x and a point in the hyperrectangle.

max_distance_rectangle(other, p=2.0)
Compute the maximum distance between points in the two hyperrectangles.

min_distance_point(x, p=2.0)
Compute the minimum distance between x and a point in the hyperrectangle.

min_distance_rectangle(other, p=2.0)
Compute the minimum distance between points in the two hyperrectangles.

split(d, split)
Produce two hyperrectangles by splitting along axis d.

In general, if you need to compute maximum and minimum distances to the children, it can be done more
efficiently by updating the maximum and minimum distances to the parent.

volume()
Total volume.

class cKDTree()
kd-tree for quick nearest-neighbor lookup

This class provides an index into a set of k-dimensional points which can be used to rapidly look up the nearest
neighbors of any point.

The algorithm used is described in Maneewongvatana and Mount 1999. The general idea is that the kd-tree is
a binary trie, each of whose nodes represents an axis-aligned hyperrectangle. Each node specifies an axis and
splits the set of points based on whether their coordinate along that axis is greater than or less than a particular
value.

During construction, the axis and splitting point are chosen by the “sliding midpoint” rule, which ensures that
the cells do not all become long and thin.

The tree can be queried for the r closest neighbors of any given point (optionally returning only those within
some maximum distance of the point). It can also be queried, with a substantial gain in efficiency, for the r
approximate closest neighbors.

For large dimensions (20 is already large) do not expect this to run significantly faster than brute force. High-
dimensional nearest-neighbor queries are a substantial open problem in computer science.

query()
query the kd-tree for nearest neighbors

310 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

distance_matrix(x, y, p=2, threshold=1000000)
Compute the distance matrix.

Computes the matrix of all pairwise distances.

Parameters
x : array-like, m by k
y : array-like, n by k
p : float 1<=p<=infinity

Which Minkowski p-norm to use.
threshold : positive integer

If m*n*k>threshold use a python loop instead of creating a very large temporary.
Returns

result : array-like, m by n

heappop()
Pop the smallest item off the heap, maintaining the heap invariant.

heappush()
Push item onto heap, maintaining the heap invariant.

minkowski_distance(x, y, p=2)
Compute the L**p distance between x and y

minkowski_distance_p(x, y, p=2)
Compute the pth power of the L**p distance between x and y

For efficiency, this function computes the L**p distance but does not extract the pth root. If p is 1 or infinity,
this is equal to the actual L**p distance.

3.17 Special functions (scipy.special)

Nearly all of the functions below are universal functions and follow broadcasting and automatic array-looping rules.
Exceptions are noted.

3.17.1 Error handling

Errors are handled by returning nans, or other appropriate values. Some of the special function routines will print an
error message when an error occurs. By default this printing is disabled. To enable such messages use errprint(1) To
disable such messages use errprint(0).

Example:

>>> print scipy.special.bdtr(-1,10,0.3)
>>> scipy.special.errprint(1)
>>> print scipy.special.bdtr(-1,10,0.3)

errprint ()errprint({flag}) sets the error printing flag for special functions (from the cephesmodule). The output
is the previous state. With errprint(0) no error messages are shown; the default is errprint(1). If no
argument is given the current state of the flag is returned and no change occurs.

errstatewith errstate(**state): –> operations in following block use given state.

3.17. Special functions (scipy.special) 311

SciPy Reference Guide, Release 0.7

errprint()
errprint({flag}) sets the error printing flag for special functions (from the cephesmodule). The output is the
previous state. With errprint(0) no error messages are shown; the default is errprint(1). If no argument is given
the current state of the flag is returned and no change occurs.

class errstate(**kwargs)
with errstate(**state): –> operations in following block use given state.

Set error handling to known state. >>> _ = np.seterr(invalid=’raise’, divide=’raise’, over=’raise’, ... un-
der=’ignore’)

>>> a = -np.arange(3)
>>> with np.errstate(invalid=’ignore’): # doctest: +SKIP
... print np.sqrt(a) # with statement requires Python 2.5
[0. -1.#IND -1.#IND]
>>> print np.sqrt(a.astype(complex))
[0.+0.j 0.+1.j 0.+1.41421356j]
>>> print np.sqrt(a)
Traceback (most recent call last):
...

FloatingPointError: invalid value encountered in sqrt
>>> with np.errstate(divide=’ignore’): # doctest: +SKIP
... print a/0
[0 0 0]
>>> print a/0
Traceback (most recent call last):

...
FloatingPointError: divide by zero encountered in divide

3.17.2 Available functions

Airy functions

airy (x[, out1, out2, out3, ...)(Ai,Aip,Bi,Bip)=airy(z) calculates the Airy functions and their derivatives evaluated at real or
complex number z. The Airy functions Ai and Bi are two independent solutions of y’‘(x)=xy.
Aip and Bip are the first derivatives evaluated at x of Ai and Bi respectively.

airye (x[, out1, out2, out3, ...)(Aie,Aipe,Bie,Bipe)=airye(z) calculates the exponentially scaled Airy functions and their
derivatives evaluated at real or complex number z. airye(z)[0:1] = airy(z)[0:1] *
exp(2.0/3.0*z*sqrt(z)) airye(z)[2:3] = airy(z)[2:3] * exp(-abs((2.0/3.0*z*sqrt(z)).real))

ai_zeros (nt) Compute the zeros of Airy Functions Ai(x) and Ai’(x), a and a’ respectively, and the
associated values of Ai(a’) and Ai’(a).

bi_zeros (nt) Compute the zeros of Airy Functions Bi(x) and Bi’(x), b and b’ respectively, and the
associated values of Ai(b’) and Ai’(b).

airy(x, [out1, out2, out3, out4])
(Ai,Aip,Bi,Bip)=airy(z) calculates the Airy functions and their derivatives evaluated at real or complex number
z. The Airy functions Ai and Bi are two independent solutions of y’‘(x)=xy. Aip and Bip are the first derivatives
evaluated at x of Ai and Bi respectively.

airye(x, [out1, out2, out3, out4])
(Aie,Aipe,Bie,Bipe)=airye(z) calculates the exponentially scaled Airy functions and their derivatives evaluated

312 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

at real or complex number z. airye(z)[0:1] = airy(z)[0:1] * exp(2.0/3.0*z*sqrt(z)) airye(z)[2:3] = airy(z)[2:3] *
exp(-abs((2.0/3.0*z*sqrt(z)).real))

ai_zeros(nt)
Compute the zeros of Airy Functions Ai(x) and Ai’(x), a and a’ respectively, and the associated values of Ai(a’)
and Ai’(a).

Outputs:

a[l-1] – the lth zero of Ai(x) ap[l-1] – the lth zero of Ai’(x) ai[l-1] – Ai(ap[l-1]) aip[l-1] – Ai’(a[l-1])

bi_zeros(nt)
Compute the zeros of Airy Functions Bi(x) and Bi’(x), b and b’ respectively, and the associated values of Ai(b’)
and Ai’(b).

Outputs:

b[l-1] – the lth zero of Bi(x) bp[l-1] – the lth zero of Bi’(x) bi[l-1] – Bi(bp[l-1]) bip[l-1] – Bi’(b[l-1])

Elliptic Functions and Integrals

ellipj (x1, x2[, out1, out2, ...)(sn,cn,dn,ph)=ellipj(u,m) calculates the Jacobian elliptic functions of parameter m between 0
and 1, and real u. The returned functions are often written sn(u|m), cn(u|m), and dn(u|m).
The value of ph is such that if u = ellik(ph,m), then sn(u|m) = sin(ph) and cn(u|m) = cos(ph).

ellipk (x[, out]) y=ellipk(m) returns the complete integral of the first kind:
integral(1/sqrt(1-m*sin(t)**2),t=0..pi/2)

ellipkinc (x1, x2[, out])y=ellipkinc(phi,m) returns the incomplete elliptic integral of the first kind:
integral(1/sqrt(1-m*sin(t)**2),t=0..phi)

ellipe (x[, out]) y=ellipe(m) returns the complete integral of the second kind:
integral(sqrt(1-m*sin(t)**2),t=0..pi/2)

ellipeinc (x1, x2[, out])y=ellipeinc(phi,m) returns the incomplete elliptic integral of the second kind:
integral(sqrt(1-m*sin(t)**2),t=0..phi)

ellipj(x1, x2, [out1, out2, out3, out4])
(sn,cn,dn,ph)=ellipj(u,m) calculates the Jacobian elliptic functions of parameter m between 0 and 1, and real
u. The returned functions are often written sn(u|m), cn(u|m), and dn(u|m). The value of ph is such that if u =
ellik(ph,m), then sn(u|m) = sin(ph) and cn(u|m) = cos(ph).

ellipk(x, [out])
y=ellipk(m) returns the complete integral of the first kind: integral(1/sqrt(1-m*sin(t)**2),t=0..pi/2)

ellipkinc(x1, x2, [out])
y=ellipkinc(phi,m) returns the incomplete elliptic integral of the first kind: integral(1/sqrt(1-
m*sin(t)**2),t=0..phi)

ellipe(x, [out])
y=ellipe(m) returns the complete integral of the second kind: integral(sqrt(1-m*sin(t)**2),t=0..pi/2)

ellipeinc(x1, x2, [out])
y=ellipeinc(phi,m) returns the incomplete elliptic integral of the second kind: integral(sqrt(1-
m*sin(t)**2),t=0..phi)

3.17. Special functions (scipy.special) 313

SciPy Reference Guide, Release 0.7

Bessel Functions

jn (x1, x2[, out]) y=jv(v,z) returns the Bessel function of real order v at complex z.

jv (x1, x2[, out]) y=jv(v,z) returns the Bessel function of real order v at complex z.

jve (x1, x2[, out])y=jve(v,z) returns the exponentially scaled Bessel function of real order v at complex z: jve(v,z)
= jv(v,z) * exp(-abs(z.imag))

yn (x1, x2[, out]) y=yn(n,x) returns the Bessel function of the second kind of integer order n at x.

yv (x1, x2[, out]) y=yv(v,z) returns the Bessel function of the second kind of real order v at complex z.

yve (x1, x2[, out])y=yve(v,z) returns the exponentially scaled Bessel function of the second kind of real order v at
complex z: yve(v,z) = yv(v,z) * exp(-abs(z.imag))

kn (x1, x2[, out]) y=kn(n,x) returns the modified Bessel function of the second kind (sometimes called the third
kind) for integer order n at x.

kv (x1, x2[, out]) y=kv(v,z) returns the modified Bessel function of the second kind (sometimes called the third
kind) for real order v at complex z.

kve (x1, x2[, out])y=kve(v,z) returns the exponentially scaled, modified Bessel function of the second kind
(sometimes called the third kind) for real order v at complex z: kve(v,z) = kv(v,z) * exp(z)

iv (x1, x2[, out]) y=iv(v,z) returns the modified Bessel function of real order v of z. If z is of real type and
negative, v must be integer valued.

ive (x1, x2[, out])y=ive(v,z) returns the exponentially scaled modified Bessel function of real order v and
complex z: ive(v,z) = iv(v,z) * exp(-abs(z.real))

hankel1 (x1, x2[, out])y=hankel1(v,z) returns the Hankel function of the first kind for real order v and complex
argument z.

hankel1e (x1, x2[, out])y=hankel1e(v,z) returns the exponentially scaled Hankel function of the first kind for real order
v and complex argument z: hankel1e(v,z) = hankel1(v,z) * exp(-1j * z)

hankel2 (x1, x2[, out])y=hankel2(v,z) returns the Hankel function of the second kind for real order v and complex
argument z.

hankel2e (x1, x2[, out])y=hankel2e(v,z) returns the exponentially scaled Hankel function of the second kind for real
order v and complex argument z: hankel1e(v,z) = hankel1(v,z) * exp(1j * z)

jn(x1, x2, [out])
y=jv(v,z) returns the Bessel function of real order v at complex z.

jv(x1, x2, [out])
y=jv(v,z) returns the Bessel function of real order v at complex z.

jve(x1, x2, [out])
y=jve(v,z) returns the exponentially scaled Bessel function of real order v at complex z: jve(v,z) = jv(v,z) *
exp(-abs(z.imag))

yn(x1, x2, [out])
y=yn(n,x) returns the Bessel function of the second kind of integer order n at x.

314 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

yv(x1, x2, [out])
y=yv(v,z) returns the Bessel function of the second kind of real order v at complex z.

yve(x1, x2, [out])
y=yve(v,z) returns the exponentially scaled Bessel function of the second kind of real order v at complex z:
yve(v,z) = yv(v,z) * exp(-abs(z.imag))

kn(x1, x2, [out])
y=kn(n,x) returns the modified Bessel function of the second kind (sometimes called the third kind) for integer
order n at x.

kv(x1, x2, [out])
y=kv(v,z) returns the modified Bessel function of the second kind (sometimes called the third kind) for real
order v at complex z.

kve(x1, x2, [out])
y=kve(v,z) returns the exponentially scaled, modified Bessel function of the second kind (sometimes called the
third kind) for real order v at complex z: kve(v,z) = kv(v,z) * exp(z)

iv(x1, x2, [out])
y=iv(v,z) returns the modified Bessel function of real order v of z. If z is of real type and negative, v must be
integer valued.

ive(x1, x2, [out])
y=ive(v,z) returns the exponentially scaled modified Bessel function of real order v and complex z: ive(v,z) =
iv(v,z) * exp(-abs(z.real))

hankel1(x1, x2, [out])
y=hankel1(v,z) returns the Hankel function of the first kind for real order v and complex argument z.

hankel1e(x1, x2, [out])
y=hankel1e(v,z) returns the exponentially scaled Hankel function of the first kind for real order v and complex
argument z: hankel1e(v,z) = hankel1(v,z) * exp(-1j * z)

hankel2(x1, x2, [out])
y=hankel2(v,z) returns the Hankel function of the second kind for real order v and complex argument z.

hankel2e(x1, x2, [out])
y=hankel2e(v,z) returns the exponentially scaled Hankel function of the second kind for real order v and complex
argument z: hankel1e(v,z) = hankel1(v,z) * exp(1j * z)

The following is not an universal function:

lmbda (v, x) Compute sequence of lambda functions with arbitrary order v and their derivatives. Lv0(x)..Lv(x)
are computed with v0=v-int(v).

lmbda(v, x)
Compute sequence of lambda functions with arbitrary order v and their derivatives. Lv0(x)..Lv(x) are computed
with v0=v-int(v).

Zeros of Bessel Functions

These are not universal functions:

3.17. Special functions (scipy.special) 315

SciPy Reference Guide, Release 0.7

jnjnp_zeros (nt) Compute nt (<=1200) zeros of the bessel functions Jn and Jn’ and arange them in order
of their magnitudes.

jnyn_zeros (n, nt) Compute nt zeros of the Bessel functions Jn(x), Jn’(x), Yn(x), and Yn’(x), respectively.
Returns 4 arrays of length nt.

jn_zeros (n, nt) Compute nt zeros of the Bessel function Jn(x).

jnp_zeros (n, nt) Compute nt zeros of the Bessel function Jn’(x).

yn_zeros (n, nt) Compute nt zeros of the Bessel function Yn(x).

ynp_zeros (n, nt) Compute nt zeros of the Bessel function Yn’(x).

y0_zeros (nt[, com-
plex])

Returns nt (complex or real) zeros of Y0(z), z0, and the value of Y0’(z0) = -Y1(z0) at
each zero.

y1_zeros (nt[, com-
plex])

Returns nt (complex or real) zeros of Y1(z), z1, and the value of Y1’(z1) = Y0(z1) at
each zero.

y1p_zeros (nt[, com-
plex])

Returns nt (complex or real) zeros of Y1’(z), z1’, and the value of Y1(z1’) at each zero.

jnjnp_zeros(nt)
Compute nt (<=1200) zeros of the bessel functions Jn and Jn’ and arange them in order of their magnitudes.

Outputs (all are arrays of length nt):

zo[l-1] – Value of the lth zero of of Jn(x) and Jn’(x) n[l-1] – Order of the Jn(x) or Jn’(x) associated
with lth zero m[l-1] – Serial number of the zeros of Jn(x) or Jn’(x) associated

with lth zero.

t[l-1] – 0 if lth zero in zo is zero of Jn(x), 1 if it is a zero
of Jn’(x)

See jn_zeros, jnp_zeros to get separated arrays of zeros.

jnyn_zeros(n, nt)
Compute nt zeros of the Bessel functions Jn(x), Jn’(x), Yn(x), and Yn’(x), respectively. Returns 4 arrays of
length nt.

See jn_zeros, jnp_zeros, yn_zeros, ynp_zeros to get separate arrays.

jn_zeros(n, nt)
Compute nt zeros of the Bessel function Jn(x).

jnp_zeros(n, nt)
Compute nt zeros of the Bessel function Jn’(x).

yn_zeros(n, nt)
Compute nt zeros of the Bessel function Yn(x).

ynp_zeros(n, nt)
Compute nt zeros of the Bessel function Yn’(x).

y0_zeros(nt, complex=0)
Returns nt (complex or real) zeros of Y0(z), z0, and the value of Y0’(z0) = -Y1(z0) at each zero.

316 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

y1_zeros(nt, complex=0)
Returns nt (complex or real) zeros of Y1(z), z1, and the value of Y1’(z1) = Y0(z1) at each zero.

y1p_zeros(nt, complex=0)
Returns nt (complex or real) zeros of Y1’(z), z1’, and the value of Y1(z1’) at each zero.

Faster versions of common Bessel Functions

j0 (x[, out])y=j0(x) returns the Bessel function of order 0 at x.

j1 (x[, out])y=j1(x) returns the Bessel function of order 1 at x.

y0 (x[, out])y=y0(x) returns the Bessel function of the second kind of order 0 at x.

y1 (x[, out])y=y1(x) returns the Bessel function of the second kind of order 1 at x.

i0 (x[, out])y=i0(x) returns the modified Bessel function of order 0 at x.

i0e (x[, out])y=i0e(x) returns the exponentially scaled modified Bessel function of order 0 at x. i0e(x) = exp(-|x|) *
i0(x).

i1 (x[, out])y=i1(x) returns the modified Bessel function of order 1 at x.

i1e (x[, out])y=i1e(x) returns the exponentially scaled modified Bessel function of order 0 at x. i1e(x) = exp(-|x|) *
i1(x).

k0 (x[, out])y=k0(x) returns the modified Bessel function of the second kind (sometimes called the third kind) of
order 0 at x.

k0e (x[, out])y=k0e(x) returns the exponentially scaled modified Bessel function of the second kind (sometimes
called the third kind) of order 0 at x. k0e(x) = exp(x) * k0(x).

k1 (x[, out])y=i1(x) returns the modified Bessel function of the second kind (sometimes called the third kind) of
order 1 at x.

k1e (x[, out])y=k1e(x) returns the exponentially scaled modified Bessel function of the second kind (sometimes
called the third kind) of order 1 at x. k1e(x) = exp(x) * k1(x)

j0(x, [out])
y=j0(x) returns the Bessel function of order 0 at x.

j1(x, [out])
y=j1(x) returns the Bessel function of order 1 at x.

y0(x, [out])
y=y0(x) returns the Bessel function of the second kind of order 0 at x.

y1(x, [out])
y=y1(x) returns the Bessel function of the second kind of order 1 at x.

i0(x, [out])
y=i0(x) returns the modified Bessel function of order 0 at x.

i0e(x, [out])
y=i0e(x) returns the exponentially scaled modified Bessel function of order 0 at x. i0e(x) = exp(-|x|) * i0(x).

i1(x, [out])
y=i1(x) returns the modified Bessel function of order 1 at x.

3.17. Special functions (scipy.special) 317

SciPy Reference Guide, Release 0.7

i1e(x, [out])
y=i1e(x) returns the exponentially scaled modified Bessel function of order 0 at x. i1e(x) = exp(-|x|) * i1(x).

k0(x, [out])
y=k0(x) returns the modified Bessel function of the second kind (sometimes called the third kind) of order 0 at
x.

k0e(x, [out])
y=k0e(x) returns the exponentially scaled modified Bessel function of the second kind (sometimes called the
third kind) of order 0 at x. k0e(x) = exp(x) * k0(x).

k1(x, [out])
y=i1(x) returns the modified Bessel function of the second kind (sometimes called the third kind) of order 1 at
x.

k1e(x, [out])
y=k1e(x) returns the exponentially scaled modified Bessel function of the second kind (sometimes called the
third kind) of order 1 at x. k1e(x) = exp(x) * k1(x)

Integrals of Bessel Functions

itj0y0 (x[, out1, out2]) (ij0,iy0)=itj0y0(x) returns simple integrals from 0 to x of the zeroth order bessel
functions j0 and y0.

it2j0y0 (x[, out1, out2]) (ij0,iy0)=it2j0y0(x) returns the integrals int((1-j0(t))/t,t=0..x) and
int(y0(t)/t,t=x..infinitity).

iti0k0 (x[, out1, out2]) (ii0,ik0)=iti0k0(x) returns simple integrals from 0 to x of the zeroth order modified
bessel functions i0 and k0.

it2i0k0 (x[, out1, out2]) (ii0,ik0)=it2i0k0(x) returns the integrals int((i0(t)-1)/t,t=0..x) and
int(k0(t)/t,t=x..infinitity).

besselpoly (x1, x2, x3[, out])y=besselpoly(a,lam,nu) returns the value of the integral: integral(x**lam *
jv(nu,2*a*x),x=0..1).

itj0y0(x, [out1, out2])
(ij0,iy0)=itj0y0(x) returns simple integrals from 0 to x of the zeroth order bessel functions j0 and y0.

it2j0y0(x, [out1, out2])
(ij0,iy0)=it2j0y0(x) returns the integrals int((1-j0(t))/t,t=0..x) and int(y0(t)/t,t=x..infinitity).

iti0k0(x, [out1, out2])
(ii0,ik0)=iti0k0(x) returns simple integrals from 0 to x of the zeroth order modified bessel functions i0 and k0.

it2i0k0(x, [out1, out2])
(ii0,ik0)=it2i0k0(x) returns the integrals int((i0(t)-1)/t,t=0..x) and int(k0(t)/t,t=x..infinitity).

besselpoly(x1, x2, x3, [out])
y=besselpoly(a,lam,nu) returns the value of the integral: integral(x**lam * jv(nu,2*a*x),x=0..1).

318 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

Derivatives of Bessel Functions

jvp (v, z[, n]) Return the nth derivative of Jv(z) with respect to z.

yvp (v, z[, n]) Return the nth derivative of Yv(z) with respect to z.

kvp (v, z[, n]) Return the nth derivative of Kv(z) with respect to z.

ivp (v, z[, n]) Return the nth derivative of Iv(z) with respect to z.

h1vp (v, z[, n]) Return the nth derivative of H1v(z) with respect to z.

h2vp (v, z[, n]) Return the nth derivative of H2v(z) with respect to z.

jvp(v, z, n=1)
Return the nth derivative of Jv(z) with respect to z.

yvp(v, z, n=1)
Return the nth derivative of Yv(z) with respect to z.

kvp(v, z, n=1)
Return the nth derivative of Kv(z) with respect to z.

ivp(v, z, n=1)
Return the nth derivative of Iv(z) with respect to z.

h1vp(v, z, n=1)
Return the nth derivative of H1v(z) with respect to z.

h2vp(v, z, n=1)
Return the nth derivative of H2v(z) with respect to z.

Spherical Bessel Functions

These are not universal functions:

sph_jn (n, z) Compute the spherical Bessel function jn(z) and its derivative for all orders up to and including
n.

sph_yn (n, z) Compute the spherical Bessel function yn(z) and its derivative for all orders up to and including
n.

sph_jnyn (n, z) Compute the spherical Bessel functions, jn(z) and yn(z) and their derivatives for all orders up to
and including n.

sph_in (n, z) Compute the spherical Bessel function in(z) and its derivative for all orders up to and including
n.

sph_kn (n, z) Compute the spherical Bessel function kn(z) and its derivative for all orders up to and including
n.

sph_inkn (n, z) Compute the spherical Bessel functions, in(z) and kn(z) and their derivatives for all orders up to
and including n.

sph_jn(n, z)
Compute the spherical Bessel function jn(z) and its derivative for all orders up to and including n.

sph_yn(n, z)

3.17. Special functions (scipy.special) 319

SciPy Reference Guide, Release 0.7

Compute the spherical Bessel function yn(z) and its derivative for all orders up to and including n.

sph_jnyn(n, z)
Compute the spherical Bessel functions, jn(z) and yn(z) and their derivatives for all orders up to and including
n.

sph_in(n, z)
Compute the spherical Bessel function in(z) and its derivative for all orders up to and including n.

sph_kn(n, z)
Compute the spherical Bessel function kn(z) and its derivative for all orders up to and including n.

sph_inkn(n, z)
Compute the spherical Bessel functions, in(z) and kn(z) and their derivatives for all orders up to and including
n.

Ricatti-Bessel Functions

These are not universal functions:

riccati_jn (n, x) Compute the Ricatti-Bessel function of the first kind and its derivative for all orders up to and
including n.

riccati_yn (n, x) Compute the Ricatti-Bessel function of the second kind and its derivative for all orders up to
and including n.

riccati_jn(n, x)
Compute the Ricatti-Bessel function of the first kind and its derivative for all orders up to and including n.

riccati_yn(n, x)
Compute the Ricatti-Bessel function of the second kind and its derivative for all orders up to and including n.

Struve Functions

struve (x1, x2[, out])y=struve(v,x) returns the Struve function Hv(x) of order v at x, x must be positive unless v is
an integer.

modstruve (x1, x2[, out])y=modstruve(v,x) returns the modified Struve function Lv(x) of order v at x, x must be
positive unless v is an integer and it is recommended that |v|<=20.

itstruve0 (x[, out])y=itstruve0(x) returns the integral of the Struve function of order 0 from 0 to x:
integral(H0(t), t=0..x).

it2struve0 (x[, out])y=it2struve0(x) returns the integral of the Struve function of order 0 divided by t from x to
infinity: integral(H0(t)/t, t=x..inf).

itmodstruve0 (x[, out])y=itmodstruve0(x) returns the integral of the modified Struve function of order 0 from 0 to x:
integral(L0(t), t=0..x).

struve(x1, x2, [out])
y=struve(v,x) returns the Struve function Hv(x) of order v at x, x must be positive unless v is an integer.

modstruve(x1, x2, [out])
y=modstruve(v,x) returns the modified Struve function Lv(x) of order v at x, x must be positive unless v is an
integer and it is recommended that |v|<=20.

itstruve0(x, [out])

320 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

y=itstruve0(x) returns the integral of the Struve function of order 0 from 0 to x: integral(H0(t), t=0..x).

it2struve0(x, [out])
y=it2struve0(x) returns the integral of the Struve function of order 0 divided by t from x to infinity: inte-
gral(H0(t)/t, t=x..inf).

itmodstruve0(x, [out])
y=itmodstruve0(x) returns the integral of the modified Struve function of order 0 from 0 to x: integral(L0(t),
t=0..x).

Raw Statistical Functions

See Also:

scipy.stats: Friendly versions of these functions.

3.17. Special functions (scipy.special) 321

SciPy Reference Guide, Release 0.7

bdtr (x1, x2, x3[, out])y=bdtr(k,n,p) returns the sum of the terms 0 through k of the Binomial probability density:
sum(nCj p**j (1-p)**(n-j),j=0..k)

bdtrc (x1, x2, x3[, out])y=bdtrc(k,n,p) returns the sum of the terms k+1 through n of the Binomial probability density:
sum(nCj p**j (1-p)**(n-j), j=k+1..n)

bdtri (x1, x2, x3[, out])p=bdtri(k,n,y) finds the probability p such that the sum of the terms 0 through k of the Binomial
probability density is equal to the given cumulative probability y.

btdtr (x1, x2, x3[, out])y=btdtr(a,b,x) returns the area from zero to x under the beta density function:
gamma(a+b)/(gamma(a)*gamma(b)))*integral(t**(a-1) (1-t)**(b-1), t=0..x). SEE ALSO
betainc

btdtri (x1, x2, x3[, out])x=btdtri(a,b,p) returns the pth quantile of the beta distribution. It is effectively the inverse of
btdtr returning the value of x for which btdtr(a,b,x) = p. SEE ALSO betaincinv

fdtr (x1, x2, x3[, out])y=fdtr(dfn,dfd,x) returns the area from zero to x under the F density function (also known as
Snedcor’s density or the variance ratio density). This is the density of X =
(unum/dfn)/(uden/dfd), where unum and uden are random variables having Chi square
distributions with dfn and dfd degrees of freedom, respectively.

fdtrc (x1, x2, x3[, out])y=fdtrc(dfn,dfd,x) returns the complemented F distribution function.

fdtri (x1, x2, x3[, out])x=fdtri(dfn,dfd,p) finds the F density argument x such that fdtr(dfn,dfd,x)=p.

gdtr (x1, x2, x3[, out])y=gdtr(a,b,x) returns the integral from zero to x of the gamma probability density function:
a**b / gamma(b) * integral(t**(b-1) exp(-at),t=0..x). The arguments a and b are used
differently here than in other definitions.

gdtrc (x1, x2, x3[, out])y=gdtrc(a,b,x) returns the integral from x to infinity of the gamma probability density function.
SEE gdtr, gdtri

gdtria (x1, x2, x3[, out])

gdtrib (x1, x2, x3[, out])

gdtrix (x1, x2, x3[, out])

nbdtr (x1, x2, x3[, out])y=nbdtr(k,n,p) returns the sum of the terms 0 through k of the negative binomial distribution:
sum((n+j-1)Cj p**n (1-p)**j,j=0..k). In a sequence of Bernoulli trials this is the probability that
k or fewer failures precede the nth success.

nbdtrc (x1, x2, x3[, out])y=nbdtrc(k,n,p) returns the sum of the terms k+1 to infinity of the negative binomial
distribution.

nbdtri (x1, x2, x3[, out])p=nbdtri(k,n,y) finds the argument p such that nbdtr(k,n,p)=y.

pdtr (x1, x2[, out])y=pdtr(k,m) returns the sum of the first k terms of the Poisson distribution: sum(exp(-m) *
m**j / j!, j=0..k) = gammaincc(k+1, m). Arguments must both be positive and k an integer.

pdtrc (x1, x2[, out])y=pdtrc(k,m) returns the sum of the terms from k+1 to infinity of the Poisson distribution:
sum(exp(-m) * m**j / j!, j=k+1..inf) = gammainc(k+1, m). Arguments must both be positive
and k an integer.

pdtri (x1, x2[, out])m=pdtri(k,y) returns the Poisson variable m such that the sum from 0 to k of the Poisson
density is equal to the given probability y: calculated by gammaincinv(k+1, y). k must be a
nonnegative integer and y between 0 and 1.

stdtr (x1, x2[, out])p=stdtr(df,t) returns the integral from minus infinity to t of the Student t distribution with df > 0
degrees of freedom: gamma((df+1)/2)/(sqrt(df*pi)*gamma(df/2)) *
integral((1+x**2/df)**(-df/2-1/2), x=-inf..t)

stdtridf (x1, x2[, out])t=stdtridf(p,t) returns the argument df such that stdtr(df,t) is equal to p.

stdtrit (x1, x2[, out])t=stdtrit(df,p) returns the argument t such that stdtr(df,t) is equal to p.

chdtr (x1, x2[, out])p=chdtr(v,x) Returns the area under the left hand tail (from 0 to x) of the Chi square probability
density function with v degrees of freedom: 1/(2**(v/2) * gamma(v/2)) * integral(t**(v/2-1) *
exp(-t/2), t=0..x)

chdtrc (x1, x2[, out])p=chdtrc(v,x) returns the area under the right hand tail (from x to infinity) of the Chi square
probability density function with v degrees of freedom: 1/(2**(v/2) * gamma(v/2)) *
integral(t**(v/2-1) * exp(-t/2), t=x..inf)

chdtri (x1, x2[, out])x=chdtri(v,p) returns the argument x such that chdtrc(v,x) is equal to p.

ndtr (x[, out]) y=ndtr(x) returns the area under the standard Gaussian probability density function, integrated
from minus infinity to x: 1/sqrt(2*pi) * integral(exp(-t**2 / 2),t=-inf..x)

ndtri (x[, out]) x=ndtri(y) returns the argument x for which the area udnder the Gaussian probability density
function (integrated from minus infinity to x) is equal to y.

smirnov (x1, x2[, out])y=smirnov(n,e) returns the exact Kolmogorov-Smirnov complementary cumulative distribution
function (Dn+ or Dn-) for a one-sided test of equality between an empirical and a theoretical
distribution. It is equal to the probability that the maximum difference between a theoretical
distribution and an empirical one based on n samples is greater than e.

smirnovi (x1, x2[, out])e=smirnovi(n,y) returns e such that smirnov(n,e) = y.

kolmogorov (x[, out])p=kolmogorov(y) returns the complementary cumulative distribution function of Kolmogorov’s
limiting distribution (Kn* for large n) of a two-sided test for equality between an empirical and
a theoretical distribution. It is equal to the (limit as n->infinity of the) probability that sqrt(n) *
max absolute deviation > y.

kolmogi (x[, out])y=kolmogi(p) returns y such that kolmogorov(y) = p

tklmbda (x1, x2[, out])

322 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

bdtr(x1, x2, x3, [out])
y=bdtr(k,n,p) returns the sum of the terms 0 through k of the Binomial probability density: sum(nCj p**j
(1-p)**(n-j),j=0..k)

bdtrc(x1, x2, x3, [out])
y=bdtrc(k,n,p) returns the sum of the terms k+1 through n of the Binomial probability density: sum(nCj p**j
(1-p)**(n-j), j=k+1..n)

bdtri(x1, x2, x3, [out])
p=bdtri(k,n,y) finds the probability p such that the sum of the terms 0 through k of the Binomial probability
density is equal to the given cumulative probability y.

btdtr(x1, x2, x3, [out])
y=btdtr(a,b,x) returns the area from zero to x under the beta density function:
gamma(a+b)/(gamma(a)*gamma(b)))*integral(t**(a-1) (1-t)**(b-1), t=0..x). SEE ALSO betainc

btdtri(x1, x2, x3, [out])
x=btdtri(a,b,p) returns the pth quantile of the beta distribution. It is effectively the inverse of btdtr returning the
value of x for which btdtr(a,b,x) = p. SEE ALSO betaincinv

fdtr(x1, x2, x3, [out])
y=fdtr(dfn,dfd,x) returns the area from zero to x under the F density function (also known as Snedcor’s density
or the variance ratio density). This is the density of X = (unum/dfn)/(uden/dfd), where unum and uden are
random variables having Chi square distributions with dfn and dfd degrees of freedom, respectively.

fdtrc(x1, x2, x3, [out])
y=fdtrc(dfn,dfd,x) returns the complemented F distribution function.

fdtri(x1, x2, x3, [out])
x=fdtri(dfn,dfd,p) finds the F density argument x such that fdtr(dfn,dfd,x)=p.

gdtr(x1, x2, x3, [out])
y=gdtr(a,b,x) returns the integral from zero to x of the gamma probability density function: a**b / gamma(b) *
integral(t**(b-1) exp(-at),t=0..x). The arguments a and b are used differently here than in other definitions.

gdtrc(x1, x2, x3, [out])
y=gdtrc(a,b,x) returns the integral from x to infinity of the gamma probability density function. SEE gdtr, gdtri

gdtria(x1, x2, x3, [out])

gdtrib(x1, x2, x3, [out])

gdtrix(x1, x2, x3, [out])

nbdtr(x1, x2, x3, [out])
y=nbdtr(k,n,p) returns the sum of the terms 0 through k of the negative binomial distribution: sum((n+j-1)Cj
p**n (1-p)**j,j=0..k). In a sequence of Bernoulli trials this is the probability that k or fewer failures precede the
nth success.

nbdtrc(x1, x2, x3, [out])
y=nbdtrc(k,n,p) returns the sum of the terms k+1 to infinity of the negative binomial distribution.

nbdtri(x1, x2, x3, [out])
p=nbdtri(k,n,y) finds the argument p such that nbdtr(k,n,p)=y.

pdtr(x1, x2, [out])
y=pdtr(k,m) returns the sum of the first k terms of the Poisson distribution: sum(exp(-m) * m**j / j!, j=0..k) =
gammaincc(k+1, m). Arguments must both be positive and k an integer.

pdtrc(x1, x2, [out])

3.17. Special functions (scipy.special) 323

SciPy Reference Guide, Release 0.7

y=pdtrc(k,m) returns the sum of the terms from k+1 to infinity of the Poisson distribution: sum(exp(-m) * m**j
/ j!, j=k+1..inf) = gammainc(k+1, m). Arguments must both be positive and k an integer.

pdtri(x1, x2, [out])
m=pdtri(k,y) returns the Poisson variable m such that the sum from 0 to k of the Poisson density is equal to the
given probability y: calculated by gammaincinv(k+1, y). k must be a nonnegative integer and y between 0 and
1.

stdtr(x1, x2, [out])
p=stdtr(df,t) returns the integral from minus infinity to t of the Student t distribution with df > 0 degrees of
freedom: gamma((df+1)/2)/(sqrt(df*pi)*gamma(df/2)) * integral((1+x**2/df)**(-df/2-1/2), x=-inf..t)

stdtridf(x1, x2, [out])
t=stdtridf(p,t) returns the argument df such that stdtr(df,t) is equal to p.

stdtrit(x1, x2, [out])
t=stdtrit(df,p) returns the argument t such that stdtr(df,t) is equal to p.

chdtr(x1, x2, [out])
p=chdtr(v,x) Returns the area under the left hand tail (from 0 to x) of the Chi square probability density function
with v degrees of freedom: 1/(2**(v/2) * gamma(v/2)) * integral(t**(v/2-1) * exp(-t/2), t=0..x)

chdtrc(x1, x2, [out])
p=chdtrc(v,x) returns the area under the right hand tail (from x to infinity) of the Chi square probability density
function with v degrees of freedom: 1/(2**(v/2) * gamma(v/2)) * integral(t**(v/2-1) * exp(-t/2), t=x..inf)

chdtri(x1, x2, [out])
x=chdtri(v,p) returns the argument x such that chdtrc(v,x) is equal to p.

ndtr(x, [out])
y=ndtr(x) returns the area under the standard Gaussian probability density function, integrated from minus
infinity to x: 1/sqrt(2*pi) * integral(exp(-t**2 / 2),t=-inf..x)

ndtri(x, [out])
x=ndtri(y) returns the argument x for which the area udnder the Gaussian probability density function (integrated
from minus infinity to x) is equal to y.

smirnov(x1, x2, [out])
y=smirnov(n,e) returns the exact Kolmogorov-Smirnov complementary cumulative distribution function (Dn+
or Dn-) for a one-sided test of equality between an empirical and a theoretical distribution. It is equal to the
probability that the maximum difference between a theoretical distribution and an empirical one based on n
samples is greater than e.

smirnovi(x1, x2, [out])
e=smirnovi(n,y) returns e such that smirnov(n,e) = y.

kolmogorov(x, [out])
p=kolmogorov(y) returns the complementary cumulative distribution function of Kolmogorov’s limiting distri-
bution (Kn* for large n) of a two-sided test for equality between an empirical and a theoretical distribution. It is
equal to the (limit as n->infinity of the) probability that sqrt(n) * max absolute deviation > y.

kolmogi(x, [out])
y=kolmogi(p) returns y such that kolmogorov(y) = p

tklmbda(x1, x2, [out])

324 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

Gamma and Related Functions

gamma (x[, out]) y=gamma(z) returns the gamma function of the argument. The gamma function is often
referred to as the generalized factorial since z*gamma(z) = gamma(z+1) and gamma(n+1) =
n! for natural number n.

gammaln (x[, out]) y=gammaln(z) returns the base e logarithm of the absolute value of the gamma function of z:
ln(|gamma(z)|)

gammainc (x1, x2[, out])y=gammainc(a,x) returns the incomplete gamma integral defined as 1 / gamma(a) *
integral(exp(-t) * t**(a-1), t=0..x). Both arguments must be positive.

gammaincinv (x1, x2[, out])gammaincinv(a, y) returns x such that gammainc(a, x) = y.

gammaincc (x1, x2[, out])y=gammaincc(a,x) returns the complemented incomplete gamma integral defined as 1 /
gamma(a) * integral(exp(-t) * t**(a-1), t=x..inf) = 1 - gammainc(a,x). Both arguments must
be positive.

gammainccinv (x1, x2[, out])x=gammainccinv(a,y) returns x such that gammaincc(a,x) = y.

beta (x1, x2[, out]) y=beta(a,b) returns gamma(a) * gamma(b) / gamma(a+b)

betaln (x1, x2[, out])y=betaln(a,b) returns the natural logarithm of the absolute value of beta: ln(|beta(x)|).

betainc (x1, x2, x3[, out])y=betainc(a,b,x) returns the incomplete beta integral of the arguments, evaluated from zero
to x: gamma(a+b) / (gamma(a)*gamma(b)) * integral(t**(a-1) (1-t)**(b-1), t=0..x).

betaincinv (x1, x2, x3[, out])x=betaincinv(a,b,y) returns x such that betainc(a,b,x) = y.

psi (x[, out]) y=psi(z) is the derivative of the logarithm of the gamma function evaluated at z (also called
the digamma function).

rgamma (x[, out]) y=rgamma(z) returns one divided by the gamma function of x.

polygamma (n, x) Polygamma function which is the nth derivative of the digamma (psi) function.

gamma(x, [out])
y=gamma(z) returns the gamma function of the argument. The gamma function is often referred to as the
generalized factorial since z*gamma(z) = gamma(z+1) and gamma(n+1) = n! for natural number n.

gammaln(x, [out])
y=gammaln(z) returns the base e logarithm of the absolute value of the gamma function of z: ln(|gamma(z)|)

gammainc(x1, x2, [out])
y=gammainc(a,x) returns the incomplete gamma integral defined as 1 / gamma(a) * integral(exp(-t) * t**(a-1),
t=0..x). Both arguments must be positive.

gammaincinv(x1, x2, [out])
gammaincinv(a, y) returns x such that gammainc(a, x) = y.

gammaincc(x1, x2, [out])
y=gammaincc(a,x) returns the complemented incomplete gamma integral defined as 1 / gamma(a) *
integral(exp(-t) * t**(a-1), t=x..inf) = 1 - gammainc(a,x). Both arguments must be positive.

gammainccinv(x1, x2, [out])
x=gammainccinv(a,y) returns x such that gammaincc(a,x) = y.

3.17. Special functions (scipy.special) 325

SciPy Reference Guide, Release 0.7

beta(x1, x2, [out])
y=beta(a,b) returns gamma(a) * gamma(b) / gamma(a+b)

betaln(x1, x2, [out])
y=betaln(a,b) returns the natural logarithm of the absolute value of beta: ln(|beta(x)|).

betainc(x1, x2, x3, [out])
y=betainc(a,b,x) returns the incomplete beta integral of the arguments, evaluated from zero to x: gamma(a+b) /
(gamma(a)*gamma(b)) * integral(t**(a-1) (1-t)**(b-1), t=0..x).

betaincinv(x1, x2, x3, [out])
x=betaincinv(a,b,y) returns x such that betainc(a,b,x) = y.

psi(x, [out])
y=psi(z) is the derivative of the logarithm of the gamma function evaluated at z (also called the digamma
function).

rgamma(x, [out])
y=rgamma(z) returns one divided by the gamma function of x.

polygamma(n, x)
Polygamma function which is the nth derivative of the digamma (psi) function.

Error Function and Fresnel Integrals

erf (x[, out]) y=erf(z) returns the error function of complex argument defined as as
2/sqrt(pi)*integral(exp(-t**2),t=0..z)

erfc (x[, out]) y=erfc(x) returns 1 - erf(x).

erfinv (y)

erfcinv (y)

erf_zeros (nt) Compute nt complex zeros of the error function erf(z).

fresnel (x[, out1, out2])(ssa,cca)=fresnel(z) returns the fresnel sin and cos integrals: integral(sin(pi/2 * t**2),t=0..z)
and integral(cos(pi/2 * t**2),t=0..z) for real or complex z.

fresnel_zeros (nt)Compute nt complex zeros of the sine and cosine fresnel integrals S(z) and C(z).

modfresnelp (x[, out1, out2])(fp,kp)=modfresnelp(x) returns the modified fresnel integrals F_+(x) and K_+(x) as
fp=integral(exp(1j*t*t),t=x..inf) and kp=1/sqrt(pi)*exp(-1j*(x*x+pi/4))*fp

modfresnelm (x[, out1, out2])(fm,km)=modfresnelp(x) returns the modified fresnel integrals F_-(x) amd K_-(x) as
fp=integral(exp(-1j*t*t),t=x..inf) and kp=1/sqrt(pi)*exp(1j*(x*x+pi/4))*fp

erf(x, [out])
y=erf(z) returns the error function of complex argument defined as as 2/sqrt(pi)*integral(exp(-t**2),t=0..z)

erfc(x, [out])
y=erfc(x) returns 1 - erf(x).

erfinv(y)

erfcinv(y)

326 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

erf_zeros(nt)
Compute nt complex zeros of the error function erf(z).

fresnel(x, [out1, out2])
(ssa,cca)=fresnel(z) returns the fresnel sin and cos integrals: integral(sin(pi/2 * t**2),t=0..z) and inte-
gral(cos(pi/2 * t**2),t=0..z) for real or complex z.

fresnel_zeros(nt)
Compute nt complex zeros of the sine and cosine fresnel integrals S(z) and C(z).

modfresnelp(x, [out1, out2])
(fp,kp)=modfresnelp(x) returns the modified fresnel integrals F_+(x) and K_+(x) as
fp=integral(exp(1j*t*t),t=x..inf) and kp=1/sqrt(pi)*exp(-1j*(x*x+pi/4))*fp

modfresnelm(x, [out1, out2])
(fm,km)=modfresnelp(x) returns the modified fresnel integrals F_-(x) amd K_-(x) as fp=integral(exp(-
1j*t*t),t=x..inf) and kp=1/sqrt(pi)*exp(1j*(x*x+pi/4))*fp

These are not universal functions:

fresnelc_zeros (nt) Compute nt complex zeros of the cosine fresnel integral C(z).

fresnels_zeros (nt) Compute nt complex zeros of the sine fresnel integral S(z).

fresnelc_zeros(nt)
Compute nt complex zeros of the cosine fresnel integral C(z).

fresnels_zeros(nt)
Compute nt complex zeros of the sine fresnel integral S(z).

Legendre Functions

lpmv (x1, x2, x3[, out])y=lpmv(m,v,x) returns the associated legendre function of integer order m and nonnegative
degree v: |x|<=1.

sph_harm () Compute spherical harmonics.

lpmv(x1, x2, x3, [out])
y=lpmv(m,v,x) returns the associated legendre function of integer order m and nonnegative degree v: |x|<=1.

sph_harm()
Compute spherical harmonics.

This is a ufunc and may take scalar or array arguments like any other ufunc. The inputs will be broadcasted
against each other.

Parameters

• m : int |m| <= n The order of the harmonic.
• n : int >= 0 The degree of the harmonic.
• theta : float [0, 2*pi] The azimuthal (longitudinal) coordinate.
• phi : float [0, pi] The polar (colatitudinal) coordinate.

Returns

• y_mn : complex float The harmonic Y^m_n sampled at theta and phi.

3.17. Special functions (scipy.special) 327

SciPy Reference Guide, Release 0.7

These are not universal functions:

lpn (n, z) Compute sequence of Legendre functions of the first kind (polynomials), Pn(z) and derivatives for all
degrees from 0 to n (inclusive).

lqn (n, z) Compute sequence of Legendre functions of the second kind, Qn(z) and derivatives for all degrees
from 0 to n (inclusive).

lpmn (m, n, z)Associated Legendre functions of the first kind, Pmn(z) and its derivative, Pmn’(z) of order m and
degree n. Returns two arrays of size (m+1,n+1) containing Pmn(z) and Pmn’(z) for all orders from
0..m and degrees from 0..n.

lqmn (m, n, z)Associated Legendre functions of the second kind, Qmn(z) and its derivative, Qmn’(z) of order m and
degree n. Returns two arrays of size (m+1,n+1) containing Qmn(z) and Qmn’(z) for all orders from
0..m and degrees from 0..n.

lpn(n, z)
Compute sequence of Legendre functions of the first kind (polynomials), Pn(z) and derivatives for all degrees
from 0 to n (inclusive).

See also special.legendre for polynomial class.

lqn(n, z)
Compute sequence of Legendre functions of the second kind, Qn(z) and derivatives for all degrees from 0 to n
(inclusive).

lpmn(m, n, z)
Associated Legendre functions of the first kind, Pmn(z) and its derivative, Pmn’(z) of order m and degree n.
Returns two arrays of size (m+1,n+1) containing Pmn(z) and Pmn’(z) for all orders from 0..m and degrees from
0..n.

z can be complex.

lqmn(m, n, z)
Associated Legendre functions of the second kind, Qmn(z) and its derivative, Qmn’(z) of order m and degree
n. Returns two arrays of size (m+1,n+1) containing Qmn(z) and Qmn’(z) for all orders from 0..m and degrees
from 0..n.

z can be complex.

Orthogonal polynomials

These functions all return a polynomial class which can then be evaluated: vals = chebyt(n)(x).

The class also has an attribute ‘weights’ which return the roots, weights, and total weights for the appropriate form of
Gaussian quadrature. These are returned in an n x 3 array with roots in the first column, weights in the second column,
and total weights in the final column.

Warning: Evaluating large-order polynomials using these functions can be numerically unstable.
The reason is that the functions below return polynomials as numpy.poly1d objects, which represent the poly-
nomial in terms of their coefficients, and this can result to loss of precision when the polynomial terms are
summed.

328 Chapter 3. Reference

http://docs.scipy.org/doc/numpy/reference/generated/numpy.poly1d.html#numpy.poly1d

SciPy Reference Guide, Release 0.7

legendre (n[, monic])Returns the nth order Legendre polynomial, P_n(x), orthogonal over [-1,1] with weight
function 1.

chebyt (n[, monic]) Return nth order Chebyshev polynomial of first kind, Tn(x). Orthogonal over [-1,1] with
weight function (1-x**2)**(-1/2).

chebyu (n[, monic]) Return nth order Chebyshev polynomial of second kind, Un(x). Orthogonal over [-1,1]
with weight function (1-x**2)**(1/2).

chebyc (n[, monic]) Return nth order Chebyshev polynomial of first kind, Cn(x). Orthogonal over [-2,2] with
weight function (1-(x/2)**2)**(-1/2).

chebys (n[, monic]) Return nth order Chebyshev polynomial of second kind, Sn(x). Orthogonal over [-2,2] with
weight function (1-(x/)**2)**(1/2).

jacobi (n, al-
pha, beta[, monic])

Returns the nth order Jacobi polynomial, P^(alpha,beta)_n(x) orthogonal over [-1,1] with
weighting function (1-x)**alpha (1+x)**beta with alpha,beta > -1.

laguerre (n[, monic])Return the nth order Laguerre polynoimal, L_n(x), orthogonal over [0,inf) with weighting
function exp(-x)

genlaguerre (n, al-
pha[, monic])

Returns the nth order generalized (associated) Laguerre polynomial, L^(alpha)_n(x),
orthogonal over [0,inf) with weighting function exp(-x) x**alpha with alpha > -1

hermite (n[, monic])Return the nth order Hermite polynomial, H_n(x), orthogonal over (-inf,inf) with weighting
function exp(-x**2)

hermitenorm (n[, monic])Return the nth order normalized Hermite polynomial, He_n(x), orthogonal over (-inf,inf)
with weighting function exp(-(x/2)**2)

gegenbauer (n, al-
pha[, monic])

Return the nth order Gegenbauer (ultraspherical) polynomial, C^(alpha)_n(x), orthogonal
over [-1,1] with weighting function (1-x**2)**(alpha-1/2) with alpha > -1/2

sh_legendre (n[, monic])Returns the nth order shifted Legendre polynomial, P^*_n(x), orthogonal over [0,1] with
weighting function 1.

sh_chebyt (n[, monic])Return nth order shifted Chebyshev polynomial of first kind, Tn(x). Orthogonal over [0,1]
with weight function (x-x**2)**(-1/2).

sh_chebyu (n[, monic])Return nth order shifted Chebyshev polynomial of second kind, Un(x). Orthogonal over
[0,1] with weight function (x-x**2)**(1/2).

sh_jacobi (n, p, q[, monic])Returns the nth order Jacobi polynomial, G_n(p,q,x) orthogonal over [0,1] with weighting
function (1-x)**(p-q) (x)**(q-1) with p>q-1 and q > 0.

legendre(n, monic=0)
Returns the nth order Legendre polynomial, P_n(x), orthogonal over [-1,1] with weight function 1.

chebyt(n, monic=0)
Return nth order Chebyshev polynomial of first kind, Tn(x). Orthogonal over [-1,1] with weight function
(1-x**2)**(-1/2).

chebyu(n, monic=0)
Return nth order Chebyshev polynomial of second kind, Un(x). Orthogonal over [-1,1] with weight function
(1-x**2)**(1/2).

3.17. Special functions (scipy.special) 329

SciPy Reference Guide, Release 0.7

chebyc(n, monic=0)
Return nth order Chebyshev polynomial of first kind, Cn(x). Orthogonal over [-2,2] with weight function
(1-(x/2)**2)**(-1/2).

chebys(n, monic=0)
Return nth order Chebyshev polynomial of second kind, Sn(x). Orthogonal over [-2,2] with weight function
(1-(x/)**2)**(1/2).

jacobi(n, alpha, beta, monic=0)
Returns the nth order Jacobi polynomial, P^(alpha,beta)_n(x) orthogonal over [-1,1] with weighting function
(1-x)**alpha (1+x)**beta with alpha,beta > -1.

laguerre(n, monic=0)
Return the nth order Laguerre polynoimal, L_n(x), orthogonal over [0,inf) with weighting function exp(-x)

genlaguerre(n, alpha, monic=0)
Returns the nth order generalized (associated) Laguerre polynomial, L^(alpha)_n(x), orthogonal over [0,inf)
with weighting function exp(-x) x**alpha with alpha > -1

hermite(n, monic=0)
Return the nth order Hermite polynomial, H_n(x), orthogonal over (-inf,inf) with weighting function exp(-x**2)

hermitenorm(n, monic=0)
Return the nth order normalized Hermite polynomial, He_n(x), orthogonal over (-inf,inf) with weighting func-
tion exp(-(x/2)**2)

gegenbauer(n, alpha, monic=0)
Return the nth order Gegenbauer (ultraspherical) polynomial, C^(alpha)_n(x), orthogonal over [-1,1] with
weighting function (1-x**2)**(alpha-1/2) with alpha > -1/2

sh_legendre(n, monic=0)
Returns the nth order shifted Legendre polynomial, P^*_n(x), orthogonal over [0,1] with weighting function 1.

sh_chebyt(n, monic=0)
Return nth order shifted Chebyshev polynomial of first kind, Tn(x). Orthogonal over [0,1] with weight function
(x-x**2)**(-1/2).

sh_chebyu(n, monic=0)
Return nth order shifted Chebyshev polynomial of second kind, Un(x). Orthogonal over [0,1] with weight
function (x-x**2)**(1/2).

sh_jacobi(n, p, q, monic=0)
Returns the nth order Jacobi polynomial, G_n(p,q,x) orthogonal over [0,1] with weighting function (1-x)**(p-q)
(x)**(q-1) with p>q-1 and q > 0.

330 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

Hypergeometric Functions

hyp2f1 (x1, x2, x3, x4[, out])y=hyp2f1(a,b,c,z) returns the gauss hypergeometric function (2F1(a,b;c;z)).

hyp1f1 (x1, x2, x3[, out])y=hyp1f1(a,b,x) returns the confluent hypergeometeric function (1F1(a,b;x)) evaluated at
the values a, b, and x.

hyperu (x1, x2, x3[, out])y=hyperu(a,b,x) returns the confluent hypergeometric function of the second kind U(a,b,x).

hyp0f1 (v, z) Confluent hypergeometric limit function 0F1. Limit as q->infinity of 1F1(q;a;z/q)

hyp2f0 (x1, x2, x3, x4[, out1, ...)(y,err)=hyp2f0(a,b,x,type) returns (y,err) with the hypergeometric function 2F0 in y and an
error estimate in err. The input type determines a convergence factor and can be either 1 or
2.

hyp1f2 (x1, x2, x3, x4[, out1, ...)(y,err)=hyp1f2(a,b,c,x) returns (y,err) with the hypergeometric function 1F2 in y and an
error estimate in err.

hyp3f0 (x1, x2, x3, x4[, out1, ...)(y,err)=hyp3f0(a,b,c,x) returns (y,err) with the hypergeometric function 3F0 in y and an
error estimate in err.

hyp2f1(x1, x2, x3, x4, [out])
y=hyp2f1(a,b,c,z) returns the gauss hypergeometric function (2F1(a,b;c;z)).

hyp1f1(x1, x2, x3, [out])
y=hyp1f1(a,b,x) returns the confluent hypergeometeric function (1F1(a,b;x)) evaluated at the values a, b, and
x.

hyperu(x1, x2, x3, [out])
y=hyperu(a,b,x) returns the confluent hypergeometric function of the second kind U(a,b,x).

hyp0f1(v, z)
Confluent hypergeometric limit function 0F1. Limit as q->infinity of 1F1(q;a;z/q)

hyp2f0(x1, x2, x3, x4, [out1, out2])
(y,err)=hyp2f0(a,b,x,type) returns (y,err) with the hypergeometric function 2F0 in y and an error estimate in err.
The input type determines a convergence factor and can be either 1 or 2.

hyp1f2(x1, x2, x3, x4, [out1, out2])
(y,err)=hyp1f2(a,b,c,x) returns (y,err) with the hypergeometric function 1F2 in y and an error estimate in err.

hyp3f0(x1, x2, x3, x4, [out1, out2])
(y,err)=hyp3f0(a,b,c,x) returns (y,err) with the hypergeometric function 3F0 in y and an error estimate in err.

Parabolic Cylinder Functions

pbdv (x1, x2[, out1, out2])(d,dp)=pbdv(v,x) returns (d,dp) with the parabolic cylinder function Dv(x) in d and the
derivative, Dv’(x) in dp.

pbvv (x1, x2[, out1, out2])(v,vp)=pbvv(v,x) returns (v,vp) with the parabolic cylinder function Vv(x) in v and the
derivative, Vv’(x) in vp.

pbwa (x1, x2[, out1, out2])(w,wp)=pbwa(a,x) returns (w,wp) with the parabolic cylinder function W(a,x) in w and the
derivative, W’(a,x) in wp. May not be accurate for large (>5) arguments in a and/or x.

3.17. Special functions (scipy.special) 331

SciPy Reference Guide, Release 0.7

pbdv(x1, x2, [out1, out2])
(d,dp)=pbdv(v,x) returns (d,dp) with the parabolic cylinder function Dv(x) in d and the derivative, Dv’(x) in dp.

pbvv(x1, x2, [out1, out2])
(v,vp)=pbvv(v,x) returns (v,vp) with the parabolic cylinder function Vv(x) in v and the derivative, Vv’(x) in vp.

pbwa(x1, x2, [out1, out2])
(w,wp)=pbwa(a,x) returns (w,wp) with the parabolic cylinder function W(a,x) in w and the derivative, W’(a,x)
in wp. May not be accurate for large (>5) arguments in a and/or x.

These are not universal functions:

pbdv_seq (v, x) Compute sequence of parabolic cylinder functions Dv(x) and their derivatives for
Dv0(x)..Dv(x) with v0=v-int(v).

pbvv_seq (v, x) Compute sequence of parabolic cylinder functions Dv(x) and their derivatives for
Dv0(x)..Dv(x) with v0=v-int(v).

pbdn_seq (n, z) Compute sequence of parabolic cylinder functions Dn(z) and their derivatives for D0(z)..Dn(z).

pbdv_seq(v, x)
Compute sequence of parabolic cylinder functions Dv(x) and their derivatives for Dv0(x)..Dv(x) with v0=v-
int(v).

pbvv_seq(v, x)
Compute sequence of parabolic cylinder functions Dv(x) and their derivatives for Dv0(x)..Dv(x) with v0=v-
int(v).

pbdn_seq(n, z)
Compute sequence of parabolic cylinder functions Dn(z) and their derivatives for D0(z)..Dn(z).

Mathieu and Related Functions

mathieu_a (x1, x2[, out])lmbda=mathieu_a(m,q) returns the characteristic value for the even solution, ce_m(z,q),
of Mathieu’s equation

mathieu_b (x1, x2[, out])lmbda=mathieu_b(m,q) returns the characteristic value for the odd solution, se_m(z,q),
of Mathieu’s equation

mathieu_a(x1, x2, [out])
lmbda=mathieu_a(m,q) returns the characteristic value for the even solution, ce_m(z,q), of Mathieu’s equation

mathieu_b(x1, x2, [out])
lmbda=mathieu_b(m,q) returns the characteristic value for the odd solution, se_m(z,q), of Mathieu’s equation

These are not universal functions:

mathieu_even_coef (m, q)Compute expansion coefficients for even mathieu functions and modified mathieu
functions.

mathieu_odd_coef (m, q) Compute expansion coefficients for even mathieu functions and modified mathieu
functions.

mathieu_even_coef(m, q)
Compute expansion coefficients for even mathieu functions and modified mathieu functions.

mathieu_odd_coef(m, q)

332 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

Compute expansion coefficients for even mathieu functions and modified mathieu functions.

The following return both function and first derivative:

mathieu_cem (x1, x2, x3[, out1, ...)(y,yp)=mathieu_cem(m,q,x) returns the even Mathieu function, ce_m(x,q), of order m
and parameter q evaluated at x (given in degrees). Also returns the derivative with
respect to x of ce_m(x,q)

mathieu_sem (x1, x2, x3[, out1, ...)(y,yp)=mathieu_sem(m,q,x) returns the odd Mathieu function, se_m(x,q), of order m
and parameter q evaluated at x (given in degrees). Also returns the derivative with
respect to x of se_m(x,q).

mathieu_modcem1 (x1, x2, x3[, out1, ...)(y,yp)=mathieu_modcem1(m,q,x) evaluates the even modified Matheiu function of the
first kind, Mc1m(x,q), and its derivative at x for order m and parameter q.

mathieu_modcem2 (x1, x2, x3[, out1, ...)(y,yp)=mathieu_modcem2(m,q,x) evaluates the even modified Matheiu function of the
second kind, Mc2m(x,q), and its derivative at x (given in degrees) for order m and
parameter q.

mathieu_modsem1 (x1, x2, x3[, out1, ...)(y,yp)=mathieu_modsem1(m,q,x) evaluates the odd modified Matheiu function of the
first kind, Ms1m(x,q), and its derivative at x (given in degrees) for order m and
parameter q.

mathieu_modsem2 (x1, x2, x3[, out1, ...)(y,yp)=mathieu_modsem2(m,q,x) evaluates the odd modified Matheiu function of the
second kind, Ms2m(x,q), and its derivative at x (given in degrees) for order m and
parameter q.

mathieu_cem(x1, x2, x3, [out1, out2])
(y,yp)=mathieu_cem(m,q,x) returns the even Mathieu function, ce_m(x,q), of order m and parameter q evaluated
at x (given in degrees). Also returns the derivative with respect to x of ce_m(x,q)

mathieu_sem(x1, x2, x3, [out1, out2])
(y,yp)=mathieu_sem(m,q,x) returns the odd Mathieu function, se_m(x,q), of order m and parameter q evaluated
at x (given in degrees). Also returns the derivative with respect to x of se_m(x,q).

mathieu_modcem1(x1, x2, x3, [out1, out2])
(y,yp)=mathieu_modcem1(m,q,x) evaluates the even modified Matheiu function of the first kind, Mc1m(x,q),
and its derivative at x for order m and parameter q.

mathieu_modcem2(x1, x2, x3, [out1, out2])
(y,yp)=mathieu_modcem2(m,q,x) evaluates the even modified Matheiu function of the second kind, Mc2m(x,q),
and its derivative at x (given in degrees) for order m and parameter q.

mathieu_modsem1(x1, x2, x3, [out1, out2])
(y,yp)=mathieu_modsem1(m,q,x) evaluates the odd modified Matheiu function of the first kind, Ms1m(x,q),
and its derivative at x (given in degrees) for order m and parameter q.

mathieu_modsem2(x1, x2, x3, [out1, out2])
(y,yp)=mathieu_modsem2(m,q,x) evaluates the odd modified Matheiu function of the second kind, Ms2m(x,q),
and its derivative at x (given in degrees) for order m and parameter q.

3.17. Special functions (scipy.special) 333

SciPy Reference Guide, Release 0.7

Spheroidal Wave Functions

pro_ang1 (x1, x2, x3, x4[, out1, ...)(s,sp)=pro_ang1(m,n,c,x) computes the prolate sheroidal angular function of the first kind
and its derivative (with respect to x) for mode paramters m>=0 and n>=m, spheroidal
parameter c and |x|<1.0.

pro_rad1 (x1, x2, x3, x4[, out1, ...)(s,sp)=pro_rad1(m,n,c,x) computes the prolate sheroidal radial function of the first kind
and its derivative (with respect to x) for mode paramters m>=0 and n>=m, spheroidal
parameter c and |x|<1.0.

pro_rad2 (x1, x2, x3, x4[, out1, ...)(s,sp)=pro_rad2(m,n,c,x) computes the prolate sheroidal radial function of the second kind
and its derivative (with respect to x) for mode paramters m>=0 and n>=m, spheroidal
parameter c and |x|<1.0.

obl_ang1 (x1, x2, x3, x4[, out1, ...)(s,sp)=obl_ang1(m,n,c,x) computes the oblate sheroidal angular function of the first kind
and its derivative (with respect to x) for mode paramters m>=0 and n>=m, spheroidal
parameter c and |x|<1.0.

obl_rad1 (x1, x2, x3, x4[, out1, ...)(s,sp)=obl_rad1(m,n,c,x) computes the oblate sheroidal radial function of the first kind and
its derivative (with respect to x) for mode paramters m>=0 and n>=m, spheroidal
parameter c and |x|<1.0.

obl_rad2 (x1, x2, x3, x4[, out1, ...)(s,sp)=obl_rad2(m,n,c,x) computes the oblate sheroidal radial function of the second kind
and its derivative (with respect to x) for mode paramters m>=0 and n>=m, spheroidal
parameter c and |x|<1.0.

pro_cv (x1, x2, x3[, out])cv=pro_cv(m,n,c) computes the characteristic value of prolate spheroidal wave functions
of order m,n (n>=m) and spheroidal parameter c.

obl_cv (x1, x2, x3[, out])cv=obl_cv(m,n,c) computes the characteristic value of oblate spheroidal wave functions of
order m,n (n>=m) and spheroidal parameter c.

pro_cv_seq (m, n, c)Compute a sequence of characteristic values for the prolate spheroidal wave functions for
mode m and n’=m..n and spheroidal parameter c.

obl_cv_seq (m, n, c)Compute a sequence of characteristic values for the oblate spheroidal wave functions for
mode m and n’=m..n and spheroidal parameter c.

pro_ang1(x1, x2, x3, x4, [out1, out2])
(s,sp)=pro_ang1(m,n,c,x) computes the prolate sheroidal angular function of the first kind and its derivative
(with respect to x) for mode paramters m>=0 and n>=m, spheroidal parameter c and |x|<1.0.

pro_rad1(x1, x2, x3, x4, [out1, out2])
(s,sp)=pro_rad1(m,n,c,x) computes the prolate sheroidal radial function of the first kind and its derivative (with
respect to x) for mode paramters m>=0 and n>=m, spheroidal parameter c and |x|<1.0.

pro_rad2(x1, x2, x3, x4, [out1, out2])
(s,sp)=pro_rad2(m,n,c,x) computes the prolate sheroidal radial function of the second kind and its derivative
(with respect to x) for mode paramters m>=0 and n>=m, spheroidal parameter c and |x|<1.0.

obl_ang1(x1, x2, x3, x4, [out1, out2])
(s,sp)=obl_ang1(m,n,c,x) computes the oblate sheroidal angular function of the first kind and its derivative
(with respect to x) for mode paramters m>=0 and n>=m, spheroidal parameter c and |x|<1.0.

obl_rad1(x1, x2, x3, x4, [out1, out2])

334 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

(s,sp)=obl_rad1(m,n,c,x) computes the oblate sheroidal radial function of the first kind and its derivative (with
respect to x) for mode paramters m>=0 and n>=m, spheroidal parameter c and |x|<1.0.

obl_rad2(x1, x2, x3, x4, [out1, out2])
(s,sp)=obl_rad2(m,n,c,x) computes the oblate sheroidal radial function of the second kind and its derivative
(with respect to x) for mode paramters m>=0 and n>=m, spheroidal parameter c and |x|<1.0.

pro_cv(x1, x2, x3, [out])
cv=pro_cv(m,n,c) computes the characteristic value of prolate spheroidal wave functions of order m,n (n>=m)
and spheroidal parameter c.

obl_cv(x1, x2, x3, [out])
cv=obl_cv(m,n,c) computes the characteristic value of oblate spheroidal wave functions of order m,n (n>=m)
and spheroidal parameter c.

pro_cv_seq(m, n, c)
Compute a sequence of characteristic values for the prolate spheroidal wave functions for mode m and n’=m..n
and spheroidal parameter c.

obl_cv_seq(m, n, c)
Compute a sequence of characteristic values for the oblate spheroidal wave functions for mode m and n’=m..n
and spheroidal parameter c.

The following functions require pre-computed characteristic value:

pro_ang1_cv (x1, x2, x3, x4, x5[, ...)(s,sp)=pro_ang1_cv(m,n,c,cv,x) computes the prolate sheroidal angular function of the
first kind and its derivative (with respect to x) for mode paramters m>=0 and n>=m,
spheroidal parameter c and |x|<1.0. Requires pre-computed characteristic value.

pro_rad1_cv (x1, x2, x3, x4, x5[, ...)(s,sp)=pro_rad1_cv(m,n,c,cv,x) computes the prolate sheroidal radial function of the first
kind and its derivative (with respect to x) for mode paramters m>=0 and n>=m,
spheroidal parameter c and |x|<1.0. Requires pre-computed characteristic value.

pro_rad2_cv (x1, x2, x3, x4, x5[, ...)(s,sp)=pro_rad2_cv(m,n,c,cv,x) computes the prolate sheroidal radial function of the
second kind and its derivative (with respect to x) for mode paramters m>=0 and n>=m,
spheroidal parameter c and |x|<1.0. Requires pre-computed characteristic value.

obl_ang1_cv (x1, x2, x3, x4, x5[, ...)(s,sp)=obl_ang1_cv(m,n,c,cv,x) computes the oblate sheroidal angular function of the
first kind and its derivative (with respect to x) for mode paramters m>=0 and n>=m,
spheroidal parameter c and |x|<1.0. Requires pre-computed characteristic value.

obl_rad1_cv (x1, x2, x3, x4, x5[, ...)(s,sp)=obl_rad1_cv(m,n,c,cv,x) computes the oblate sheroidal radial function of the first
kind and its derivative (with respect to x) for mode paramters m>=0 and n>=m,
spheroidal parameter c and |x|<1.0. Requires pre-computed characteristic value.

obl_rad2_cv (x1, x2, x3, x4, x5[, ...)(s,sp)=obl_rad2_cv(m,n,c,cv,x) computes the oblate sheroidal radial function of the
second kind and its derivative (with respect to x) for mode paramters m>=0 and n>=m,
spheroidal parameter c and |x|<1.0. Requires pre-computed characteristic value.

pro_ang1_cv(x1, x2, x3, x4, x5, [out1, out2])
(s,sp)=pro_ang1_cv(m,n,c,cv,x) computes the prolate sheroidal angular function of the first kind and its deriva-
tive (with respect to x) for mode paramters m>=0 and n>=m, spheroidal parameter c and |x|<1.0. Requires
pre-computed characteristic value.

pro_rad1_cv(x1, x2, x3, x4, x5, [out1, out2])
(s,sp)=pro_rad1_cv(m,n,c,cv,x) computes the prolate sheroidal radial function of the first kind and its derivative
(with respect to x) for mode paramters m>=0 and n>=m, spheroidal parameter c and |x|<1.0. Requires
pre-computed characteristic value.

3.17. Special functions (scipy.special) 335

SciPy Reference Guide, Release 0.7

pro_rad2_cv(x1, x2, x3, x4, x5, [out1, out2])
(s,sp)=pro_rad2_cv(m,n,c,cv,x) computes the prolate sheroidal radial function of the second kind and its deriva-
tive (with respect to x) for mode paramters m>=0 and n>=m, spheroidal parameter c and |x|<1.0. Requires
pre-computed characteristic value.

obl_ang1_cv(x1, x2, x3, x4, x5, [out1, out2])
(s,sp)=obl_ang1_cv(m,n,c,cv,x) computes the oblate sheroidal angular function of the first kind and its deriva-
tive (with respect to x) for mode paramters m>=0 and n>=m, spheroidal parameter c and |x|<1.0. Requires
pre-computed characteristic value.

obl_rad1_cv(x1, x2, x3, x4, x5, [out1, out2])
(s,sp)=obl_rad1_cv(m,n,c,cv,x) computes the oblate sheroidal radial function of the first kind and its derivative
(with respect to x) for mode paramters m>=0 and n>=m, spheroidal parameter c and |x|<1.0. Requires
pre-computed characteristic value.

obl_rad2_cv(x1, x2, x3, x4, x5, [out1, out2])
(s,sp)=obl_rad2_cv(m,n,c,cv,x) computes the oblate sheroidal radial function of the second kind and its deriva-
tive (with respect to x) for mode paramters m>=0 and n>=m, spheroidal parameter c and |x|<1.0. Requires
pre-computed characteristic value.

Kelvin Functions

kelvin (x[, out1, out2, out3, ...)(Be, Ke, Bep, Kep)=kelvin(x) returns the tuple (Be, Ke, Bep, Kep) which containes complex
numbers representing the real and imaginary Kelvin functions and their derivatives evaluated
at x. For example, kelvin(x)[0].real = ber x and kelvin(x)[0].imag = bei x with similar
relationships for ker and kei.

kelvin_zeros (nt)Compute nt zeros of all the kelvin functions returned in a length 8 tuple of arrays of length
nt. The tuple containse the arrays of zeros of (ber, bei, ker, kei, ber’, bei’, ker’, kei’)

ber (x[, out]) y=ber(x) returns the Kelvin function ber x

bei (x[, out]) y=bei(x) returns the Kelvin function bei x

berp (x[, out]) y=berp(x) returns the derivative of the Kelvin function ber x

beip (x[, out]) y=beip(x) returns the derivative of the Kelvin function bei x

ker (x[, out]) y=ker(x) returns the Kelvin function ker x

kei (x[, out]) y=kei(x) returns the Kelvin function ker x

kerp (x[, out]) y=kerp(x) returns the derivative of the Kelvin function ker x

keip (x[, out]) y=keip(x) returns the derivative of the Kelvin function kei x

kelvin(x, [out1, out2, out3, out4])
(Be, Ke, Bep, Kep)=kelvin(x) returns the tuple (Be, Ke, Bep, Kep) which containes complex numbers represent-
ing the real and imaginary Kelvin functions and their derivatives evaluated at x. For example, kelvin(x)[0].real
= ber x and kelvin(x)[0].imag = bei x with similar relationships for ker and kei.

kelvin_zeros(nt)
Compute nt zeros of all the kelvin functions returned in a length 8 tuple of arrays of length nt. The tuple
containse the arrays of zeros of (ber, bei, ker, kei, ber’, bei’, ker’, kei’)

336 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

ber(x, [out])
y=ber(x) returns the Kelvin function ber x

bei(x, [out])
y=bei(x) returns the Kelvin function bei x

berp(x, [out])
y=berp(x) returns the derivative of the Kelvin function ber x

beip(x, [out])
y=beip(x) returns the derivative of the Kelvin function bei x

ker(x, [out])
y=ker(x) returns the Kelvin function ker x

kei(x, [out])
y=kei(x) returns the Kelvin function ker x

kerp(x, [out])
y=kerp(x) returns the derivative of the Kelvin function ker x

keip(x, [out])
y=keip(x) returns the derivative of the Kelvin function kei x

These are not universal functions:

ber_zeros (nt) Compute nt zeros of the kelvin function ber x

bei_zeros (nt) Compute nt zeros of the kelvin function bei x

berp_zeros (nt) Compute nt zeros of the kelvin function ber’ x

beip_zeros (nt) Compute nt zeros of the kelvin function bei’ x

ker_zeros (nt) Compute nt zeros of the kelvin function ker x

kei_zeros (nt) Compute nt zeros of the kelvin function kei x

kerp_zeros (nt) Compute nt zeros of the kelvin function ker’ x

keip_zeros (nt) Compute nt zeros of the kelvin function kei’ x

ber_zeros(nt)
Compute nt zeros of the kelvin function ber x

bei_zeros(nt)
Compute nt zeros of the kelvin function bei x

berp_zeros(nt)
Compute nt zeros of the kelvin function ber’ x

beip_zeros(nt)
Compute nt zeros of the kelvin function bei’ x

ker_zeros(nt)
Compute nt zeros of the kelvin function ker x

kei_zeros(nt)
Compute nt zeros of the kelvin function kei x

kerp_zeros(nt)
Compute nt zeros of the kelvin function ker’ x

3.17. Special functions (scipy.special) 337

SciPy Reference Guide, Release 0.7

keip_zeros(nt)
Compute nt zeros of the kelvin function kei’ x

Other Special Functions

expn (x1, x2[, out])y=expn(n,x) returns the exponential integral for integer n and non-negative x and n:
integral(exp(-x*t) / t**n, t=1..inf).

exp1 (x[, out]) y=exp1(z) returns the exponential integral (n=1) of complex argument z:
integral(exp(-z*t)/t,t=1..inf).

expi (x[, out]) y=expi(x) returns an exponential integral of argument x defined as integral(exp(t)/t,t=-inf..x).
See expn for a different exponential integral.

wofz (x[, out]) y=wofz(z) returns the value of the fadeeva function for complex argument z:
exp(-z**2)*erfc(-i*z)

dawsn (x[, out]) y=dawsn(x) returns dawson’s integral: exp(-x**2) * integral(exp(t**2),t=0..x).

shichi (x[, out1, out2])(shi,chi)=shichi(x) returns the hyperbolic sine and cosine integrals: integral(sinh(t)/t,t=0..x) and
eul + ln x + integral((cosh(t)-1)/t,t=0..x) where eul is Euler’s Constant.

sici (x[, out1, out2])(si,ci)=sici(x) returns in si the integral of the sinc function from 0 to x: integral(sin(t)/t,t=0..x). It
returns in ci the cosine integral: eul + ln x + integral((cos(t) - 1)/t,t=0..x).

spence (x[, out])y=spence(x) returns the dilogarithm integral: -integral(log t / (t-1),t=1..x)

zeta (x1, x2[, out])y=zeta(x,q) returns the Riemann zeta function of two arguments: sum((k+q)**(-x),k=0..inf)

zetac (x[, out]) y=zetac(x) returns 1.0 - the Riemann zeta function: sum(k**(-x), k=2..inf)

expn(x1, x2, [out])
y=expn(n,x) returns the exponential integral for integer n and non-negative x and n: integral(exp(-x*t) / t**n,
t=1..inf).

exp1(x, [out])
y=exp1(z) returns the exponential integral (n=1) of complex argument z: integral(exp(-z*t)/t,t=1..inf).

expi(x, [out])
y=expi(x) returns an exponential integral of argument x defined as integral(exp(t)/t,t=-inf..x). See expn for a
different exponential integral.

wofz(x, [out])
y=wofz(z) returns the value of the fadeeva function for complex argument z: exp(-z**2)*erfc(-i*z)

dawsn(x, [out])
y=dawsn(x) returns dawson’s integral: exp(-x**2) * integral(exp(t**2),t=0..x).

shichi(x, [out1, out2])
(shi,chi)=shichi(x) returns the hyperbolic sine and cosine integrals: integral(sinh(t)/t,t=0..x) and eul + ln x +
integral((cosh(t)-1)/t,t=0..x) where eul is Euler’s Constant.

sici(x, [out1, out2])
(si,ci)=sici(x) returns in si the integral of the sinc function from 0 to x: integral(sin(t)/t,t=0..x). It returns in ci
the cosine integral: eul + ln x + integral((cos(t) - 1)/t,t=0..x).

338 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

spence(x, [out])
y=spence(x) returns the dilogarithm integral: -integral(log t / (t-1),t=1..x)

zeta(x1, x2, [out])
y=zeta(x,q) returns the Riemann zeta function of two arguments: sum((k+q)**(-x),k=0..inf)

zetac(x, [out])
y=zetac(x) returns 1.0 - the Riemann zeta function: sum(k**(-x), k=2..inf)

Convenience Functions

cbrt (x[, out]) y=cbrt(x) returns the real cube root of x.

exp10 (x[, out]) y=exp10(x) returns 10 raised to the x power.

exp2 (x[, out]) y=exp2(x) returns 2 raised to the x power.

radian (x1, x2, x3[, out])y=radian(d,m,s) returns the angle given in (d)egrees, (m)inutes, and (s)econds in radians.

cosdg (x[, out]) y=cosdg(x) calculates the cosine of the angle x given in degrees.

sindg (x[, out]) y=sindg(x) calculates the sine of the angle x given in degrees.

tandg (x[, out]) y=tandg(x) calculates the tangent of the angle x given in degrees.

cotdg (x[, out]) y=cotdg(x) calculates the cotangent of the angle x given in degrees.

log1p (x[, out]) y=log1p(x) calculates log(1+x) for use when x is near zero.

expm1 (x[, out]) y=expm1(x) calculates exp(x) - 1 for use when x is near zero.

cosm1 (x[, out]) y=calculates cos(x) - 1 for use when x is near zero.

round (x[, out]) y=Returns the nearest integer to x as a double precision floating point result. If x ends in 0.5
exactly, the nearest even integer is chosen.

cbrt(x, [out])
y=cbrt(x) returns the real cube root of x.

exp10(x, [out])
y=exp10(x) returns 10 raised to the x power.

exp2(x, [out])
y=exp2(x) returns 2 raised to the x power.

radian(x1, x2, x3, [out])
y=radian(d,m,s) returns the angle given in (d)egrees, (m)inutes, and (s)econds in radians.

cosdg(x, [out])
y=cosdg(x) calculates the cosine of the angle x given in degrees.

sindg(x, [out])
y=sindg(x) calculates the sine of the angle x given in degrees.

tandg(x, [out])
y=tandg(x) calculates the tangent of the angle x given in degrees.

3.17. Special functions (scipy.special) 339

SciPy Reference Guide, Release 0.7

cotdg(x, [out])
y=cotdg(x) calculates the cotangent of the angle x given in degrees.

log1p(x, [out])
y=log1p(x) calculates log(1+x) for use when x is near zero.

expm1(x, [out])
y=expm1(x) calculates exp(x) - 1 for use when x is near zero.

cosm1(x, [out])
y=calculates cos(x) - 1 for use when x is near zero.

round(x, [out])
y=Returns the nearest integer to x as a double precision floating point result. If x ends in 0.5 exactly, the nearest
even integer is chosen.

3.18 Statistical functions (scipy.stats)

This module contains a large number of probability distributions as well as a growing library of statistical functions.

Each included continuous distribution is an instance of the class rv_continous:

rv_continuous A Generic continuous random variable.

rv_continuous.pdf (self, x, *args, **kwds) Probability density function at x of the given RV.

rv_continuous.cdf (self, x, *args, **kwds) Cumulative distribution function at x of the given RV.

rv_continuous.sf (self, x, *args, **kwds) Survival function (1-cdf) at x of the given RV.

rv_continuous.ppf (self, q, *args, **kwds) Percent point function (inverse of cdf) at q of the given RV.

rv_continuous.isf (self, q, *args, **kwds) Inverse survival function at q of the given RV.

rv_continuous.stats (self, *args, **kwds) Some statistics of the given RV

class rv_continuous(momtype=1, a=None, b=None, xa=-10.0, xb=10.0, xtol=1e-14, badvalue=None,
name=None, longname=None, shapes=None, extradoc=None)

A Generic continuous random variable.

Continuous random variables are defined from a standard form and may require some shape parameters to
complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as
given below:

Parameters
x : array-like

quantiles

q : array-like

lower or upper tail probability

<shape(s)> : array-like

shape parameters

loc : array-like, optional

location parameter (default=0)

scale : array-like, optional

340 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

scale parameter (default=1)

size : int or tuple of ints, optional

shape of random variates (default computed from input arguments)

moments : string, optional

composed of letters [’mvsk’] specifying which moments to compute where ‘m’
= mean, ‘v’ = variance, ‘s’ = (Fisher’s) skew and ‘k’ = (Fisher’s) kurtosis. (de-
fault=’mv’)

Methods
generic.rvs(<shape(s)>,loc=0,scale=1,size=1) :

• random variates

generic.pdf(x,<shape(s)>,loc=0,scale=1) :

• probability density function

generic.cdf(x,<shape(s)>,loc=0,scale=1) :

• cumulative density function

generic.sf(x,<shape(s)>,loc=0,scale=1) :

• survival function (1-cdf — sometimes more accurate)

generic.ppf(q,<shape(s)>,loc=0,scale=1) :

• percent point function (inverse of cdf — percentiles)

generic.isf(q,<shape(s)>,loc=0,scale=1) :

• inverse survival function (inverse of sf)

generic.stats(<shape(s)>,loc=0,scale=1,moments=’mv’) :

• mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’)

generic.entropy(<shape(s)>,loc=0,scale=1) :

• (differential) entropy of the RV.

generic.fit(data,<shape(s)>,loc=0,scale=1) :

• Parameter estimates for generic data

Alternatively, the object may be called (as a function) to fix the shape, :
location, and scale parameters returning a “frozen” continuous RV object: :
rv = generic(<shape(s)>,loc=0,scale=1) :

• frozen RV object with the same methods but holding the given shape, location, and scale
fixed

Examples

>>> import matplotlib.pyplot as plt
>>> numargs = generic.numargs
>>> [<shape(s)>] = [0.9,]*numargs
>>> rv = generic(<shape(s)>)

Display frozen pdf

>>> x = np.linspace(0,np.minimum(rv.dist.b,3))
>>> h=plt.plot(x,rv.pdf(x))

Check accuracy of cdf and ppf

3.18. Statistical functions (scipy.stats) 341

SciPy Reference Guide, Release 0.7

>>> prb = generic.cdf(x,<shape(s)>)
>>> h=plt.semilogy(np.abs(x-generic.ppf(prb,c))+1e-20)

Random number generation

>>> R = generic.rvs(<shape(s)>,size=100)

pdf(x, *args, **kwds)
Probability density function at x of the given RV.

Parameters
x : array-like

quantiles

arg1, arg2, arg3,... : array-like

The shape parameter(s) for the distribution (see docstring of the instance object for
more information)

loc : array-like, optional

location parameter (default=0)

scale : array-like, optional

scale parameter (default=1)

Returns
pdf : array-like

Probability density function evaluated at x

cdf(x, *args, **kwds)
Cumulative distribution function at x of the given RV.

Parameters
x : array-like

quantiles

arg1, arg2, arg3,... : array-like

The shape parameter(s) for the distribution (see docstring of the instance object for
more information)

loc : array-like, optional

location parameter (default=0)

scale : array-like, optional

scale parameter (default=1)

Returns
cdf : array-like

Cumulative distribution function evaluated at x

sf(x, *args, **kwds)
Survival function (1-cdf) at x of the given RV.

Parameters
x : array-like

quantiles

342 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

arg1, arg2, arg3,... : array-like

The shape parameter(s) for the distribution (see docstring of the instance object for
more information)

loc : array-like, optional

location parameter (default=0)

scale : array-like, optional

scale parameter (default=1)

Returns
sf : array-like

Survival function evaluated at x

ppf(q, *args, **kwds)
Percent point function (inverse of cdf) at q of the given RV.

Parameters
q : array-like

lower tail probability

arg1, arg2, arg3,... : array-like

The shape parameter(s) for the distribution (see docstring of the instance object for
more information)

loc : array-like, optional

location parameter (default=0)

scale : array-like, optional

scale parameter (default=1)

Returns
x : array-like

quantile corresponding to the lower tail probability q.

isf(q, *args, **kwds)
Inverse survival function at q of the given RV.

Parameters
q : array-like

upper tail probability

arg1, arg2, arg3,... : array-like

The shape parameter(s) for the distribution (see docstring of the instance object for
more information)

loc : array-like, optional

location parameter (default=0)

scale : array-like, optional

scale parameter (default=1)

Returns
x : array-like

quantile corresponding to the upper tail probability q.

stats(*args, **kwds)
Some statistics of the given RV

3.18. Statistical functions (scipy.stats) 343

SciPy Reference Guide, Release 0.7

Parameters
arg1, arg2, arg3,... : array-like

The shape parameter(s) for the distribution (see docstring of the instance object for
more information)

loc : array-like, optional

location parameter (default=0)

scale : array-like, optional

scale parameter (default=1)

moments : string, optional

composed of letters [’mvsk’] defining which moments to compute: ‘m’ = mean, ‘v’
= variance, ‘s’ = (Fisher’s) skew, ‘k’ = (Fisher’s) kurtosis. (default=’mv’)

Returns
stats : sequence

of requested moments.

Each discrete distribution is an instance of the class rv_discrete:

rv_discrete A Generic discrete random variable.

rv_discrete.pmf (self, k, *args, **kwds) Probability mass function at k of the given RV.

rv_discrete.cdf (self, k, *args, **kwds) Cumulative distribution function at k of the given RV

rv_discrete.sf (self, k, *args, **kwds) Survival function (1-cdf) at k of the given RV

rv_discrete.ppf (self, q, *args, **kwds) Percent point function (inverse of cdf) at q of the given RV

rv_discrete.isf (self, q, *args, **kwds) Inverse survival function (1-sf) at q of the given RV

rv_discrete.stats (self, *args, **kwds) Some statistics of the given discrete RV

class rv_discrete(a=0, b=inf, name=None, badvalue=None, moment_tol=1e-08, values=None, inc=1, long-
name=None, shapes=None, extradoc=None)

A Generic discrete random variable.

Discrete random variables are defined from a standard form and may require some shape parameters to complete
its specification. Any optional keyword parameters can be passed to the methods of the RV object as given
below:

Methods
generic.rvs(<shape(s)>,loc=0,size=1) :

• random variates

generic.pmf(x,<shape(s)>,loc=0) :

• probability mass function

generic.cdf(x,<shape(s)>,loc=0) :

• cumulative density function

generic.sf(x,<shape(s)>,loc=0) :

• survival function (1-cdf — sometimes more accurate)

generic.ppf(q,<shape(s)>,loc=0) :

• percent point function (inverse of cdf — percentiles)

344 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

generic.isf(q,<shape(s)>,loc=0) :

• inverse survival function (inverse of sf)

generic.stats(<shape(s)>,loc=0,moments=’mv’) :

• mean(‘m’,axis=0), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’)

generic.entropy(<shape(s)>,loc=0) :

• entropy of the RV

Alternatively, the object may be called (as a function) to fix :
the shape and location parameters returning a :
“frozen” discrete RV object: :
myrv = generic(<shape(s)>,loc=0) :

• frozen RV object with the same methods but holding the given shape and location fixed.

You can construct an aribtrary discrete rv where P{X=xk} = pk :
by passing to the rv_discrete initialization method (through the values= :
keyword) a tuple of sequences (xk,pk) which describes only those values of :
X (xk) that occur with nonzero probability (pk). :

Examples

>>> import matplotlib.pyplot as plt
>>> numargs = generic.numargs
>>> [<shape(s)>] = [’Replace with resonable value’,]*numargs

Display frozen pmf:

>>> rv = generic(<shape(s)>)
>>> x = np.arange(0,np.min(rv.dist.b,3)+1)
>>> h = plt.plot(x,rv.pmf(x))

Check accuracy of cdf and ppf:

>>> prb = generic.cdf(x,<shape(s)>)
>>> h = plt.semilogy(np.abs(x-generic.ppf(prb,<shape(s)>))+1e-20)

Random number generation:

>>> R = generic.rvs(<shape(s)>,size=100)

Custom made discrete distribution:

>>> vals = [arange(7),(0.1,0.2,0.3,0.1,0.1,0.1,0.1)]
>>> custm = rv_discrete(name=’custm’,values=vals)
>>> h = plt.plot(vals[0],custm.pmf(vals[0]))

pmf(k, *args, **kwds)
Probability mass function at k of the given RV.

Parameters
k : array-like

quantiles

arg1, arg2, arg3,... : array-like

3.18. Statistical functions (scipy.stats) 345

SciPy Reference Guide, Release 0.7

The shape parameter(s) for the distribution (see docstring of the instance object for
more information)

loc : array-like, optional

location parameter (default=0)

Returns
pmf : array-like

Probability mass function evaluated at k

cdf(k, *args, **kwds)
Cumulative distribution function at k of the given RV

Parameters
k : array-like, int

quantiles

arg1, arg2, arg3,... : array-like

The shape parameter(s) for the distribution (see docstring of the instance object for
more information)

loc : array-like, optional

location parameter (default=0)

Returns
cdf : array-like

Cumulative distribution function evaluated at k

sf(k, *args, **kwds)
Survival function (1-cdf) at k of the given RV

Parameters
k : array-like

quantiles

arg1, arg2, arg3,... : array-like

The shape parameter(s) for the distribution (see docstring of the instance object for
more information)

loc : array-like, optional

location parameter (default=0)

Returns
sf : array-like

Survival function evaluated at k

ppf(q, *args, **kwds)
Percent point function (inverse of cdf) at q of the given RV

Parameters
q : array-like

lower tail probability

arg1, arg2, arg3,... : array-like

The shape parameter(s) for the distribution (see docstring of the instance object for
more information)

loc : array-like, optional

346 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

location parameter (default=0)

Returns
k : array-like

quantile corresponding to the lower tail probability, q.

isf(q, *args, **kwds)
Inverse survival function (1-sf) at q of the given RV

Parameters
q : array-like

upper tail probability

arg1, arg2, arg3,... : array-like

The shape parameter(s) for the distribution (see docstring of the instance object for
more information)

loc : array-like, optional

location parameter (default=0)

Returns
k : array-like

quantile corresponding to the upper tail probability, q.

stats(*args, **kwds)
Some statistics of the given discrete RV

Parameters
arg1, arg2, arg3,... : array-like

The shape parameter(s) for the distribution (see docstring of the instance object for
more information)

loc : array-like, optional

location parameter (default=0)

moments : string, optional

composed of letters [’mvsk’] defining which moments to compute: ‘m’ = mean, ‘v’
= variance, ‘s’ = (Fisher’s) skew, ‘k’ = (Fisher’s) kurtosis. (default=’mv’)

Returns
stats : sequence

of requested moments.

3.18.1 Masked statistics functions

Statistical functions for masked arrays (scipy.stats.mstats)

This module contains a large number of statistical functions that can be used with masked arrays.

Most of these functions are similar to those in scipy.stats but might have small differences in the API or in the algorithm
used. Since this is a relatively new package, some API changes are still possible.

3.18. Statistical functions (scipy.stats) 347

SciPy Reference Guide, Release 0.7

argstoarray (*args) Constructs a 2D array from a sequence of sequences. Sequences are filled with
missing values to match the length of the longest sequence.

betai (a, b, x) Returns the incomplete beta function.

chisquare (f_obs[, f_exp]) Calculates a one-way chi square for array of observed frequencies and returns
the result. If no expected frequencies are given, the total N is assumed to be
equally distributed across all groups.

count_tied_groups (x[, use_missing])Counts the number of tied values in x, and returns a dictionary (nb of ties: nb
of groups).

describe (a[, axis]) Computes several descriptive statistics of the passed array.

f_oneway (*args) Performs a 1-way ANOVA, returning an F-value and probability given any
number of groups. From Heiman, pp.394-7.

f_value_wilks_lambda (ER, EF, dfnum, df-
den, ...)

Calculation of Wilks lambda F-statistic for multivarite data, per Maxwell &
Delaney p.657.

find_repeats (arr) Find repeats in arr and return a tuple (repeats, repeat_count). Masked values
are discarded.

friedmanchisquare (*args) Friedman Chi-Square is a non-parametric, one-way within-subjects ANOVA.
This function calculates the Friedman Chi-square test for repeated measures
and returns the result, along with the associated probability value.

gmean (a[, axis]) Calculates the geometric mean of the values in the passed array.

hmean (a[, axis]) Calculates the harmonic mean of the values in the passed array.

kendalltau (x, y[, use_ties, use_missing])Computes Kendall’s rank correlation tau on two variables x and y.

kendalltau_seasonal (x) Computes a multivariate extension Kendall’s rank correlation tau, designed for
seasonal data.

kruskalwallis (*args) The Kruskal-Wallis H-test is a non-parametric ANOVA for 2 or more groups,
requiring at least 5 subjects in each group. This function calculates the
Kruskal-Wallis H and associated p-value for 2 or more independent samples.

kruskalwallis (*args) The Kruskal-Wallis H-test is a non-parametric ANOVA for 2 or more groups,
requiring at least 5 subjects in each group. This function calculates the
Kruskal-Wallis H and associated p-value for 2 or more independent samples.

ks_twosamp (data1, data2[, al-
ternative])

Computes the Kolmogorov-Smirnov test on two samples. Missing values are
discarded.

ks_twosamp (data1, data2[, al-
ternative])

Computes the Kolmogorov-Smirnov test on two samples. Missing values are
discarded.

kurtosis (a[, axis, fisher, bias]) Computes the kurtosis (Fisher or Pearson) of a dataset.

kurtosistest (a[, axis]) Tests whether a dataset has normal kurtosis (i.e., kurtosis=3(n-1)/(n+1)).

linregress (*args) Calculates a regression line on two arrays, x and y, corresponding to x,y pairs.
If a single 2D array is passed, linregress finds dim with 2 levels and splits data
into x,y pairs along that dim.

mannwhitneyu (x, y[, use_continuity])Computes the Mann-Whitney on samples x and y. Missing values in x and/or y
are discarded.

plotting_positions (data[, al-
pha, beta])

Returns the plotting positions (or empirical percentile points) for the data.
Plotting positions are defined as (i-alpha)/(n-alpha-beta), where: - i is the rank
order statistics - n is the number of unmasked values along the given axis -
alpha and beta are two parameters.

mode (a[, axis]) Returns an array of the modal (most common) value in the passed array.

moment (a[, moment, axis]) Calculates the nth moment about the mean for a sample.

mquantiles (data[, prob, 0.5, 0.75], al-
phap, betap, axis, limit=())

Computes empirical quantiles for a 1xN data array. Samples quantile are
defined by: Q(p) = (1-g).x[i] +g.x[i+1] where x[j] is the jth order statistic,
with i = (floor(n*p+m)), m=alpha+p*(1-alpha-beta) and g = n*p + m - i).

msign (x) Returns the sign of x, or 0 if x is masked.

normaltest (a[, axis]) Tests whether skew and/or kurtosis of dataset differs from normal curve.

obrientransform (*args) Computes a transform on input data (any number of columns). Used to test for
homogeneity of variance prior to running one-way stats. Each array in *args is
one level of a factor. If an F_oneway() run on the transformed data and found
significant, variances are unequal. From Maxwell and Delaney, p.112.

pearsonr (x, y) Calculates a Pearson correlation coefficient and the p-value for testing
non-correlation.

plotting_positions (data[, al-
pha, beta])

Returns the plotting positions (or empirical percentile points) for the data.
Plotting positions are defined as (i-alpha)/(n-alpha-beta), where: - i is the rank
order statistics - n is the number of unmasked values along the given axis -
alpha and beta are two parameters.

pointbiserialr (x, y) Calculates a point biserial correlation coefficient and the associated p-value.

rankdata (data[, axis, use_missing])Returns the rank (also known as order statistics) of each data point along the
given axis.

samplestd (data[, axis]) Returns a biased estimate of the standard deviation of the data, as the square
root of the average squared deviations from the mean.

samplevar (data[, axis]) Returns a biased estimate of the variance of the data, as the average of the
squared deviations from the mean.

scoreatpercentile (data, per[, limit=(), al-
phap, ...])

Calculate the score at the given ‘per’ percentile of the sequence a. For example,
the score at per=50 is the median.

sem (a[, axis]) Returns the standard error of the mean (i.e., using N) of the values in the
passed array. Axis can equal None (ravel array first), or an integer (the axis
over which to operate)

signaltonoise (data[, axis]) Calculates the signal-to-noise ratio, as the ratio of the mean over standard
deviation along the given axis.

skew (a[, axis, bias]) Computes the skewness of a data set.

skewtest (a[, axis]) Tests whether the skew is significantly different from a normal distribution.

spearmanr (x, y[, use_ties]) Calculates a Spearman rank-order correlation coefficient and the p-value to test
for non-correlation.

std (a[, axis]) Returns the estimated population standard deviation of the values in the passed
array (i.e., N-1). Axis can equal None (ravel array first), or an integer (the axis
over which to operate).

stderr (a[, axis]) Returns the estimated population standard error of the values in the passed
array (i.e., N-1). Axis can equal None (ravel array first), or an integer (the axis
over which to operate).

theilslopes (y[, x, alpha]) Computes the Theil slope over the dataset (x,y), as the median of all slopes
between paired values.

threshold (a[, thresh-
min, threshmax, ...])

Clip array to a given value.

tmax (a, upperlimit[, axis, in-
clusive])

Returns the maximum value of a, along axis, including only values greater than
(or equal to, if inclusive is True) upperlimit. If the limit is set to None, a limit
larger than the max value in the array is used.

tmean (a[, limits, inclu-
sive, True))

Returns the arithmetic mean of all values in an array, ignoring values strictly
outside given limits.

tmin (a[, lowerlimit, axis, ...]) Returns the minimum value of a, along axis, including only values less than (or
equal to, if inclusive is True) lowerlimit. If the limit is set to None, all values in
the array are used.

trim (a[, limits, inclusive, ...]) Trims an array by masking the data outside some given limits. Returns a
masked version of the input array.

trima (a[, limits, inclu-
sive, True))

Trims an array by masking the data outside some given limits. Returns a
masked version of the input array.

trimboth (data[, proportion-
tocut, ...])

Trims the data by masking the int(proportiontocut*n) smallest and
int(proportiontocut*n) largest values of data along the given axis, where n is
the number of unmasked values before trimming.

trimmed_stde (a[, lim-
its, 0.10000000000000001), ...])

Returns the standard error of the trimmed mean of the data along the given
axis. Parameters ———- a : sequence Input array limits : {(0.1,0.1), tuple of
float} optional tuple (lower percentage, upper percentage) to cut on each side
of the array, with respect to the number of unmasked data. Noting n the number
of unmasked data before trimming, the (n*limits[0])th smallest data and the
(n*limits[1])th largest data are masked, and the total number of unmasked data
after trimming is n*(1.-sum(limits)) In each case, the value of one limit can be
set to None to indicate an open interval. If limits is None, no trimming is
performed inclusive : {(True, True) tuple} optional Tuple indicating whether
the number of data being masked on each side should be rounded (True) or
truncated (False). axis : {None, integer}, optional Axis along which to trim.

trimr (a[, limits, inclu-
sive, ...])

Trims an array by masking some proportion of the data on each end. Returns a
masked version of the input array.

trimtail (data[, proportion-
tocut, ...])

Trims the data by masking int(trim*n) values from ONE tail of the data along
the given axis, where n is the number of unmasked values.

tsem (a[, limits, inclu-
sive, True))

Returns the standard error of the mean for the values in an array, (i.e., using N
for the denominator), ignoring values strictly outside the sequence passed to
‘limits’. Note: either limit in the sequence, or the value of limits itself, can be
set to None. The inclusive list/tuple determines whether the lower and upper
limiting bounds (respectively) are open/exclusive (0) or closed/inclusive (1).

ttest_onesamp (a, pop-
mean)

Calculates the T-test for the mean of ONE group of scores a.

ttest_ind (a, b[, axis]) Calculates the T-test for the means of TWO INDEPENDENT samples of
scores.

ttest_onesamp (a, pop-
mean)

Calculates the T-test for the mean of ONE group of scores a.

ttest_rel (a, b[, axis]) Calculates the T-test on TWO RELATED samples of scores, a and b.

tvar (a[, limits, inclu-
sive, True))

Returns the sample variance of values in an array, (i.e., using N-1), ignoring
values strictly outside the sequence passed to ‘limits’. Note: either limit in the
sequence, or the value of limits itself, can be set to None. The inclusive
list/tuple determines whether the lower and upper limiting bounds
(respectively) are open/exclusive (0) or closed/inclusive (1).

var (a[, axis]) Returns the estimated population variance of the values in the passed array
(i.e., N-1). Axis can equal None (ravel array first), or an integer (the axis over
which to operate).

variation (a[, axis]) Computes the coefficient of variation, the ratio of the biased standard deviation
to the mean.

winsorize (a[, limits, inclu-
sive, ...])

Returns a Winsorized version of the input array.

z (a, score) Returns the z-score of a given input score, given thearray from which that score
came. Not appropriate for population calculations, nor for arrays > 1D.

zmap (scores, compare[, axis]) Returns an array of z-scores the shape of scores (e.g., [x,y]), compared to array
passed to compare (e.g., [time,x,y]). Assumes collapsing over dim 0 of the
compare array.

zs (a) Returns a 1D array of z-scores, one for each score in the passed array,
computed relative to the passed array.

348 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

argstoarray(*args)
Constructs a 2D array from a sequence of sequences. Sequences are filled with missing values to match the
length of the longest sequence.

Returns
output : MaskedArray

a (mxn) masked array, where m is the number of arguments and n the length of the
longest argument.

betai(a, b, x)
Returns the incomplete beta function.

I_x(a,b) = 1/B(a,b)*(Integral(0,x) of t^(a-1)(1-t)^(b-1) dt)

where a,b>0 and B(a,b) = G(a)*G(b)/(G(a+b)) where G(a) is the gamma function of a.

The standard broadcasting rules apply to a, b, and x.

Parameters
a : array or float > 0
b : array or float > 0
x : array or float

x will be clipped to be no greater than 1.0 .

chisquare(f_obs, f_exp=None)
Calculates a one-way chi square for array of observed frequencies and returns the result. If no expected fre-
quencies are given, the total N is assumed to be equally distributed across all groups.

Returns: chisquare-statistic, associated p-value

count_tied_groups(x, use_missing=False)

Counts the number of tied values in x, and returns a dictionary
(nb of ties: nb of groups).

Parameters
x : sequence

Sequence of data on which to counts the ties
use_missing

[boolean] Whether to consider missing values as tied.

describe(a, axis=0)
Computes several descriptive statistics of the passed array.

Parameters
a : array
axis : int or None

Returns
(size of the data (discarding missing values), :

(min, max), arithmetic mean, unbiased variance, biased skewness, biased kurtosis)

f_oneway(*args)
Performs a 1-way ANOVA, returning an F-value and probability given any number of groups. From Heiman,
pp.394-7.

3.18. Statistical functions (scipy.stats) 349

SciPy Reference Guide, Release 0.7

Usage: f_oneway (*args) where *args is 2 or more arrays, one per
treatment group

Returns: f-value, probability

f_value_wilks_lambda(ER, EF, dfnum, dfden, a, b)
Calculation of Wilks lambda F-statistic for multivarite data, per Maxwell & Delaney p.657.

find_repeats(arr)

Find repeats in arr and return a tuple (repeats, repeat_count).
Masked values are discarded.

Parameters
arr : sequence

Input array. The array is flattened if it is not 1D.

Returns
repeats : ndarray

Array of repeated values.
counts

[ndarray] Array of counts.

friedmanchisquare(*args)
Friedman Chi-Square is a non-parametric, one-way within-subjects ANOVA. This function calculates the Fried-
man Chi-square test for repeated measures and returns the result, along with the associated probability
value.

Each input is considered a given group. Ideally, the number of treatments among each group should be equal.
If this is not the case, only the first n treatments are taken into account, where n is the number of treatments of
the smallest group. If a group has some missing values, the corresponding treatments are masked in the other
groups. The test statistic is corrected for ties.

Masked values in one group are propagated to the other groups.

Returns: chi-square statistic, associated p-value

gmean(a, axis=0)
Calculates the geometric mean of the values in the passed array.

That is: n-th root of (x1 * x2 * ... * xn)

Parameters
a : array of positive values
axis : int or None
zero_sub : value to substitute for zero values. Default is 0.

Returns
The geometric mean computed over a single dimension of the input array or :
all values in the array if axis==None. :

hmean(a, axis=0)
Calculates the harmonic mean of the values in the passed array.

That is: n / (1/x1 + 1/x2 + ... + 1/xn)

Parameters
a : array
axis : int or None

350 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

Returns
The harmonic mean computed over a single dimension of the input array or all :
values in the array if axis=None. :

kendalltau(x, y, use_ties=True, use_missing=False)
Computes Kendall’s rank correlation tau on two variables x and y.

Parameters
xdata: sequence :

First data list (for example, time).

ydata: sequence :

Second data list.

use_ties: {True, False} optional :

Whether ties correction should be performed.

use_missing: {False, True} optional :

Whether missing data should be allocated a rank of 0 (False) or the average rank
(True)

Returns
tau : float

Kendall tau
prob

[float] Approximate 2-side p-value.

kendalltau_seasonal(x)

Computes a multivariate extension Kendall’s rank correlation tau, designed
for seasonal data.

Parameters
x: 2D array :

Array of seasonal data, with seasons in columns.

kruskalwallis(*args)
The Kruskal-Wallis H-test is a non-parametric ANOVA for 2 or more groups, requiring at least 5 subjects in
each group. This function calculates the Kruskal-Wallis H and associated p-value for 2 or more independent
samples.

Returns: H-statistic (corrected for ties), associated p-value

kruskalwallis(*args)
The Kruskal-Wallis H-test is a non-parametric ANOVA for 2 or more groups, requiring at least 5 subjects in
each group. This function calculates the Kruskal-Wallis H and associated p-value for 2 or more independent
samples.

Returns: H-statistic (corrected for ties), associated p-value

ks_twosamp(data1, data2, alternative=’two_sided’)
Computes the Kolmogorov-Smirnov test on two samples. Missing values are discarded.

Parameters
data1 : sequence

3.18. Statistical functions (scipy.stats) 351

SciPy Reference Guide, Release 0.7

First data set
data2

[sequence] Second data set
alternative

[{‘two_sided’, ‘less’, ‘greater’} optional] Indicates the alternative hypothesis.

Returns
d : float

Value of the Kolmogorov Smirnov test
p

[float] Corresponding p-value.

ks_twosamp(data1, data2, alternative=’two_sided’)
Computes the Kolmogorov-Smirnov test on two samples. Missing values are discarded.

Parameters
data1 : sequence

First data set
data2

[sequence] Second data set
alternative

[{‘two_sided’, ‘less’, ‘greater’} optional] Indicates the alternative hypothesis.

Returns
d : float

Value of the Kolmogorov Smirnov test
p

[float] Corresponding p-value.

kurtosis(a, axis=0, fisher=True, bias=True)
Computes the kurtosis (Fisher or Pearson) of a dataset.

Kurtosis is the fourth central moment divided by the square of the variance. If Fisher’s definition is used, then
3.0 is subtracted from the result to give 0.0 for a normal distribution.

If bias is False then the kurtosis is calculated using k statistics to eliminate bias comming from biased moment
estimators

Use kurtosistest() to see if result is close enough to normal.

Parameters
a : array
axis : int or None
fisher : bool

If True, Fisher’s definition is used (normal ==> 0.0). If False, Pearson’s definition is
used (normal ==> 3.0).

bias : bool

If False, then the calculations are corrected for statistical bias.

Returns
The kurtosis of values along an axis. If all values are equal, return -3 for Fisher’s :
definition and 0 for Pearson’s definition. :

352 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

References

[CRCProbStat2000] section 2.2.25

kurtosistest(a, axis=0)
Tests whether a dataset has normal kurtosis (i.e., kurtosis=3(n-1)/(n+1)).

Valid only for n>20.

Parameters
a : array
axis : int or None

Returns
(Z-score, :

2-tail Z-probability)

The Z-score is set to 0 for bad entries. :

linregress(*args)

Calculates a regression line on two arrays, x and y, corresponding to
x,y pairs. If a single 2D array is passed, linregress finds dim with 2 levels and splits data into x,y pairs
along that dim.

Returns: slope, intercept, r, two-tailed prob, stderr-of-the-estimate

Notes

Missing values are considered pair-wise: if a value is missing in x, the corresponding value in y is masked.

mannwhitneyu(x, y, use_continuity=True)
Computes the Mann-Whitney on samples x and y. Missing values in x and/or y are discarded.

Parameters
x : sequence

y : sequence use_continuity : {True, False} optional
Whether a continuity correction (1/2.) should be taken into account.

Returns
u : float

The Mann-Whitney statistics
prob

[float] Approximate p-value assuming a normal distribution.

plotting_positions(data, alpha=0.40000000000000002, beta=0.40000000000000002)

Returns the plotting positions (or empirical percentile points) for the
data. Plotting positions are defined as (i-alpha)/(n-alpha-beta), where:

• i is the rank order statistics

• n is the number of unmasked values along the given axis

• alpha and beta are two parameters.

Typical values for alpha and beta are:

3.18. Statistical functions (scipy.stats) 353

SciPy Reference Guide, Release 0.7

• (0,1) : p(k) = k/n : linear interpolation of cdf (R, type 4)
• (.5,.5) : p(k) = (k-1/2.)/n : piecewise linear function (R, type 5)
• (0,0) : p(k) = k/(n+1) : Weibull (R type 6)
• (1,1) : p(k) = (k-1)/(n-1). In this case, p(k) = mode[F(x[k])]. That’s R default (R type 7)
• (1/3,1/3): p(k) = (k-1/3)/(n+1/3). Then p(k) ~ median[F(x[k])]. The resulting quantile estimates

are approximately median-unbiased regardless of the distribution of x. (R type 8)
• (3/8,3/8): p(k) = (k-3/8)/(n+1/4). Blom. The resulting quantile estimates are approximately

unbiased if x is normally distributed (R type 9)
• (.4,.4) : approximately quantile unbiased (Cunnane)
• (.35,.35): APL, used with PWM

Parameters
x : sequence

Input data, as a sequence or array of dimension at most 2.
prob

[sequence] List of quantiles to compute.
alpha

[{0.4, float} optional] Plotting positions parameter.
beta

[{0.4, float} optional] Plotting positions parameter.

mode(a, axis=0)
Returns an array of the modal (most common) value in the passed array.

If there is more than one such value, only the first is returned. The bin-count for the modal bins is also returned.

Parameters
a : array
axis=0 : int

Returns
(array of modal values, array of counts for each mode) :

moment(a, moment=1, axis=0)
Calculates the nth moment about the mean for a sample.

Generally used to calculate coefficients of skewness and kurtosis.

Parameters
a : array
moment : int
axis : int or None

Returns
The appropriate moment along the given axis or over all values if axis is :
None. :

mquantiles(data, prob=, [0.25, 0.5, 0.75], alphap=0.40000000000000002, betap=0.40000000000000002,
axis=None, limit=())

Computes empirical quantiles for a 1xN data array. Samples quantile are defined by: Q(p) = (1-g).x[i] +g.x[i+1]
where x[j] is the jth order statistic, with i = (floor(n*p+m)), m=alpha+p*(1-alpha-beta) and g = n*p + m - i).

Typical values of (alpha,beta) are:

•(0,1) : p(k) = k/n : linear interpolation of cdf (R, type 4)

354 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

•(.5,.5) : p(k) = (k+1/2.)/n : piecewise linear function (R, type 5)

•(0,0) : p(k) = k/(n+1) : (R type 6)

•(1,1) : p(k) = (k-1)/(n-1). In this case, p(k) = mode[F(x[k])]. That’s R default (R type 7)

•(1/3,1/3): p(k) = (k-1/3)/(n+1/3). Then p(k) ~ median[F(x[k])]. The resulting quantile estimates are
approximately median-unbiased regardless of the distribution of x. (R type 8)

•(3/8,3/8): p(k) = (k-3/8)/(n+1/4). Blom. The resulting quantile estimates are approximately unbiased if x
is normally distributed (R type 9)

•(.4,.4) : approximately quantile unbiased (Cunnane)

•(.35,.35): APL, used with PWM

Parameters
x : sequence

Input data, as a sequence or array of dimension at most 2.
prob

[sequence] List of quantiles to compute.
alpha

[{0.4, float} optional] Plotting positions parameter.
beta

[{0.4, float} optional] Plotting positions parameter.
axis

[{None, int} optional] Axis along which to perform the trimming. If None, the
input array is first flattened.

limit
[tuple] Tuple of (lower, upper) values. Values of a outside this closed interval
are ignored.

msign(x)
Returns the sign of x, or 0 if x is masked.

normaltest(a, axis=0)
Tests whether skew and/or kurtosis of dataset differs from normal curve.

Parameters
a : array
axis : int or None

Returns
(Chi^2 score, :

2-tail probability)

Based on the D’Agostino and Pearson’s test that combines skew and :
kurtosis to produce an omnibus test of normality. :
D’Agostino, R. B. and Pearson, E. S. (1971), “An Omnibus Test of :
Normality for Moderate and Large Sample Size,” Biometrika, 58, 341-348 :
D’Agostino, R. B. and Pearson, E. S. (1973), “Testing for departures from :
Normality,” Biometrika, 60, 613-622 :

3.18. Statistical functions (scipy.stats) 355

SciPy Reference Guide, Release 0.7

obrientransform(*args)
Computes a transform on input data (any number of columns). Used to test for homogeneity of variance prior
to running one-way stats. Each array in *args is one level of a factor. If an F_oneway() run on the transformed
data and found significant, variances are unequal. From Maxwell and Delaney, p.112.

Returns: transformed data for use in an ANOVA

pearsonr(x, y)
Calculates a Pearson correlation coefficient and the p-value for testing non-correlation.

The Pearson correlation coefficient measures the linear relationship between two datasets. Strictly speaking,
Pearson’s correlation requires that each dataset be normally distributed. Like other correlation coefficients, this
one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear
relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x
increases, y decreases.

The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson
correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable
but are probably reasonable for datasets larger than 500 or so.

Parameters
x : 1D array
y : 1D array the same length as x

Returns
(Pearson’s correlation coefficient, :

2-tailed p-value)

References
http://www.statsoft.com/textbook/glosp.html#Pearson%20Correlation

plotting_positions(data, alpha=0.40000000000000002, beta=0.40000000000000002)

Returns the plotting positions (or empirical percentile points) for the
data. Plotting positions are defined as (i-alpha)/(n-alpha-beta), where:

• i is the rank order statistics

• n is the number of unmasked values along the given axis

• alpha and beta are two parameters.

Typical values for alpha and beta are:

• (0,1) : p(k) = k/n : linear interpolation of cdf (R, type 4)
• (.5,.5) : p(k) = (k-1/2.)/n : piecewise linear function (R, type 5)
• (0,0) : p(k) = k/(n+1) : Weibull (R type 6)
• (1,1) : p(k) = (k-1)/(n-1). In this case, p(k) = mode[F(x[k])]. That’s R default (R type 7)
• (1/3,1/3): p(k) = (k-1/3)/(n+1/3). Then p(k) ~ median[F(x[k])]. The resulting quantile estimates

are approximately median-unbiased regardless of the distribution of x. (R type 8)
• (3/8,3/8): p(k) = (k-3/8)/(n+1/4). Blom. The resulting quantile estimates are approximately

unbiased if x is normally distributed (R type 9)
• (.4,.4) : approximately quantile unbiased (Cunnane)
• (.35,.35): APL, used with PWM

Parameters
x : sequence

356 Chapter 3. Reference

http://www.statsoft.com/textbook/glosp.html#Pearson%20Correlation

SciPy Reference Guide, Release 0.7

Input data, as a sequence or array of dimension at most 2.
prob

[sequence] List of quantiles to compute.
alpha

[{0.4, float} optional] Plotting positions parameter.
beta

[{0.4, float} optional] Plotting positions parameter.

pointbiserialr(x, y)

Calculates a point biserial correlation coefficient and the associated
p-value.

The point biserial correlation is used to measure the relationship between a binary variable, x, and a
continuous variable, y. Like other correlation coefficients, this one varies between -1 and +1 with 0
implying no correlation. Correlations of -1 or +1 imply a determinative relationship.

Parameters
x : array of bools

y : array of floats
Returns

(point-biserial r, :
2-tailed p-value)

Notes
Missing values are considered pair-wise: if a value is missing in x, the corresponding value in y is masked.

rankdata(data, axis=None, use_missing=False)
Returns the rank (also known as order statistics) of each data point along the given axis.

If some values are tied, their rank is averaged. If some values are masked, their rank is set to 0 if use_missing is
False, or set to the average rank of the unmasked values if use_missing is True.

Parameters
data : sequence

Input data. The data is transformed to a masked array
axis

[{None,int} optional] Axis along which to perform the ranking. If None, the
array is first flattened. An exception is raised if the axis is specified for arrays
with a dimension larger than 2

use_missing
[{boolean} optional] Whether the masked values have a rank of 0 (False) or
equal to the average rank of the unmasked values (True).

samplestd(data, axis=0)
Returns a biased estimate of the standard deviation of the data, as the square root of the average squared devia-
tions from the mean.

Parameters
data : sequence

Input data
axis

[{0,int} optional] Axis along which to compute. If None, the computation is
performed on a flat version of the array.

3.18. Statistical functions (scipy.stats) 357

SciPy Reference Guide, Release 0.7

Notes

samplestd(a) is equivalent to a.std(ddof=0)

samplevar(data, axis=0)
Returns a biased estimate of the variance of the data, as the average of the squared deviations from the mean.

Parameters
data : sequence

Input data
axis

[{0, int} optional] Axis along which to compute. If None, the computation is
performed on a flat version of the array.

scoreatpercentile(data, per, limit=(), alphap=0.40000000000000002, betap=0.40000000000000002)
Calculate the score at the given ‘per’ percentile of the sequence a. For example, the score at per=50 is the
median.

This function is a shortcut to mquantile

sem(a, axis=0)
Returns the standard error of the mean (i.e., using N) of the values in the passed array. Axis can equal None
(ravel array first), or an integer (the axis over which to operate)

signaltonoise(data, axis=0)
Calculates the signal-to-noise ratio, as the ratio of the mean over standard deviation along the given axis.

Parameters
data : sequence

Input data
axis

[{0, int} optional] Axis along which to compute. If None, the computation is
performed on a flat version of the array.

skew(a, axis=0, bias=True)
Computes the skewness of a data set.

For normally distributed data, the skewness should be about 0. A skewness value > 0 means that there is more
weight in the left tail of the distribution. The function skewtest() can be used to determine if the skewness value
is close enough to 0, statistically speaking.

Parameters
a : array
axis : int or None
bias : bool

If False, then the calculations are corrected for statistical bias.

Returns
The skewness of values along an axis, returning 0 where all values are :
equal. :

References

[CRCProbStat2000] section 2.2.24.1

skewtest(a, axis=0)
Tests whether the skew is significantly different from a normal distribution.

The size of the dataset should be >= 8.

358 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

Parameters
a : array
axis : int or None

Returns
(Z-score, :

2-tail Z-probability,

) :

spearmanr(x, y, use_ties=True)

Calculates a Spearman rank-order correlation coefficient and the p-value
to test for non-correlation.

The Spearman correlation is a nonparametric measure of the linear relationship between two datasets.
Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally
distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no
correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as
x increases, so does y. Negative correlations imply that as x increases, y decreases.

Missing values are discarded pair-wise: if a value is missing in x, the corresponding value in y is masked.

The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a
Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not
entirely reliable but are probably reasonable for datasets larger than 500 or so.

Parameters
x : 1D array

y
[1D array the same length as x] The lengths of both arrays must be > 2.

use_ties
[{True, False} optional] Whether the correction for ties should be computed.

Returns
(Spearman correlation coefficient, :

2-tailed p-value)

std(a, axis=None)
Returns the estimated population standard deviation of the values in the passed array (i.e., N-1). Axis can equal
None (ravel array first), or an integer (the axis over which to operate).

stderr(a, axis=0)
Returns the estimated population standard error of the values in the passed array (i.e., N-1). Axis can equal
None (ravel array first), or an integer (the axis over which to operate).

theilslopes(y, x=None, alpha=0.050000000000000003)
Computes the Theil slope over the dataset (x,y), as the median of all slopes between paired values.

Parameters
y : sequence

Dependent variable.
x

[{None, sequence} optional] Independent variable. If None, use arange(len(y))
instead.

3.18. Statistical functions (scipy.stats) 359

SciPy Reference Guide, Release 0.7

alpha
[float] Confidence degree.

Returns
medslope : float

Theil slope
medintercept

[float] Intercept of the Theil line, as median(y)-medslope*median(x)
lo_slope

[float] Lower bound of the confidence interval on medslope
up_slope

[float] Upper bound of the confidence interval on medslope

threshold(a, threshmin=None, threshmax=None, newval=0)
Clip array to a given value.

Similar to numpy.clip(), except that values less than threshmin or greater than threshmax are replaced by newval,
instead of by threshmin and threshmax respectively.

Parameters
a : ndarray

Input data
threshmin

[{None, float} optional] Lower threshold. If None, set to the minimum value.
threshmax

[{None, float} optional] Upper threshold. If None, set to the maximum value.
newval

[{0, float} optional] Value outside the thresholds.

Returns
a, with values less (greater) than threshmin (threshmax) replaced with newval. :

tmax(a, upperlimit, axis=0, inclusive=True)
Returns the maximum value of a, along axis, including only values greater than (or equal to, if inclusive is True)
upperlimit. If the limit is set to None, a limit larger than the max value in the array is used.

tmean(a, limits=None, inclusive=(True, True))
Returns the arithmetic mean of all values in an array, ignoring values strictly outside given limits.

Parameters
a : array
limits : None or (lower limit, upper limit)

Values in the input array less than the lower limit or greater than the upper limit will
be masked out. When limits is None, then all values are used. Either of the limit
values in the tuple can also be None representing a half-open interval.

inclusive : (bool, bool)

A tuple consisting of the (lower flag, upper flag). These flags determine whether
values exactly equal to lower or upper are allowed.

Returns
A float. :

tmin(a, lowerlimit=None, axis=0, inclusive=True)
Returns the minimum value of a, along axis, including only values less than (or equal to, if inclusive is True)
lowerlimit. If the limit is set to None, all values in the array are used.

360 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

trim(a, limits=None, inclusive=(True, True), relative=False, axis=None)
Trims an array by masking the data outside some given limits. Returns a masked version of the input array.

Parameters
a : sequence

Input array

limits : {None, tuple} optional

If relative == False, tuple (lower limit, upper limit) in absolute values. Values of
the input array lower (greater) than the lower (upper) limit are masked. If relative
== True, tuple (lower percentage, upper percentage) to cut on each side of the array,
with respect to the number of unmasked data. Noting n the number of unmasked
data before trimming, the (n*limits[0])th smallest data and the (n*limits[1])th largest
data are masked, and the total number of unmasked data after trimming is n*(1.-
sum(limits)) In each case, the value of one limit can be set to None to indicate an
open interval. If limits is None, no trimming is performed

inclusive : {(True, True) tuple} optional

If relative==False, tuple indicating whether values exactly equal to the absolute lim-
its are allowed. If relative==True, tuple indicating whether the number of data being
masked on each side should be rounded (True) or truncated (False).

relative : {False, True} optional

Whether to consider the limits as absolute values (False) or proportions to cut (True).

axis : {None, integer}, optional

Axis along which to trim.

Examples
>>>z = [1, 2, 3, 4, 5, 6, 7, 8, 9,10] >>>trim(z,(3,8)) [–,–, 3, 4, 5, 6, 7, 8,–,–] >>>trim(z,(0.1,0.2),relative=True)
[–, 2, 3, 4, 5, 6, 7, 8,–,–]

trima(a, limits=None, inclusive=(True, True))
Trims an array by masking the data outside some given limits. Returns a masked version of the input array.

Parameters
a : sequence

Input array.

limits : {None, tuple} optional

Tuple of (lower limit, upper limit) in absolute values. Values of the input array lower
(greater) than the lower (upper) limit will be masked. A limit is None indicates an
open interval.

inclusive : {(True,True) tuple} optional

Tuple of (lower flag, upper flag), indicating whether values exactly equal to the lower
(upper) limit are allowed.

trimboth(data, proportiontocut=0.20000000000000001, inclusive=(True, True), axis=None)

Trims the data by masking the int(proportiontocut*n) smallest and
int(proportiontocut*n) largest values of data along the given axis, where n is the number of unmasked
values before trimming.

Parameters
data : ndarray

3.18. Statistical functions (scipy.stats) 361

SciPy Reference Guide, Release 0.7

Data to trim.
proportiontocut

[{0.2, float} optional] Percentage of trimming (as a float between 0 and 1). If n
is the number of unmasked values before trimming, the number of values after
trimming is:

(1-2*proportiontocut)*n.
inclusive

[{(True, True) tuple} optional] Tuple indicating whether the number of data
being masked on each side should be rounded (True) or truncated (False).

axis
[{None, integer}, optional] Axis along which to perform the trimming. If None,
the input array is first flattened.

trimmed_stde(a, limits=(0.10000000000000001, 0.10000000000000001), inclusive=(1, 1), axis=None)
Returns the standard error of the trimmed mean of the data along the given axis. Parameters ———- a :
sequence

Input array

limits
[{(0.1,0.1), tuple of float} optional] tuple (lower percentage, upper percentage) to cut on each side of
the array, with respect to the number of unmasked data. Noting n the number of unmasked data before
trimming, the (n*limits[0])th smallest data and the (n*limits[1])th largest data are masked, and the total
number of unmasked data after trimming is n*(1.-sum(limits)) In each case, the value of one limit can be
set to None to indicate an open interval. If limits is None, no trimming is performed

inclusive
[{(True, True) tuple} optional] Tuple indicating whether the number of data being masked on each side
should be rounded (True) or truncated (False).

axis
[{None, integer}, optional] Axis along which to trim.

trimr(a, limits=None, inclusive=(True, True), axis=None)
Trims an array by masking some proportion of the data on each end. Returns a masked version of the input
array.

Parameters
a : sequence

Input array.

limits : {None, tuple} optional

Tuple of the percentages to cut on each side of the array, with respect to the number
of unmasked data, as floats between 0. and 1. Noting n the number of unmasked
data before trimming, the (n*limits[0])th smallest data and the (n*limits[1])th largest
data are masked, and the total number of unmasked data after trimming is n*(1.-
sum(limits)) The value of one limit can be set to None to indicate an open interval.

inclusive : {(True,True) tuple} optional

Tuple of flags indicating whether the number of data being masked on the left (right)
end should be truncated (True) or rounded (False) to integers.

axis : {None,int} optional

362 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

Axis along which to trim. If None, the whole array is trimmed, but its shape is
maintained.

trimtail(data, proportiontocut=0.20000000000000001, tail=’left’, inclusive=(True, True), axis=None)

Trims the data by masking int(trim*n) values from ONE tail of the
data along the given axis, where n is the number of unmasked values.

Parameters
data : {ndarray}

Data to trim.
proportiontocut

[{0.2, float} optional] Percentage of trimming. If n is the number of un-
masked values before trimming, the number of values after trimming is (1-
proportiontocut)*n.

tail
[{‘left’,’right’} optional] If left (right), the proportiontocut lowest (great-
est) values will be masked.

inclusive
[{(True, True) tuple} optional] Tuple indicating whether the number of data
being masked on each side should be rounded (True) or truncated (False).

axis
[{None, integer}, optional] Axis along which to perform the trimming. If None,
the input array is first flattened.

tsem(a, limits=None, inclusive=(True, True))
Returns the standard error of the mean for the values in an array, (i.e., using N for the denominator), ignoring
values strictly outside the sequence passed to ‘limits’. Note: either limit in the sequence, or the value of limits
itself, can be set to None. The inclusive list/tuple determines whether the lower and upper limiting bounds
(respectively) are open/exclusive (0) or closed/inclusive (1).

ttest_onesamp(a, popmean)
Calculates the T-test for the mean of ONE group of scores a.

This is a two-sided test for the null hypothesis that the expected value (mean) of a sample of independent
observations is equal to the given population mean, popmean.

Parameters
a : array_like

sample observation

popmean : float or array_like

expected value in null hypothesis, if array_like than it must have the same shape as
a excluding the axis dimension

axis : int, optional, (default axis=0)

Axis can equal None (ravel array first), or an integer (the axis over which to operate
on a).

Returns
t : float or array

t-statistic

prob : float or array

two-tailed p-value

3.18. Statistical functions (scipy.stats) 363

SciPy Reference Guide, Release 0.7

Examples

>>> from scipy import stats
>>> import numpy as np

>>> #fix seed to get the same result
>>> np.random.seed(7654567)
>>> rvs = stats.norm.rvs(loc=5,scale=10,size=(50,2))

test if mean of random sample is equal to true mean, and different mean. We reject the null hypothesis in the
second case and don’t reject it in the first case

>>> stats.ttest_1samp(rvs,5.0)
(array([-0.68014479, -0.04323899]), array([0.49961383, 0.96568674]))
>>> stats.ttest_1samp(rvs,0.0)
(array([2.77025808, 4.11038784]), array([0.00789095, 0.00014999]))

examples using axis and non-scalar dimension for population mean

>>> stats.ttest_1samp(rvs,[5.0,0.0])
(array([-0.68014479, 4.11038784]), array([4.99613833e-01, 1.49986458e-04]))
>>> stats.ttest_1samp(rvs.T,[5.0,0.0],axis=1)
(array([-0.68014479, 4.11038784]), array([4.99613833e-01, 1.49986458e-04]))
>>> stats.ttest_1samp(rvs,[[5.0],[0.0]])
(array([[-0.68014479, -0.04323899],

[2.77025808, 4.11038784]]), array([[4.99613833e-01, 9.65686743e-01],
[7.89094663e-03, 1.49986458e-04]]))

ttest_ind(a, b, axis=0)
Calculates the T-test for the means of TWO INDEPENDENT samples of scores.

This is a two-sided test for the null hypothesis that 2 independent samples have identical average (expected)
values.

Parameters
a, b : sequence of ndarrays

The arrays must have the same shape, except in the dimension corresponding to axis
(the first, by default).

axis : int, optional

Axis can equal None (ravel array first), or an integer (the axis over which to operate
on a and b).

Returns
t : float or array

t-statistic

prob : float or array

two-tailed p-value

Notes

We can use this test, if we observe two independent samples from the same or different population, e.g. exam
scores of boys and girls or of two ethnic groups. The test measures whether the average (expected) value differs
significantly across samples. If we observe a large p-value, for example larger than 0.05 or 0.1, then we cannot
reject the null hypothesis of identical average scores. If the p-value is smaller than the threshold, e.g. 1%, 5%
or 10%, then we reject the null hypothesis of equal averages.

364 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

Examples

>>> from scipy import stats
>>> import numpy as np

>>> #fix seed to get the same result
>>> np.random.seed(12345678)

test with sample with identical means

>>> rvs1 = stats.norm.rvs(loc=5,scale=10,size=500)
>>> rvs2 = stats.norm.rvs(loc=5,scale=10,size=500)
>>> stats.ttest_ind(rvs1,rvs2)
(0.26833823296239279, 0.78849443369564765)

test with sample with different means

>>> rvs3 = stats.norm.rvs(loc=8,scale=10,size=500)
>>> stats.ttest_ind(rvs1,rvs3)
(-5.0434013458585092, 5.4302979468623391e-007)

ttest_onesamp(a, popmean)
Calculates the T-test for the mean of ONE group of scores a.

This is a two-sided test for the null hypothesis that the expected value (mean) of a sample of independent
observations is equal to the given population mean, popmean.

Parameters
a : array_like

sample observation

popmean : float or array_like

expected value in null hypothesis, if array_like than it must have the same shape as
a excluding the axis dimension

axis : int, optional, (default axis=0)

Axis can equal None (ravel array first), or an integer (the axis over which to operate
on a).

Returns
t : float or array

t-statistic

prob : float or array

two-tailed p-value

Examples

>>> from scipy import stats
>>> import numpy as np

>>> #fix seed to get the same result
>>> np.random.seed(7654567)
>>> rvs = stats.norm.rvs(loc=5,scale=10,size=(50,2))

3.18. Statistical functions (scipy.stats) 365

SciPy Reference Guide, Release 0.7

test if mean of random sample is equal to true mean, and different mean. We reject the null hypothesis in the
second case and don’t reject it in the first case

>>> stats.ttest_1samp(rvs,5.0)
(array([-0.68014479, -0.04323899]), array([0.49961383, 0.96568674]))
>>> stats.ttest_1samp(rvs,0.0)
(array([2.77025808, 4.11038784]), array([0.00789095, 0.00014999]))

examples using axis and non-scalar dimension for population mean

>>> stats.ttest_1samp(rvs,[5.0,0.0])
(array([-0.68014479, 4.11038784]), array([4.99613833e-01, 1.49986458e-04]))
>>> stats.ttest_1samp(rvs.T,[5.0,0.0],axis=1)
(array([-0.68014479, 4.11038784]), array([4.99613833e-01, 1.49986458e-04]))
>>> stats.ttest_1samp(rvs,[[5.0],[0.0]])
(array([[-0.68014479, -0.04323899],

[2.77025808, 4.11038784]]), array([[4.99613833e-01, 9.65686743e-01],
[7.89094663e-03, 1.49986458e-04]]))

ttest_rel(a, b, axis=None)
Calculates the T-test on TWO RELATED samples of scores, a and b.

This is a two-sided test for the null hypothesis that 2 related or repeated samples have identical
average (expected) values.

Parameters
a, b : sequence of ndarrays

The arrays must have the same shape.
axis

[int, optional, (default axis=0)] Axis can equal None (ravel array first), or an
integer (the axis over which to operate on a and b).

Returns
t : float or array

t-statistic
prob

[float or array] two-tailed p-value

Notes

Examples for the use are scores of the same set of student in different exams, or repeated sampling from the
same units. The test measures whether the average score differs significantly across samples (e.g. exams). If
we observe a large p-value, for example greater than 0.5 or 0.1 then we cannot reject the null hypothesis of
identical average scores. If the p-value is smaller than the threshold, e.g. 1%, 5% or 10%, then we reject the
null hypothesis of equal averages. Small p-values are associated with large t-statistics.

Examples

>>> from scipy import stats
>>> import numpy as np

>>> #fix random seed to get the same result
>>> np.random.seed(12345678)
>>> rvs1 = stats.norm.rvs(loc=5,scale=10,size=500)

366 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

>>> rvs2 = stats.norm.rvs(loc=5,scale=10,size=500) + stats.norm.rvs(scale=0.2,size=500)
>>> stats.ttest_rel(rvs1,rvs2)
(0.24101764965300962, 0.80964043445811562)
>>> rvs3 = stats.norm.rvs(loc=8,scale=10,size=500) + stats.norm.rvs(scale=0.2,size=500)
>>> stats.ttest_rel(rvs1,rvs3)
(-3.9995108708727933, 7.3082402191726459e-005)

tvar(a, limits=None, inclusive=(True, True))
Returns the sample variance of values in an array, (i.e., using N-1), ignoring values strictly outside the sequence
passed to ‘limits’. Note: either limit in the sequence, or the value of limits itself, can be set to None. The
inclusive list/tuple determines whether the lower and upper limiting bounds (respectively) are open/exclusive
(0) or closed/inclusive (1).

var(a, axis=None)
Returns the estimated population variance of the values in the passed array (i.e., N-1). Axis can equal None
(ravel array first), or an integer (the axis over which to operate).

variation(a, axis=0)
Computes the coefficient of variation, the ratio of the biased standard deviation to the mean.

Parameters
a : array
axis : int or None

References
[CRCProbStat2000] section 2.2.20

winsorize(a, limits=None, inclusive=(True, True), inplace=False, axis=None)
Returns a Winsorized version of the input array.

The (limits[0])th lowest values are set to the (limits[0])th percentile, and the (limits[1])th highest values are set
to the (limits[1])th percentile. Masked values are skipped.

Parameters
a : sequence

Input array.

limits : {None, tuple of float} optional

Tuple of the percentages to cut on each side of the array, with respect to the number
of unmasked data, as floats between 0. and 1. Noting n the number of unmasked
data before trimming, the (n*limits[0])th smallest data and the (n*limits[1])th largest
data are masked, and the total number of unmasked data after trimming is n*(1.-
sum(limits)) The value of one limit can be set to None to indicate an open interval.

inclusive : {(True, True) tuple} optional

Tuple indicating whether the number of data being masked on each side should be
rounded (True) or truncated (False).

inplace : {False, True} optional

Whether to winsorize in place (True) or to use a copy (False)

axis : {None, int} optional

Axis along which to trim. If None, the whole array is trimmed, but its shape is
maintained.

z(a, score)
Returns the z-score of a given input score, given thearray from which that score came. Not appropriate for
population calculations, nor for arrays > 1D.

3.18. Statistical functions (scipy.stats) 367

SciPy Reference Guide, Release 0.7

zmap(scores, compare, axis=0)
Returns an array of z-scores the shape of scores (e.g., [x,y]), compared to array passed to compare (e.g.,
[time,x,y]). Assumes collapsing over dim 0 of the compare array.

zs(a)
Returns a 1D array of z-scores, one for each score in the passed array, computed relative to the passed array.

368 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

3.18. Statistical functions (scipy.stats) 369

SciPy Reference Guide, Release 0.7

3.18.2 Continuous distributions

norm () A normal continuous random variable.

alpha () A alpha continuous random variable.

anglit () A anglit continuous random variable.

arcsine () A arcsine continuous random variable.

beta () A beta continuous random variable.

betaprime () A betaprime continuous random variable.

bradford () A Bradford continuous random variable.

burr () Burr continuous random variable.

fisk () A funk continuous random variable.

cauchy () Cauchy continuous random variable.

chi () A chi continuous random variable.

chi2 () A chi-squared continuous random variable.

cosine () A cosine continuous random variable.

dgamma () A double gamma continuous random variable.

dweibull () A double Weibull continuous random variable.

erlang () An Erlang continuous random variable.

expon () An exponential continuous random variable.

exponweib () An exponentiated Weibull continuous random variable.

exponpow () An exponential power continuous random variable.

fatiguelife () A fatigue-life (Birnbaum-Sanders) continuous random variable.

foldcauchy () A folded Cauchy continuous random variable.

f () An F continuous random variable.

foldnorm () A folded normal continuous random variable.

fretchet_r

fretcher_l

genlogistic () A generalized logistic continuous random variable.

genpareto () A generalized Pareto continuous random variable.

genexpon () A generalized exponential continuous random variable.

genextreme () A generalized extreme value continuous random variable.

gausshyper () A Gauss hypergeometric continuous random variable.

gamma () A gamma continuous random variable.

gengamma () A generalized gamma continuous random variable.

genhalflogistic () A generalized half-logistic continuous random variable.

gompertz () A Gompertz (truncated Gumbel) distribution continuous random variable.

gumbel_r () A (right-skewed) Gumbel continuous random variable.

gumbel_l () A left-skewed Gumbel continuous random variable.

halfcauchy () A Half-Cauchy continuous random variable.

halflogistic () A half-logistic continuous random variable.

halfnorm () A half-normal continuous random variable.

hypsecant () A hyperbolic secant continuous random variable.

invgamma () An inverted gamma continuous random variable.

invnorm () An inverse normal continuous random variable.

invweibull () An inverted Weibull continuous random variable.

johnsonsb () A Johnson SB continuous random variable.

johnsonsu () A Johnson SU continuous random variable.

laplace () A Laplace continuous random variable.

logistic () A logistic continuous random variable.

loggamma () A log gamma continuous random variable.

loglaplace () A log-Laplace continuous random variable.

lognorm () A lognormal continuous random variable.

gilbrat () A Gilbrat continuous random variable.

lomax () A Lomax (Pareto of the second kind) continuous random variable.

maxwell () A Maxwell continuous random variable.

mielke () A Mielke’s Beta-Kappa continuous random variable.

nakagami () A Nakagami continuous random variable.

ncx2 () A non-central chi-squared continuous random variable.

ncf () A non-central F distribution continuous random variable.

t () Student’s T continuous random variable.

nct () A Noncentral T continuous random variable.

pareto () A Pareto continuous random variable.

powerlaw () A power-function continuous random variable.

powerlognorm () A power log-normal continuous random variable.

powernorm () A power normal continuous random variable.

rdist () An R-distributed continuous random variable.

reciprocal () A reciprocal continuous random variable.

rayleigh () A Rayleigh continuous random variable.

rice () A Rice continuous random variable.

recipinvgauss () A reciprocal inverse Gaussian continuous random variable.

semicircular () A semicircular continuous random variable.

triang () A Triangular continuous random variable.

truncexpon () A truncated exponential continuous random variable.

truncnorm () A truncated normal continuous random variable.

tukeylambda () A Tukey-Lambda continuous random variable.

uniform () A uniform continuous random variable.

von_mises

wald () A Wald continuous random variable.

weibull_min () A Weibull minimum continuous random variable.

weibull_max () A Weibull maximum continuous random variable.

wrapcauchy () A wrapped Cauchy continuous random variable.

ksone () Kolmogorov-Smirnov A one-sided test statistic. continuous random variable.

kstwobign () Kolmogorov-Smirnov two-sided (for large N) continuous random variable.

370 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

norm()
A normal continuous random variable.

Continuous random variables are defined from a standard form and may require some shape parameters to
complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as
given below:

Parameters
x : array-like

quantiles
q : array-like

lower or upper tail probability
<shape(s)> : array-like

shape parameters
loc : array-like, optional

location parameter (default=0)
scale : array-like, optional

scale parameter (default=1)
size : int or tuple of ints, optional

shape of random variates (default computed from input arguments)
moments : string, optional

composed of letters [’mvsk’] specifying which moments to compute where ‘m’
= mean, ‘v’ = variance, ‘s’ = (Fisher’s) skew and ‘k’ = (Fisher’s) kurtosis. (de-
fault=’mv’)

Methods
norm.rvs(loc=0,scale=1,size=1) :

• random variates
norm.pdf(x,loc=0,scale=1) :

• probability density function
norm.cdf(x,loc=0,scale=1) :

• cumulative density function
norm.sf(x,loc=0,scale=1) :

• survival function (1-cdf — sometimes more accurate)
norm.ppf(q,loc=0,scale=1) :

• percent point function (inverse of cdf — percentiles)
norm.isf(q,loc=0,scale=1) :

• inverse survival function (inverse of sf)
norm.stats(loc=0,scale=1,moments=’mv’) :

• mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’)
norm.entropy(loc=0,scale=1) :

• (differential) entropy of the RV.
norm.fit(data,loc=0,scale=1) :

• Parameter estimates for norm data
Alternatively, the object may be called (as a function) to fix the shape, :
location, and scale parameters returning a “frozen” continuous RV object: :
rv = norm(loc=0,scale=1) :

• frozen RV object with the same methods but holding the given shape, location, and scale
fixed

3.18. Statistical functions (scipy.stats) 371

SciPy Reference Guide, Release 0.7

Examples

>>> import matplotlib.pyplot as plt
>>> numargs = norm.numargs
>>> [<shape(s)>] = [0.9,]*numargs
>>> rv = norm(<shape(s)>)

Display frozen pdf

>>> x = np.linspace(0,np.minimum(rv.dist.b,3))
>>> h=plt.plot(x,rv.pdf(x))

Check accuracy of cdf and ppf

>>> prb = norm.cdf(x,<shape(s)>)
>>> h=plt.semilogy(np.abs(x-norm.ppf(prb,c))+1e-20)

Random number generation

>>> R = norm.rvs(size=100)

Normal distribution

The location (loc) keyword specifies the mean. The scale (scale) keyword specifies the standard deviation.

normal.pdf(x) = exp(-x**2/2)/sqrt(2*pi)

alpha()
A alpha continuous random variable.

Continuous random variables are defined from a standard form and may require some shape parameters to
complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as
given below:

Parameters
x : array-like

quantiles

q : array-like

lower or upper tail probability

a : array-like

shape parameters

loc : array-like, optional

location parameter (default=0)

scale : array-like, optional

scale parameter (default=1)

size : int or tuple of ints, optional

shape of random variates (default computed from input arguments)

moments : string, optional

composed of letters [’mvsk’] specifying which moments to compute where ‘m’
= mean, ‘v’ = variance, ‘s’ = (Fisher’s) skew and ‘k’ = (Fisher’s) kurtosis. (de-
fault=’mv’)

Methods
alpha.rvs(a,loc=0,scale=1,size=1) :

372 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

• random variates

alpha.pdf(x,a,loc=0,scale=1) :

• probability density function

alpha.cdf(x,a,loc=0,scale=1) :

• cumulative density function

alpha.sf(x,a,loc=0,scale=1) :

• survival function (1-cdf — sometimes more accurate)

alpha.ppf(q,a,loc=0,scale=1) :

• percent point function (inverse of cdf — percentiles)

alpha.isf(q,a,loc=0,scale=1) :

• inverse survival function (inverse of sf)

alpha.stats(a,loc=0,scale=1,moments=’mv’) :

• mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’)

alpha.entropy(a,loc=0,scale=1) :

• (differential) entropy of the RV.

alpha.fit(data,a,loc=0,scale=1) :

• Parameter estimates for alpha data

Alternatively, the object may be called (as a function) to fix the shape, :
location, and scale parameters returning a “frozen” continuous RV object: :
rv = alpha(a,loc=0,scale=1) :

• frozen RV object with the same methods but holding the given shape, location, and scale
fixed

Examples

>>> import matplotlib.pyplot as plt
>>> numargs = alpha.numargs
>>> [a] = [0.9,]*numargs
>>> rv = alpha(a)

Display frozen pdf

>>> x = np.linspace(0,np.minimum(rv.dist.b,3))
>>> h=plt.plot(x,rv.pdf(x))

Check accuracy of cdf and ppf

>>> prb = alpha.cdf(x,a)
>>> h=plt.semilogy(np.abs(x-alpha.ppf(prb,c))+1e-20)

Random number generation

>>> R = alpha.rvs(a,size=100)

Alpha distribution

alpha.pdf(x,a) = 1/(x**2*Phi(a)*sqrt(2*pi)) * exp(-1/2 * (a-1/x)**2) where Phi(alpha) is the normal CDF, x >
0, and a > 0.

3.18. Statistical functions (scipy.stats) 373

SciPy Reference Guide, Release 0.7

anglit()
A anglit continuous random variable.

Continuous random variables are defined from a standard form and may require some shape parameters to
complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as
given below:

Parameters
x : array-like

quantiles
q : array-like

lower or upper tail probability
<shape(s)> : array-like

shape parameters
loc : array-like, optional

location parameter (default=0)
scale : array-like, optional

scale parameter (default=1)
size : int or tuple of ints, optional

shape of random variates (default computed from input arguments)
moments : string, optional

composed of letters [’mvsk’] specifying which moments to compute where ‘m’
= mean, ‘v’ = variance, ‘s’ = (Fisher’s) skew and ‘k’ = (Fisher’s) kurtosis. (de-
fault=’mv’)

Methods
anglit.rvs(loc=0,scale=1,size=1) :

• random variates
anglit.pdf(x,loc=0,scale=1) :

• probability density function
anglit.cdf(x,loc=0,scale=1) :

• cumulative density function
anglit.sf(x,loc=0,scale=1) :

• survival function (1-cdf — sometimes more accurate)
anglit.ppf(q,loc=0,scale=1) :

• percent point function (inverse of cdf — percentiles)
anglit.isf(q,loc=0,scale=1) :

• inverse survival function (inverse of sf)
anglit.stats(loc=0,scale=1,moments=’mv’) :

• mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’)
anglit.entropy(loc=0,scale=1) :

• (differential) entropy of the RV.
anglit.fit(data,loc=0,scale=1) :

• Parameter estimates for anglit data
Alternatively, the object may be called (as a function) to fix the shape, :
location, and scale parameters returning a “frozen” continuous RV object: :
rv = anglit(loc=0,scale=1) :

• frozen RV object with the same methods but holding the given shape, location, and scale
fixed

374 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

Examples

>>> import matplotlib.pyplot as plt
>>> numargs = anglit.numargs
>>> [<shape(s)>] = [0.9,]*numargs
>>> rv = anglit(<shape(s)>)

Display frozen pdf

>>> x = np.linspace(0,np.minimum(rv.dist.b,3))
>>> h=plt.plot(x,rv.pdf(x))

Check accuracy of cdf and ppf

>>> prb = anglit.cdf(x,<shape(s)>)
>>> h=plt.semilogy(np.abs(x-anglit.ppf(prb,c))+1e-20)

Random number generation

>>> R = anglit.rvs(size=100)

Anglit distribution

anglit.pdf(x) = sin(2*x+pi/2) = cos(2*x) for -pi/4 <= x <= pi/4

arcsine()
A arcsine continuous random variable.

Continuous random variables are defined from a standard form and may require some shape parameters to
complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as
given below:

Parameters
x : array-like

quantiles

q : array-like

lower or upper tail probability

<shape(s)> : array-like

shape parameters

loc : array-like, optional

location parameter (default=0)

scale : array-like, optional

scale parameter (default=1)

size : int or tuple of ints, optional

shape of random variates (default computed from input arguments)

moments : string, optional

composed of letters [’mvsk’] specifying which moments to compute where ‘m’
= mean, ‘v’ = variance, ‘s’ = (Fisher’s) skew and ‘k’ = (Fisher’s) kurtosis. (de-
fault=’mv’)

Methods
arcsine.rvs(loc=0,scale=1,size=1) :

• random variates

3.18. Statistical functions (scipy.stats) 375

SciPy Reference Guide, Release 0.7

arcsine.pdf(x,loc=0,scale=1) :
• probability density function

arcsine.cdf(x,loc=0,scale=1) :
• cumulative density function

arcsine.sf(x,loc=0,scale=1) :
• survival function (1-cdf — sometimes more accurate)

arcsine.ppf(q,loc=0,scale=1) :
• percent point function (inverse of cdf — percentiles)

arcsine.isf(q,loc=0,scale=1) :
• inverse survival function (inverse of sf)

arcsine.stats(loc=0,scale=1,moments=’mv’) :
• mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’)

arcsine.entropy(loc=0,scale=1) :
• (differential) entropy of the RV.

arcsine.fit(data,loc=0,scale=1) :
• Parameter estimates for arcsine data

Alternatively, the object may be called (as a function) to fix the shape, :
location, and scale parameters returning a “frozen” continuous RV object: :
rv = arcsine(loc=0,scale=1) :

• frozen RV object with the same methods but holding the given shape, location, and scale
fixed

Examples

>>> import matplotlib.pyplot as plt
>>> numargs = arcsine.numargs
>>> [<shape(s)>] = [0.9,]*numargs
>>> rv = arcsine(<shape(s)>)

Display frozen pdf

>>> x = np.linspace(0,np.minimum(rv.dist.b,3))
>>> h=plt.plot(x,rv.pdf(x))

Check accuracy of cdf and ppf

>>> prb = arcsine.cdf(x,<shape(s)>)
>>> h=plt.semilogy(np.abs(x-arcsine.ppf(prb,c))+1e-20)

Random number generation

>>> R = arcsine.rvs(size=100)

Arcsine distribution

arcsine.pdf(x) = 1/(pi*sqrt(x*(1-x))) for 0 < x < 1.

beta()
A beta continuous random variable.

Continuous random variables are defined from a standard form and may require some shape parameters to
complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as
given below:

376 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

Parameters
x : array-like

quantiles

q : array-like

lower or upper tail probability

a,b : array-like

shape parameters

loc : array-like, optional

location parameter (default=0)

scale : array-like, optional

scale parameter (default=1)

size : int or tuple of ints, optional

shape of random variates (default computed from input arguments)

moments : string, optional

composed of letters [’mvsk’] specifying which moments to compute where ‘m’
= mean, ‘v’ = variance, ‘s’ = (Fisher’s) skew and ‘k’ = (Fisher’s) kurtosis. (de-
fault=’mv’)

Methods
beta.rvs(a,b,loc=0,scale=1,size=1) :

• random variates

beta.pdf(x,a,b,loc=0,scale=1) :

• probability density function

beta.cdf(x,a,b,loc=0,scale=1) :

• cumulative density function

beta.sf(x,a,b,loc=0,scale=1) :

• survival function (1-cdf — sometimes more accurate)

beta.ppf(q,a,b,loc=0,scale=1) :

• percent point function (inverse of cdf — percentiles)

beta.isf(q,a,b,loc=0,scale=1) :

• inverse survival function (inverse of sf)

beta.stats(a,b,loc=0,scale=1,moments=’mv’) :

• mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’)

beta.entropy(a,b,loc=0,scale=1) :

• (differential) entropy of the RV.

beta.fit(data,a,b,loc=0,scale=1) :

• Parameter estimates for beta data

Alternatively, the object may be called (as a function) to fix the shape, :
location, and scale parameters returning a “frozen” continuous RV object: :
rv = beta(a,b,loc=0,scale=1) :

• frozen RV object with the same methods but holding the given shape, location, and scale
fixed

Examples

3.18. Statistical functions (scipy.stats) 377

SciPy Reference Guide, Release 0.7

>>> import matplotlib.pyplot as plt
>>> numargs = beta.numargs
>>> [a,b] = [0.9,]*numargs
>>> rv = beta(a,b)

Display frozen pdf

>>> x = np.linspace(0,np.minimum(rv.dist.b,3))
>>> h=plt.plot(x,rv.pdf(x))

Check accuracy of cdf and ppf

>>> prb = beta.cdf(x,a,b)
>>> h=plt.semilogy(np.abs(x-beta.ppf(prb,c))+1e-20)

Random number generation

>>> R = beta.rvs(a,b,size=100)

Beta distribution

beta.pdf(x, a, b) = gamma(a+b)/(gamma(a)*gamma(b)) * x**(a-1) * (1-x)**(b-1) for 0 < x < 1, a, b > 0.

betaprime()
A betaprime continuous random variable.

Continuous random variables are defined from a standard form and may require some shape parameters to
complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as
given below:

Parameters
x : array-like

quantiles

q : array-like

lower or upper tail probability

a,b : array-like

shape parameters

loc : array-like, optional

location parameter (default=0)

scale : array-like, optional

scale parameter (default=1)

size : int or tuple of ints, optional

shape of random variates (default computed from input arguments)

moments : string, optional

composed of letters [’mvsk’] specifying which moments to compute where ‘m’
= mean, ‘v’ = variance, ‘s’ = (Fisher’s) skew and ‘k’ = (Fisher’s) kurtosis. (de-
fault=’mv’)

Methods
betaprime.rvs(a,b,loc=0,scale=1,size=1) :

• random variates

betaprime.pdf(x,a,b,loc=0,scale=1) :

378 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

• probability density function

betaprime.cdf(x,a,b,loc=0,scale=1) :

• cumulative density function

betaprime.sf(x,a,b,loc=0,scale=1) :

• survival function (1-cdf — sometimes more accurate)

betaprime.ppf(q,a,b,loc=0,scale=1) :

• percent point function (inverse of cdf — percentiles)

betaprime.isf(q,a,b,loc=0,scale=1) :

• inverse survival function (inverse of sf)

betaprime.stats(a,b,loc=0,scale=1,moments=’mv’) :

• mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’)

betaprime.entropy(a,b,loc=0,scale=1) :

• (differential) entropy of the RV.

betaprime.fit(data,a,b,loc=0,scale=1) :

• Parameter estimates for betaprime data

Alternatively, the object may be called (as a function) to fix the shape, :
location, and scale parameters returning a “frozen” continuous RV object: :
rv = betaprime(a,b,loc=0,scale=1) :

• frozen RV object with the same methods but holding the given shape, location, and scale
fixed

Examples

>>> import matplotlib.pyplot as plt
>>> numargs = betaprime.numargs
>>> [a,b] = [0.9,]*numargs
>>> rv = betaprime(a,b)

Display frozen pdf

>>> x = np.linspace(0,np.minimum(rv.dist.b,3))
>>> h=plt.plot(x,rv.pdf(x))

Check accuracy of cdf and ppf

>>> prb = betaprime.cdf(x,a,b)
>>> h=plt.semilogy(np.abs(x-betaprime.ppf(prb,c))+1e-20)

Random number generation

>>> R = betaprime.rvs(a,b,size=100)

Beta prime distribution

betaprime.pdf(x, a, b) = gamma(a+b)/(gamma(a)*gamma(b))

• x**(a-1) * (1-x)**(-a-b)

for x > 0, a, b > 0.

3.18. Statistical functions (scipy.stats) 379

SciPy Reference Guide, Release 0.7

bradford()
A Bradford continuous random variable.

Continuous random variables are defined from a standard form and may require some shape parameters to
complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as
given below:

Parameters
x : array-like

quantiles
q : array-like

lower or upper tail probability
c : array-like

shape parameters
loc : array-like, optional

location parameter (default=0)
scale : array-like, optional

scale parameter (default=1)
size : int or tuple of ints, optional

shape of random variates (default computed from input arguments)
moments : string, optional

composed of letters [’mvsk’] specifying which moments to compute where ‘m’
= mean, ‘v’ = variance, ‘s’ = (Fisher’s) skew and ‘k’ = (Fisher’s) kurtosis. (de-
fault=’mv’)

Methods
bradford.rvs(c,loc=0,scale=1,size=1) :

• random variates
bradford.pdf(x,c,loc=0,scale=1) :

• probability density function
bradford.cdf(x,c,loc=0,scale=1) :

• cumulative density function
bradford.sf(x,c,loc=0,scale=1) :

• survival function (1-cdf — sometimes more accurate)
bradford.ppf(q,c,loc=0,scale=1) :

• percent point function (inverse of cdf — percentiles)
bradford.isf(q,c,loc=0,scale=1) :

• inverse survival function (inverse of sf)
bradford.stats(c,loc=0,scale=1,moments=’mv’) :

• mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’)
bradford.entropy(c,loc=0,scale=1) :

• (differential) entropy of the RV.
bradford.fit(data,c,loc=0,scale=1) :

• Parameter estimates for bradford data
Alternatively, the object may be called (as a function) to fix the shape, :
location, and scale parameters returning a “frozen” continuous RV object: :
rv = bradford(c,loc=0,scale=1) :

• frozen RV object with the same methods but holding the given shape, location, and scale
fixed

380 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

Examples

>>> import matplotlib.pyplot as plt
>>> numargs = bradford.numargs
>>> [c] = [0.9,]*numargs
>>> rv = bradford(c)

Display frozen pdf

>>> x = np.linspace(0,np.minimum(rv.dist.b,3))
>>> h=plt.plot(x,rv.pdf(x))

Check accuracy of cdf and ppf

>>> prb = bradford.cdf(x,c)
>>> h=plt.semilogy(np.abs(x-bradford.ppf(prb,c))+1e-20)

Random number generation

>>> R = bradford.rvs(c,size=100)

Bradford distribution

bradford.pdf(x,c) = c/(k*(1+c*x)) for 0 < x < 1, c > 0 and k = log(1+c).

burr()
Burr continuous random variable.

Continuous random variables are defined from a standard form and may require some shape parameters to
complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as
given below:

Parameters
x : array-like

quantiles

q : array-like

lower or upper tail probability

c,d : array-like

shape parameters

loc : array-like, optional

location parameter (default=0)

scale : array-like, optional

scale parameter (default=1)

size : int or tuple of ints, optional

shape of random variates (default computed from input arguments)

moments : string, optional

composed of letters [’mvsk’] specifying which moments to compute where ‘m’
= mean, ‘v’ = variance, ‘s’ = (Fisher’s) skew and ‘k’ = (Fisher’s) kurtosis. (de-
fault=’mv’)

Methods
burr.rvs(c,d,loc=0,scale=1,size=1) :

• random variates

3.18. Statistical functions (scipy.stats) 381

SciPy Reference Guide, Release 0.7

burr.pdf(x,c,d,loc=0,scale=1) :
• probability density function

burr.cdf(x,c,d,loc=0,scale=1) :
• cumulative density function

burr.sf(x,c,d,loc=0,scale=1) :
• survival function (1-cdf — sometimes more accurate)

burr.ppf(q,c,d,loc=0,scale=1) :
• percent point function (inverse of cdf — percentiles)

burr.isf(q,c,d,loc=0,scale=1) :
• inverse survival function (inverse of sf)

burr.stats(c,d,loc=0,scale=1,moments=’mv’) :
• mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’)

burr.entropy(c,d,loc=0,scale=1) :
• (differential) entropy of the RV.

burr.fit(data,c,d,loc=0,scale=1) :
• Parameter estimates for burr data

Alternatively, the object may be called (as a function) to fix the shape, :
location, and scale parameters returning a “frozen” continuous RV object: :
rv = burr(c,d,loc=0,scale=1) :

• frozen RV object with the same methods but holding the given shape, location, and scale
fixed

Examples

>>> import matplotlib.pyplot as plt
>>> numargs = burr.numargs
>>> [c,d] = [0.9,]*numargs
>>> rv = burr(c,d)

Display frozen pdf

>>> x = np.linspace(0,np.minimum(rv.dist.b,3))
>>> h=plt.plot(x,rv.pdf(x))

Check accuracy of cdf and ppf

>>> prb = burr.cdf(x,c,d)
>>> h=plt.semilogy(np.abs(x-burr.ppf(prb,c))+1e-20)

Random number generation

>>> R = burr.rvs(c,d,size=100)

Burr distribution

burr.pdf(x,c,d) = c*d * x**(-c-1) * (1+x**(-c))**(-d-1) for x > 0.

fisk()
A funk continuous random variable.

Continuous random variables are defined from a standard form and may require some shape parameters to
complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as
given below:

382 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

Parameters
x : array-like

quantiles

q : array-like

lower or upper tail probability

c : array-like

shape parameters

loc : array-like, optional

location parameter (default=0)

scale : array-like, optional

scale parameter (default=1)

size : int or tuple of ints, optional

shape of random variates (default computed from input arguments)

moments : string, optional

composed of letters [’mvsk’] specifying which moments to compute where ‘m’
= mean, ‘v’ = variance, ‘s’ = (Fisher’s) skew and ‘k’ = (Fisher’s) kurtosis. (de-
fault=’mv’)

Methods
fink.rvs(c,loc=0,scale=1,size=1) :

• random variates

fink.pdf(x,c,loc=0,scale=1) :

• probability density function

fink.cdf(x,c,loc=0,scale=1) :

• cumulative density function

fink.sf(x,c,loc=0,scale=1) :

• survival function (1-cdf — sometimes more accurate)

fink.ppf(q,c,loc=0,scale=1) :

• percent point function (inverse of cdf — percentiles)

fink.isf(q,c,loc=0,scale=1) :

• inverse survival function (inverse of sf)

fink.stats(c,loc=0,scale=1,moments=’mv’) :

• mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’)

fink.entropy(c,loc=0,scale=1) :

• (differential) entropy of the RV.

fink.fit(data,c,loc=0,scale=1) :

• Parameter estimates for fink data

Alternatively, the object may be called (as a function) to fix the shape, :
location, and scale parameters returning a “frozen” continuous RV object: :
rv = fink(c,loc=0,scale=1) :

• frozen RV object with the same methods but holding the given shape, location, and scale
fixed

Examples

3.18. Statistical functions (scipy.stats) 383

SciPy Reference Guide, Release 0.7

>>> import matplotlib.pyplot as plt
>>> numargs = fink.numargs
>>> [c] = [0.9,]*numargs
>>> rv = fink(c)

Display frozen pdf

>>> x = np.linspace(0,np.minimum(rv.dist.b,3))
>>> h=plt.plot(x,rv.pdf(x))

Check accuracy of cdf and ppf

>>> prb = fink.cdf(x,c)
>>> h=plt.semilogy(np.abs(x-fink.ppf(prb,c))+1e-20)

Random number generation

>>> R = fink.rvs(c,size=100)

Fink distribution.

Burr distribution with d=1.

cauchy()
Cauchy continuous random variable.

Continuous random variables are defined from a standard form and may require some shape parameters to
complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as
given below:

Parameters
x : array-like

quantiles

q : array-like

lower or upper tail probability

<shape(s)> : array-like

shape parameters

loc : array-like, optional

location parameter (default=0)

scale : array-like, optional

scale parameter (default=1)

size : int or tuple of ints, optional

shape of random variates (default computed from input arguments)

moments : string, optional

composed of letters [’mvsk’] specifying which moments to compute where ‘m’
= mean, ‘v’ = variance, ‘s’ = (Fisher’s) skew and ‘k’ = (Fisher’s) kurtosis. (de-
fault=’mv’)

Methods
cauchy.rvs(loc=0,scale=1,size=1) :

• random variates

cauchy.pdf(x,loc=0,scale=1) :

384 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

• probability density function
cauchy.cdf(x,loc=0,scale=1) :

• cumulative density function
cauchy.sf(x,loc=0,scale=1) :

• survival function (1-cdf — sometimes more accurate)
cauchy.ppf(q,loc=0,scale=1) :

• percent point function (inverse of cdf — percentiles)
cauchy.isf(q,loc=0,scale=1) :

• inverse survival function (inverse of sf)
cauchy.stats(loc=0,scale=1,moments=’mv’) :

• mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’)
cauchy.entropy(loc=0,scale=1) :

• (differential) entropy of the RV.
cauchy.fit(data,loc=0,scale=1) :

• Parameter estimates for cauchy data
Alternatively, the object may be called (as a function) to fix the shape, :
location, and scale parameters returning a “frozen” continuous RV object: :
rv = cauchy(loc=0,scale=1) :

• frozen RV object with the same methods but holding the given shape, location, and scale
fixed

Examples

>>> import matplotlib.pyplot as plt
>>> numargs = cauchy.numargs
>>> [<shape(s)>] = [0.9,]*numargs
>>> rv = cauchy(<shape(s)>)

Display frozen pdf

>>> x = np.linspace(0,np.minimum(rv.dist.b,3))
>>> h=plt.plot(x,rv.pdf(x))

Check accuracy of cdf and ppf

>>> prb = cauchy.cdf(x,<shape(s)>)
>>> h=plt.semilogy(np.abs(x-cauchy.ppf(prb,c))+1e-20)

Random number generation

>>> R = cauchy.rvs(size=100)

Cauchy distribution

cauchy.pdf(x) = 1/(pi*(1+x**2))

This is the t distribution with one degree of freedom.

chi()
A chi continuous random variable.

Continuous random variables are defined from a standard form and may require some shape parameters to
complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as
given below:

3.18. Statistical functions (scipy.stats) 385

SciPy Reference Guide, Release 0.7

Parameters
x : array-like

quantiles

q : array-like

lower or upper tail probability

df : array-like

shape parameters

loc : array-like, optional

location parameter (default=0)

scale : array-like, optional

scale parameter (default=1)

size : int or tuple of ints, optional

shape of random variates (default computed from input arguments)

moments : string, optional

composed of letters [’mvsk’] specifying which moments to compute where ‘m’
= mean, ‘v’ = variance, ‘s’ = (Fisher’s) skew and ‘k’ = (Fisher’s) kurtosis. (de-
fault=’mv’)

Methods
chi.rvs(df,loc=0,scale=1,size=1) :

• random variates

chi.pdf(x,df,loc=0,scale=1) :

• probability density function

chi.cdf(x,df,loc=0,scale=1) :

• cumulative density function

chi.sf(x,df,loc=0,scale=1) :

• survival function (1-cdf — sometimes more accurate)

chi.ppf(q,df,loc=0,scale=1) :

• percent point function (inverse of cdf — percentiles)

chi.isf(q,df,loc=0,scale=1) :

• inverse survival function (inverse of sf)

chi.stats(df,loc=0,scale=1,moments=’mv’) :

• mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’)

chi.entropy(df,loc=0,scale=1) :

• (differential) entropy of the RV.

chi.fit(data,df,loc=0,scale=1) :

• Parameter estimates for chi data

Alternatively, the object may be called (as a function) to fix the shape, :
location, and scale parameters returning a “frozen” continuous RV object: :
rv = chi(df,loc=0,scale=1) :

• frozen RV object with the same methods but holding the given shape, location, and scale
fixed

Examples

386 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

>>> import matplotlib.pyplot as plt
>>> numargs = chi.numargs
>>> [df] = [0.9,]*numargs
>>> rv = chi(df)

Display frozen pdf

>>> x = np.linspace(0,np.minimum(rv.dist.b,3))
>>> h=plt.plot(x,rv.pdf(x))

Check accuracy of cdf and ppf

>>> prb = chi.cdf(x,df)
>>> h=plt.semilogy(np.abs(x-chi.ppf(prb,c))+1e-20)

Random number generation

>>> R = chi.rvs(df,size=100)

Chi distribution

chi.pdf(x,df) = x**(df-1)*exp(-x**2/2)/(2**(df/2-1)*gamma(df/2)) for x > 0.

chi2()
A chi-squared continuous random variable.

Continuous random variables are defined from a standard form and may require some shape parameters to
complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as
given below:

Parameters
x : array-like

quantiles

q : array-like

lower or upper tail probability

df : array-like

shape parameters

loc : array-like, optional

location parameter (default=0)

scale : array-like, optional

scale parameter (default=1)

size : int or tuple of ints, optional

shape of random variates (default computed from input arguments)

moments : string, optional

composed of letters [’mvsk’] specifying which moments to compute where ‘m’
= mean, ‘v’ = variance, ‘s’ = (Fisher’s) skew and ‘k’ = (Fisher’s) kurtosis. (de-
fault=’mv’)

Methods
chi2.rvs(df,loc=0,scale=1,size=1) :

• random variates

chi2.pdf(x,df,loc=0,scale=1) :

3.18. Statistical functions (scipy.stats) 387

SciPy Reference Guide, Release 0.7

• probability density function

chi2.cdf(x,df,loc=0,scale=1) :

• cumulative density function

chi2.sf(x,df,loc=0,scale=1) :

• survival function (1-cdf — sometimes more accurate)

chi2.ppf(q,df,loc=0,scale=1) :

• percent point function (inverse of cdf — percentiles)

chi2.isf(q,df,loc=0,scale=1) :

• inverse survival function (inverse of sf)

chi2.stats(df,loc=0,scale=1,moments=’mv’) :

• mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’)

chi2.entropy(df,loc=0,scale=1) :

• (differential) entropy of the RV.

chi2.fit(data,df,loc=0,scale=1) :

• Parameter estimates for chi2 data

Alternatively, the object may be called (as a function) to fix the shape, :
location, and scale parameters returning a “frozen” continuous RV object: :
rv = chi2(df,loc=0,scale=1) :

• frozen RV object with the same methods but holding the given shape, location, and scale
fixed

Examples

>>> import matplotlib.pyplot as plt
>>> numargs = chi2.numargs
>>> [df] = [0.9,]*numargs
>>> rv = chi2(df)

Display frozen pdf

>>> x = np.linspace(0,np.minimum(rv.dist.b,3))
>>> h=plt.plot(x,rv.pdf(x))

Check accuracy of cdf and ppf

>>> prb = chi2.cdf(x,df)
>>> h=plt.semilogy(np.abs(x-chi2.ppf(prb,c))+1e-20)

Random number generation

>>> R = chi2.rvs(df,size=100)

Chi-squared distribution

chi2.pdf(x,df) = 1/(2*gamma(df/2)) * (x/2)**(df/2-1) * exp(-x/2)

cosine()
A cosine continuous random variable.

Continuous random variables are defined from a standard form and may require some shape parameters to
complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as
given below:

388 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

Parameters
x : array-like

quantiles

q : array-like

lower or upper tail probability

<shape(s)> : array-like

shape parameters

loc : array-like, optional

location parameter (default=0)

scale : array-like, optional

scale parameter (default=1)

size : int or tuple of ints, optional

shape of random variates (default computed from input arguments)

moments : string, optional

composed of letters [’mvsk’] specifying which moments to compute where ‘m’
= mean, ‘v’ = variance, ‘s’ = (Fisher’s) skew and ‘k’ = (Fisher’s) kurtosis. (de-
fault=’mv’)

Methods
cosine.rvs(loc=0,scale=1,size=1) :

• random variates

cosine.pdf(x,loc=0,scale=1) :

• probability density function

cosine.cdf(x,loc=0,scale=1) :

• cumulative density function

cosine.sf(x,loc=0,scale=1) :

• survival function (1-cdf — sometimes more accurate)

cosine.ppf(q,loc=0,scale=1) :

• percent point function (inverse of cdf — percentiles)

cosine.isf(q,loc=0,scale=1) :

• inverse survival function (inverse of sf)

cosine.stats(loc=0,scale=1,moments=’mv’) :

• mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’)

cosine.entropy(loc=0,scale=1) :

• (differential) entropy of the RV.

cosine.fit(data,loc=0,scale=1) :

• Parameter estimates for cosine data

Alternatively, the object may be called (as a function) to fix the shape, :
location, and scale parameters returning a “frozen” continuous RV object: :
rv = cosine(loc=0,scale=1) :

• frozen RV object with the same methods but holding the given shape, location, and scale
fixed

Examples

3.18. Statistical functions (scipy.stats) 389

SciPy Reference Guide, Release 0.7

>>> import matplotlib.pyplot as plt
>>> numargs = cosine.numargs
>>> [<shape(s)>] = [0.9,]*numargs
>>> rv = cosine(<shape(s)>)

Display frozen pdf

>>> x = np.linspace(0,np.minimum(rv.dist.b,3))
>>> h=plt.plot(x,rv.pdf(x))

Check accuracy of cdf and ppf

>>> prb = cosine.cdf(x,<shape(s)>)
>>> h=plt.semilogy(np.abs(x-cosine.ppf(prb,c))+1e-20)

Random number generation

>>> R = cosine.rvs(size=100)

Cosine distribution (approximation to the normal)

cosine.pdf(x) = 1/(2*pi) * (1+cos(x)) for -pi <= x <= pi.

dgamma()
A double gamma continuous random variable.

Continuous random variables are defined from a standard form and may require some shape parameters to
complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as
given below:

Parameters
x : array-like

quantiles

q : array-like

lower or upper tail probability

a : array-like

shape parameters

loc : array-like, optional

location parameter (default=0)

scale : array-like, optional

scale parameter (default=1)

size : int or tuple of ints, optional

shape of random variates (default computed from input arguments)

moments : string, optional

composed of letters [’mvsk’] specifying which moments to compute where ‘m’
= mean, ‘v’ = variance, ‘s’ = (Fisher’s) skew and ‘k’ = (Fisher’s) kurtosis. (de-
fault=’mv’)

Methods
dgamma.rvs(a,loc=0,scale=1,size=1) :

• random variates

dgamma.pdf(x,a,loc=0,scale=1) :

390 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

• probability density function

dgamma.cdf(x,a,loc=0,scale=1) :

• cumulative density function

dgamma.sf(x,a,loc=0,scale=1) :

• survival function (1-cdf — sometimes more accurate)

dgamma.ppf(q,a,loc=0,scale=1) :

• percent point function (inverse of cdf — percentiles)

dgamma.isf(q,a,loc=0,scale=1) :

• inverse survival function (inverse of sf)

dgamma.stats(a,loc=0,scale=1,moments=’mv’) :

• mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’)

dgamma.entropy(a,loc=0,scale=1) :

• (differential) entropy of the RV.

dgamma.fit(data,a,loc=0,scale=1) :

• Parameter estimates for dgamma data

Alternatively, the object may be called (as a function) to fix the shape, :
location, and scale parameters returning a “frozen” continuous RV object: :
rv = dgamma(a,loc=0,scale=1) :

• frozen RV object with the same methods but holding the given shape, location, and scale
fixed

Examples

>>> import matplotlib.pyplot as plt
>>> numargs = dgamma.numargs
>>> [a] = [0.9,]*numargs
>>> rv = dgamma(a)

Display frozen pdf

>>> x = np.linspace(0,np.minimum(rv.dist.b,3))
>>> h=plt.plot(x,rv.pdf(x))

Check accuracy of cdf and ppf

>>> prb = dgamma.cdf(x,a)
>>> h=plt.semilogy(np.abs(x-dgamma.ppf(prb,c))+1e-20)

Random number generation

>>> R = dgamma.rvs(a,size=100)

Double gamma distribution

dgamma.pdf(x,a) = 1/(2*gamma(a))*abs(x)**(a-1)*exp(-abs(x)) for a > 0.

dweibull()
A double Weibull continuous random variable.

Continuous random variables are defined from a standard form and may require some shape parameters to
complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as
given below:

3.18. Statistical functions (scipy.stats) 391

SciPy Reference Guide, Release 0.7

Parameters
x : array-like

quantiles

q : array-like

lower or upper tail probability

c : array-like

shape parameters

loc : array-like, optional

location parameter (default=0)

scale : array-like, optional

scale parameter (default=1)

size : int or tuple of ints, optional

shape of random variates (default computed from input arguments)

moments : string, optional

composed of letters [’mvsk’] specifying which moments to compute where ‘m’
= mean, ‘v’ = variance, ‘s’ = (Fisher’s) skew and ‘k’ = (Fisher’s) kurtosis. (de-
fault=’mv’)

Methods
dweibull.rvs(c,loc=0,scale=1,size=1) :

• random variates

dweibull.pdf(x,c,loc=0,scale=1) :

• probability density function

dweibull.cdf(x,c,loc=0,scale=1) :

• cumulative density function

dweibull.sf(x,c,loc=0,scale=1) :

• survival function (1-cdf — sometimes more accurate)

dweibull.ppf(q,c,loc=0,scale=1) :

• percent point function (inverse of cdf — percentiles)

dweibull.isf(q,c,loc=0,scale=1) :

• inverse survival function (inverse of sf)

dweibull.stats(c,loc=0,scale=1,moments=’mv’) :

• mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’)

dweibull.entropy(c,loc=0,scale=1) :

• (differential) entropy of the RV.

dweibull.fit(data,c,loc=0,scale=1) :

• Parameter estimates for dweibull data

Alternatively, the object may be called (as a function) to fix the shape, :
location, and scale parameters returning a “frozen” continuous RV object: :
rv = dweibull(c,loc=0,scale=1) :

• frozen RV object with the same methods but holding the given shape, location, and scale
fixed

Examples

392 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

>>> import matplotlib.pyplot as plt
>>> numargs = dweibull.numargs
>>> [c] = [0.9,]*numargs
>>> rv = dweibull(c)

Display frozen pdf

>>> x = np.linspace(0,np.minimum(rv.dist.b,3))
>>> h=plt.plot(x,rv.pdf(x))

Check accuracy of cdf and ppf

>>> prb = dweibull.cdf(x,c)
>>> h=plt.semilogy(np.abs(x-dweibull.ppf(prb,c))+1e-20)

Random number generation

>>> R = dweibull.rvs(c,size=100)

Double Weibull distribution

dweibull.pdf(x,c) = c/2*abs(x)**(c-1)*exp(-abs(x)**c)

erlang()
An Erlang continuous random variable.

Continuous random variables are defined from a standard form and may require some shape parameters to
complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as
given below:

Parameters
x : array-like

quantiles

q : array-like

lower or upper tail probability

n : array-like

shape parameters

loc : array-like, optional

location parameter (default=0)

scale : array-like, optional

scale parameter (default=1)

size : int or tuple of ints, optional

shape of random variates (default computed from input arguments)

moments : string, optional

composed of letters [’mvsk’] specifying which moments to compute where ‘m’
= mean, ‘v’ = variance, ‘s’ = (Fisher’s) skew and ‘k’ = (Fisher’s) kurtosis. (de-
fault=’mv’)

Methods
erlang.rvs(n,loc=0,scale=1,size=1) :

• random variates

erlang.pdf(x,n,loc=0,scale=1) :

3.18. Statistical functions (scipy.stats) 393

SciPy Reference Guide, Release 0.7

• probability density function

erlang.cdf(x,n,loc=0,scale=1) :

• cumulative density function

erlang.sf(x,n,loc=0,scale=1) :

• survival function (1-cdf — sometimes more accurate)

erlang.ppf(q,n,loc=0,scale=1) :

• percent point function (inverse of cdf — percentiles)

erlang.isf(q,n,loc=0,scale=1) :

• inverse survival function (inverse of sf)

erlang.stats(n,loc=0,scale=1,moments=’mv’) :

• mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’)

erlang.entropy(n,loc=0,scale=1) :

• (differential) entropy of the RV.

erlang.fit(data,n,loc=0,scale=1) :

• Parameter estimates for erlang data

Alternatively, the object may be called (as a function) to fix the shape, :
location, and scale parameters returning a “frozen” continuous RV object: :
rv = erlang(n,loc=0,scale=1) :

• frozen RV object with the same methods but holding the given shape, location, and scale
fixed

Examples

>>> import matplotlib.pyplot as plt
>>> numargs = erlang.numargs
>>> [n] = [0.9,]*numargs
>>> rv = erlang(n)

Display frozen pdf

>>> x = np.linspace(0,np.minimum(rv.dist.b,3))
>>> h=plt.plot(x,rv.pdf(x))

Check accuracy of cdf and ppf

>>> prb = erlang.cdf(x,n)
>>> h=plt.semilogy(np.abs(x-erlang.ppf(prb,c))+1e-20)

Random number generation

>>> R = erlang.rvs(n,size=100)

Erlang distribution (Gamma with integer shape parameter)

expon()
An exponential continuous random variable.

Continuous random variables are defined from a standard form and may require some shape parameters to
complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as
given below:

394 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

Parameters
x : array-like

quantiles

q : array-like

lower or upper tail probability

<shape(s)> : array-like

shape parameters

loc : array-like, optional

location parameter (default=0)

scale : array-like, optional

scale parameter (default=1)

size : int or tuple of ints, optional

shape of random variates (default computed from input arguments)

moments : string, optional

composed of letters [’mvsk’] specifying which moments to compute where ‘m’
= mean, ‘v’ = variance, ‘s’ = (Fisher’s) skew and ‘k’ = (Fisher’s) kurtosis. (de-
fault=’mv’)

Methods
expon.rvs(loc=0,scale=1,size=1) :

• random variates

expon.pdf(x,loc=0,scale=1) :

• probability density function

expon.cdf(x,loc=0,scale=1) :

• cumulative density function

expon.sf(x,loc=0,scale=1) :

• survival function (1-cdf — sometimes more accurate)

expon.ppf(q,loc=0,scale=1) :

• percent point function (inverse of cdf — percentiles)

expon.isf(q,loc=0,scale=1) :

• inverse survival function (inverse of sf)

expon.stats(loc=0,scale=1,moments=’mv’) :

• mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’)

expon.entropy(loc=0,scale=1) :

• (differential) entropy of the RV.

expon.fit(data,loc=0,scale=1) :

• Parameter estimates for expon data

Alternatively, the object may be called (as a function) to fix the shape, :
location, and scale parameters returning a “frozen” continuous RV object: :
rv = expon(loc=0,scale=1) :

• frozen RV object with the same methods but holding the given shape, location, and scale
fixed

Examples

3.18. Statistical functions (scipy.stats) 395

SciPy Reference Guide, Release 0.7

>>> import matplotlib.pyplot as plt
>>> numargs = expon.numargs
>>> [<shape(s)>] = [0.9,]*numargs
>>> rv = expon(<shape(s)>)

Display frozen pdf

>>> x = np.linspace(0,np.minimum(rv.dist.b,3))
>>> h=plt.plot(x,rv.pdf(x))

Check accuracy of cdf and ppf

>>> prb = expon.cdf(x,<shape(s)>)
>>> h=plt.semilogy(np.abs(x-expon.ppf(prb,c))+1e-20)

Random number generation

>>> R = expon.rvs(size=100)

Exponential distribution

expon.pdf(x) = exp(-x) for x >= 0.

scale = 1.0 / lambda

exponweib()
An exponentiated Weibull continuous random variable.

Continuous random variables are defined from a standard form and may require some shape parameters to
complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as
given below:

Parameters
x : array-like

quantiles

q : array-like

lower or upper tail probability

a,c : array-like

shape parameters

loc : array-like, optional

location parameter (default=0)

scale : array-like, optional

scale parameter (default=1)

size : int or tuple of ints, optional

shape of random variates (default computed from input arguments)

moments : string, optional

composed of letters [’mvsk’] specifying which moments to compute where ‘m’
= mean, ‘v’ = variance, ‘s’ = (Fisher’s) skew and ‘k’ = (Fisher’s) kurtosis. (de-
fault=’mv’)

Methods
exponweib.rvs(a,c,loc=0,scale=1,size=1) :

• random variates

396 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

exponweib.pdf(x,a,c,loc=0,scale=1) :
• probability density function

exponweib.cdf(x,a,c,loc=0,scale=1) :
• cumulative density function

exponweib.sf(x,a,c,loc=0,scale=1) :
• survival function (1-cdf — sometimes more accurate)

exponweib.ppf(q,a,c,loc=0,scale=1) :
• percent point function (inverse of cdf — percentiles)

exponweib.isf(q,a,c,loc=0,scale=1) :
• inverse survival function (inverse of sf)

exponweib.stats(a,c,loc=0,scale=1,moments=’mv’) :
• mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’)

exponweib.entropy(a,c,loc=0,scale=1) :
• (differential) entropy of the RV.

exponweib.fit(data,a,c,loc=0,scale=1) :
• Parameter estimates for exponweib data

Alternatively, the object may be called (as a function) to fix the shape, :
location, and scale parameters returning a “frozen” continuous RV object: :
rv = exponweib(a,c,loc=0,scale=1) :

• frozen RV object with the same methods but holding the given shape, location, and scale
fixed

Examples

>>> import matplotlib.pyplot as plt
>>> numargs = exponweib.numargs
>>> [a,c] = [0.9,]*numargs
>>> rv = exponweib(a,c)

Display frozen pdf

>>> x = np.linspace(0,np.minimum(rv.dist.b,3))
>>> h=plt.plot(x,rv.pdf(x))

Check accuracy of cdf and ppf

>>> prb = exponweib.cdf(x,a,c)
>>> h=plt.semilogy(np.abs(x-exponweib.ppf(prb,c))+1e-20)

Random number generation

>>> R = exponweib.rvs(a,c,size=100)

Exponentiated Weibull distribution

exponweib.pdf(x,a,c) = a*c*(1-exp(-x**c))**(a-1)*exp(-x**c)*x**(c-1) for x > 0, a, c > 0.

exponpow()
An exponential power continuous random variable.

Continuous random variables are defined from a standard form and may require some shape parameters to
complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as
given below:

3.18. Statistical functions (scipy.stats) 397

SciPy Reference Guide, Release 0.7

Parameters
x : array-like

quantiles

q : array-like

lower or upper tail probability

b : array-like

shape parameters

loc : array-like, optional

location parameter (default=0)

scale : array-like, optional

scale parameter (default=1)

size : int or tuple of ints, optional

shape of random variates (default computed from input arguments)

moments : string, optional

composed of letters [’mvsk’] specifying which moments to compute where ‘m’
= mean, ‘v’ = variance, ‘s’ = (Fisher’s) skew and ‘k’ = (Fisher’s) kurtosis. (de-
fault=’mv’)

Methods
exponpow.rvs(b,loc=0,scale=1,size=1) :

• random variates

exponpow.pdf(x,b,loc=0,scale=1) :

• probability density function

exponpow.cdf(x,b,loc=0,scale=1) :

• cumulative density function

exponpow.sf(x,b,loc=0,scale=1) :

• survival function (1-cdf — sometimes more accurate)

exponpow.ppf(q,b,loc=0,scale=1) :

• percent point function (inverse of cdf — percentiles)

exponpow.isf(q,b,loc=0,scale=1) :

• inverse survival function (inverse of sf)

exponpow.stats(b,loc=0,scale=1,moments=’mv’) :

• mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’)

exponpow.entropy(b,loc=0,scale=1) :

• (differential) entropy of the RV.

exponpow.fit(data,b,loc=0,scale=1) :

• Parameter estimates for exponpow data

Alternatively, the object may be called (as a function) to fix the shape, :
location, and scale parameters returning a “frozen” continuous RV object: :
rv = exponpow(b,loc=0,scale=1) :

• frozen RV object with the same methods but holding the given shape, location, and scale
fixed

Examples

398 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

>>> import matplotlib.pyplot as plt
>>> numargs = exponpow.numargs
>>> [b] = [0.9,]*numargs
>>> rv = exponpow(b)

Display frozen pdf

>>> x = np.linspace(0,np.minimum(rv.dist.b,3))
>>> h=plt.plot(x,rv.pdf(x))

Check accuracy of cdf and ppf

>>> prb = exponpow.cdf(x,b)
>>> h=plt.semilogy(np.abs(x-exponpow.ppf(prb,c))+1e-20)

Random number generation

>>> R = exponpow.rvs(b,size=100)

Exponential Power distribution

exponpow.pdf(x,b) = b*x**(b-1) * exp(1+x**b - exp(x**b)) for x >= 0, b > 0.

fatiguelife()
A fatigue-life (Birnbaum-Sanders) continuous random variable.

Continuous random variables are defined from a standard form and may require some shape parameters to
complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as
given below:

Parameters
x : array-like

quantiles

q : array-like

lower or upper tail probability

c : array-like

shape parameters

loc : array-like, optional

location parameter (default=0)

scale : array-like, optional

scale parameter (default=1)

size : int or tuple of ints, optional

shape of random variates (default computed from input arguments)

moments : string, optional

composed of letters [’mvsk’] specifying which moments to compute where ‘m’
= mean, ‘v’ = variance, ‘s’ = (Fisher’s) skew and ‘k’ = (Fisher’s) kurtosis. (de-
fault=’mv’)

Methods
fatiguelife.rvs(c,loc=0,scale=1,size=1) :

• random variates

fatiguelife.pdf(x,c,loc=0,scale=1) :

3.18. Statistical functions (scipy.stats) 399

SciPy Reference Guide, Release 0.7

• probability density function

fatiguelife.cdf(x,c,loc=0,scale=1) :

• cumulative density function

fatiguelife.sf(x,c,loc=0,scale=1) :

• survival function (1-cdf — sometimes more accurate)

fatiguelife.ppf(q,c,loc=0,scale=1) :

• percent point function (inverse of cdf — percentiles)

fatiguelife.isf(q,c,loc=0,scale=1) :

• inverse survival function (inverse of sf)

fatiguelife.stats(c,loc=0,scale=1,moments=’mv’) :

• mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’)

fatiguelife.entropy(c,loc=0,scale=1) :

• (differential) entropy of the RV.

fatiguelife.fit(data,c,loc=0,scale=1) :

• Parameter estimates for fatiguelife data

Alternatively, the object may be called (as a function) to fix the shape, :
location, and scale parameters returning a “frozen” continuous RV object: :
rv = fatiguelife(c,loc=0,scale=1) :

• frozen RV object with the same methods but holding the given shape, location, and scale
fixed

Examples

>>> import matplotlib.pyplot as plt
>>> numargs = fatiguelife.numargs
>>> [c] = [0.9,]*numargs
>>> rv = fatiguelife(c)

Display frozen pdf

>>> x = np.linspace(0,np.minimum(rv.dist.b,3))
>>> h=plt.plot(x,rv.pdf(x))

Check accuracy of cdf and ppf

>>> prb = fatiguelife.cdf(x,c)
>>> h=plt.semilogy(np.abs(x-fatiguelife.ppf(prb,c))+1e-20)

Random number generation

>>> R = fatiguelife.rvs(c,size=100)

Fatigue-life (Birnbaum-Sanders) distribution

fatiguelife.pdf(x,c) = (x+1)/(2*c*sqrt(2*pi*x**3)) * exp(-(x-1)**2/(2*x*c**2)) for x > 0.

foldcauchy()
A folded Cauchy continuous random variable.

Continuous random variables are defined from a standard form and may require some shape parameters to
complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as
given below:

400 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

Parameters
x : array-like

quantiles

q : array-like

lower or upper tail probability

c : array-like

shape parameters

loc : array-like, optional

location parameter (default=0)

scale : array-like, optional

scale parameter (default=1)

size : int or tuple of ints, optional

shape of random variates (default computed from input arguments)

moments : string, optional

composed of letters [’mvsk’] specifying which moments to compute where ‘m’
= mean, ‘v’ = variance, ‘s’ = (Fisher’s) skew and ‘k’ = (Fisher’s) kurtosis. (de-
fault=’mv’)

Methods
foldcauchy.rvs(c,loc=0,scale=1,size=1) :

• random variates

foldcauchy.pdf(x,c,loc=0,scale=1) :

• probability density function

foldcauchy.cdf(x,c,loc=0,scale=1) :

• cumulative density function

foldcauchy.sf(x,c,loc=0,scale=1) :

• survival function (1-cdf — sometimes more accurate)

foldcauchy.ppf(q,c,loc=0,scale=1) :

• percent point function (inverse of cdf — percentiles)

foldcauchy.isf(q,c,loc=0,scale=1) :

• inverse survival function (inverse of sf)

foldcauchy.stats(c,loc=0,scale=1,moments=’mv’) :

• mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’)

foldcauchy.entropy(c,loc=0,scale=1) :

• (differential) entropy of the RV.

foldcauchy.fit(data,c,loc=0,scale=1) :

• Parameter estimates for foldcauchy data

Alternatively, the object may be called (as a function) to fix the shape, :
location, and scale parameters returning a “frozen” continuous RV object: :
rv = foldcauchy(c,loc=0,scale=1) :

• frozen RV object with the same methods but holding the given shape, location, and scale
fixed

Examples

3.18. Statistical functions (scipy.stats) 401

SciPy Reference Guide, Release 0.7

>>> import matplotlib.pyplot as plt
>>> numargs = foldcauchy.numargs
>>> [c] = [0.9,]*numargs
>>> rv = foldcauchy(c)

Display frozen pdf

>>> x = np.linspace(0,np.minimum(rv.dist.b,3))
>>> h=plt.plot(x,rv.pdf(x))

Check accuracy of cdf and ppf

>>> prb = foldcauchy.cdf(x,c)
>>> h=plt.semilogy(np.abs(x-foldcauchy.ppf(prb,c))+1e-20)

Random number generation

>>> R = foldcauchy.rvs(c,size=100)

A folded Cauchy distributions

foldcauchy.pdf(x,c) = 1/(pi*(1+(x-c)**2)) + 1/(pi*(1+(x+c)**2)) for x >= 0.

f()
An F continuous random variable.

Continuous random variables are defined from a standard form and may require some shape parameters to
complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as
given below:

Parameters
x : array-like

quantiles

q : array-like

lower or upper tail probability

dfn,dfd : array-like

shape parameters

loc : array-like, optional

location parameter (default=0)

scale : array-like, optional

scale parameter (default=1)

size : int or tuple of ints, optional

shape of random variates (default computed from input arguments)

moments : string, optional

composed of letters [’mvsk’] specifying which moments to compute where ‘m’
= mean, ‘v’ = variance, ‘s’ = (Fisher’s) skew and ‘k’ = (Fisher’s) kurtosis. (de-
fault=’mv’)

Methods
f.rvs(dfn,dfd,loc=0,scale=1,size=1) :

• random variates

f.pdf(x,dfn,dfd,loc=0,scale=1) :

402 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

• probability density function

f.cdf(x,dfn,dfd,loc=0,scale=1) :

• cumulative density function

f.sf(x,dfn,dfd,loc=0,scale=1) :

• survival function (1-cdf — sometimes more accurate)

f.ppf(q,dfn,dfd,loc=0,scale=1) :

• percent point function (inverse of cdf — percentiles)

f.isf(q,dfn,dfd,loc=0,scale=1) :

• inverse survival function (inverse of sf)

f.stats(dfn,dfd,loc=0,scale=1,moments=’mv’) :

• mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’)

f.entropy(dfn,dfd,loc=0,scale=1) :

• (differential) entropy of the RV.

f.fit(data,dfn,dfd,loc=0,scale=1) :

• Parameter estimates for f data

Alternatively, the object may be called (as a function) to fix the shape, :
location, and scale parameters returning a “frozen” continuous RV object: :
rv = f(dfn,dfd,loc=0,scale=1) :

• frozen RV object with the same methods but holding the given shape, location, and scale
fixed

Examples

>>> import matplotlib.pyplot as plt
>>> numargs = f.numargs
>>> [dfn,dfd] = [0.9,]*numargs
>>> rv = f(dfn,dfd)

Display frozen pdf

>>> x = np.linspace(0,np.minimum(rv.dist.b,3))
>>> h=plt.plot(x,rv.pdf(x))

Check accuracy of cdf and ppf

>>> prb = f.cdf(x,dfn,dfd)
>>> h=plt.semilogy(np.abs(x-f.ppf(prb,c))+1e-20)

Random number generation

>>> R = f.rvs(dfn,dfd,size=100)

F distribution

df2**(df2/2) * df1**(df1/2) * x**(df1/2-1)

F.pdf(x,df1,df2) = ——————————————–
(df2+df1*x)**((df1+df2)/2) * B(df1/2, df2/2)

3.18. Statistical functions (scipy.stats) 403

SciPy Reference Guide, Release 0.7

for x > 0.

foldnorm()
A folded normal continuous random variable.

Continuous random variables are defined from a standard form and may require some shape parameters to
complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as
given below:

Parameters
x : array-like

quantiles
q : array-like

lower or upper tail probability
c : array-like

shape parameters
loc : array-like, optional

location parameter (default=0)
scale : array-like, optional

scale parameter (default=1)
size : int or tuple of ints, optional

shape of random variates (default computed from input arguments)
moments : string, optional

composed of letters [’mvsk’] specifying which moments to compute where ‘m’
= mean, ‘v’ = variance, ‘s’ = (Fisher’s) skew and ‘k’ = (Fisher’s) kurtosis. (de-
fault=’mv’)

Methods
foldnorm.rvs(c,loc=0,scale=1,size=1) :

• random variates
foldnorm.pdf(x,c,loc=0,scale=1) :

• probability density function
foldnorm.cdf(x,c,loc=0,scale=1) :

• cumulative density function
foldnorm.sf(x,c,loc=0,scale=1) :

• survival function (1-cdf — sometimes more accurate)
foldnorm.ppf(q,c,loc=0,scale=1) :

• percent point function (inverse of cdf — percentiles)
foldnorm.isf(q,c,loc=0,scale=1) :

• inverse survival function (inverse of sf)
foldnorm.stats(c,loc=0,scale=1,moments=’mv’) :

• mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’)
foldnorm.entropy(c,loc=0,scale=1) :

• (differential) entropy of the RV.
foldnorm.fit(data,c,loc=0,scale=1) :

• Parameter estimates for foldnorm data
Alternatively, the object may be called (as a function) to fix the shape, :
location, and scale parameters returning a “frozen” continuous RV object: :
rv = foldnorm(c,loc=0,scale=1) :

• frozen RV object with the same methods but holding the given shape, location, and scale
fixed

404 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

Examples

>>> import matplotlib.pyplot as plt
>>> numargs = foldnorm.numargs
>>> [c] = [0.9,]*numargs
>>> rv = foldnorm(c)

Display frozen pdf

>>> x = np.linspace(0,np.minimum(rv.dist.b,3))
>>> h=plt.plot(x,rv.pdf(x))

Check accuracy of cdf and ppf

>>> prb = foldnorm.cdf(x,c)
>>> h=plt.semilogy(np.abs(x-foldnorm.ppf(prb,c))+1e-20)

Random number generation

>>> R = foldnorm.rvs(c,size=100)

Folded normal distribution

foldnormal.pdf(x,c) = sqrt(2/pi) * cosh(c*x) * exp(-(x**2+c**2)/2) for c >= 0.

genlogistic()
A generalized logistic continuous random variable.

Continuous random variables are defined from a standard form and may require some shape parameters to
complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as
given below:

Parameters
x : array-like

quantiles

q : array-like

lower or upper tail probability

c : array-like

shape parameters

loc : array-like, optional

location parameter (default=0)

scale : array-like, optional

scale parameter (default=1)

size : int or tuple of ints, optional

shape of random variates (default computed from input arguments)

moments : string, optional

composed of letters [’mvsk’] specifying which moments to compute where ‘m’
= mean, ‘v’ = variance, ‘s’ = (Fisher’s) skew and ‘k’ = (Fisher’s) kurtosis. (de-
fault=’mv’)

Methods
genlogistic.rvs(c,loc=0,scale=1,size=1) :

• random variates

3.18. Statistical functions (scipy.stats) 405

SciPy Reference Guide, Release 0.7

genlogistic.pdf(x,c,loc=0,scale=1) :
• probability density function

genlogistic.cdf(x,c,loc=0,scale=1) :
• cumulative density function

genlogistic.sf(x,c,loc=0,scale=1) :
• survival function (1-cdf — sometimes more accurate)

genlogistic.ppf(q,c,loc=0,scale=1) :
• percent point function (inverse of cdf — percentiles)

genlogistic.isf(q,c,loc=0,scale=1) :
• inverse survival function (inverse of sf)

genlogistic.stats(c,loc=0,scale=1,moments=’mv’) :
• mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’)

genlogistic.entropy(c,loc=0,scale=1) :
• (differential) entropy of the RV.

genlogistic.fit(data,c,loc=0,scale=1) :
• Parameter estimates for genlogistic data

Alternatively, the object may be called (as a function) to fix the shape, :
location, and scale parameters returning a “frozen” continuous RV object: :
rv = genlogistic(c,loc=0,scale=1) :

• frozen RV object with the same methods but holding the given shape, location, and scale
fixed

Examples

>>> import matplotlib.pyplot as plt
>>> numargs = genlogistic.numargs
>>> [c] = [0.9,]*numargs
>>> rv = genlogistic(c)

Display frozen pdf

>>> x = np.linspace(0,np.minimum(rv.dist.b,3))
>>> h=plt.plot(x,rv.pdf(x))

Check accuracy of cdf and ppf

>>> prb = genlogistic.cdf(x,c)
>>> h=plt.semilogy(np.abs(x-genlogistic.ppf(prb,c))+1e-20)

Random number generation

>>> R = genlogistic.rvs(c,size=100)

Generalized logistic distribution

genlogistic.pdf(x,c) = c*exp(-x) / (1+exp(-x))**(c+1) for x > 0, c > 0.

genpareto()
A generalized Pareto continuous random variable.

Continuous random variables are defined from a standard form and may require some shape parameters to
complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as
given below:

406 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

Parameters
x : array-like

quantiles

q : array-like

lower or upper tail probability

c : array-like

shape parameters

loc : array-like, optional

location parameter (default=0)

scale : array-like, optional

scale parameter (default=1)

size : int or tuple of ints, optional

shape of random variates (default computed from input arguments)

moments : string, optional

composed of letters [’mvsk’] specifying which moments to compute where ‘m’
= mean, ‘v’ = variance, ‘s’ = (Fisher’s) skew and ‘k’ = (Fisher’s) kurtosis. (de-
fault=’mv’)

Methods
genpareto.rvs(c,loc=0,scale=1,size=1) :

• random variates

genpareto.pdf(x,c,loc=0,scale=1) :

• probability density function

genpareto.cdf(x,c,loc=0,scale=1) :

• cumulative density function

genpareto.sf(x,c,loc=0,scale=1) :

• survival function (1-cdf — sometimes more accurate)

genpareto.ppf(q,c,loc=0,scale=1) :

• percent point function (inverse of cdf — percentiles)

genpareto.isf(q,c,loc=0,scale=1) :

• inverse survival function (inverse of sf)

genpareto.stats(c,loc=0,scale=1,moments=’mv’) :

• mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’)

genpareto.entropy(c,loc=0,scale=1) :

• (differential) entropy of the RV.

genpareto.fit(data,c,loc=0,scale=1) :

• Parameter estimates for genpareto data

Alternatively, the object may be called (as a function) to fix the shape, :
location, and scale parameters returning a “frozen” continuous RV object: :
rv = genpareto(c,loc=0,scale=1) :

• frozen RV object with the same methods but holding the given shape, location, and scale
fixed

Examples

3.18. Statistical functions (scipy.stats) 407

SciPy Reference Guide, Release 0.7

>>> import matplotlib.pyplot as plt
>>> numargs = genpareto.numargs
>>> [c] = [0.9,]*numargs
>>> rv = genpareto(c)

Display frozen pdf

>>> x = np.linspace(0,np.minimum(rv.dist.b,3))
>>> h=plt.plot(x,rv.pdf(x))

Check accuracy of cdf and ppf

>>> prb = genpareto.cdf(x,c)
>>> h=plt.semilogy(np.abs(x-genpareto.ppf(prb,c))+1e-20)

Random number generation

>>> R = genpareto.rvs(c,size=100)

Generalized Pareto distribution

genpareto.pdf(x,c) = (1+c*x)**(-1-1/c) for c != 0, and for x >= 0 for all c, and x < 1/abs(c) for c < 0.

genexpon()
A generalized exponential continuous random variable.

Continuous random variables are defined from a standard form and may require some shape parameters to
complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as
given below:

Parameters
x : array-like

quantiles

q : array-like

lower or upper tail probability

a,b,c : array-like

shape parameters

loc : array-like, optional

location parameter (default=0)

scale : array-like, optional

scale parameter (default=1)

size : int or tuple of ints, optional

shape of random variates (default computed from input arguments)

moments : string, optional

composed of letters [’mvsk’] specifying which moments to compute where ‘m’
= mean, ‘v’ = variance, ‘s’ = (Fisher’s) skew and ‘k’ = (Fisher’s) kurtosis. (de-
fault=’mv’)

Methods
genexpon.rvs(a,b,c,loc=0,scale=1,size=1) :

• random variates

genexpon.pdf(x,a,b,c,loc=0,scale=1) :

408 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

• probability density function

genexpon.cdf(x,a,b,c,loc=0,scale=1) :

• cumulative density function

genexpon.sf(x,a,b,c,loc=0,scale=1) :

• survival function (1-cdf — sometimes more accurate)

genexpon.ppf(q,a,b,c,loc=0,scale=1) :

• percent point function (inverse of cdf — percentiles)

genexpon.isf(q,a,b,c,loc=0,scale=1) :

• inverse survival function (inverse of sf)

genexpon.stats(a,b,c,loc=0,scale=1,moments=’mv’) :

• mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’)

genexpon.entropy(a,b,c,loc=0,scale=1) :

• (differential) entropy of the RV.

genexpon.fit(data,a,b,c,loc=0,scale=1) :

• Parameter estimates for genexpon data

Alternatively, the object may be called (as a function) to fix the shape, :
location, and scale parameters returning a “frozen” continuous RV object: :
rv = genexpon(a,b,c,loc=0,scale=1) :

• frozen RV object with the same methods but holding the given shape, location, and scale
fixed

References

“The Exponential Distribution: Theory, Methods and Applications”, N. Balakrishnan, Asit P. Basu

Examples

>>> import matplotlib.pyplot as plt
>>> numargs = genexpon.numargs
>>> [a,b,c] = [0.9,]*numargs
>>> rv = genexpon(a,b,c)

Display frozen pdf

>>> x = np.linspace(0,np.minimum(rv.dist.b,3))
>>> h=plt.plot(x,rv.pdf(x))

Check accuracy of cdf and ppf

>>> prb = genexpon.cdf(x,a,b,c)
>>> h=plt.semilogy(np.abs(x-genexpon.ppf(prb,c))+1e-20)

Random number generation

>>> R = genexpon.rvs(a,b,c,size=100)

Generalized exponential distribution (Ryu 1993)

f(x,a,b,c) = (a+b*(1-exp(-c*x))) * exp(-a*x-b*x+b/c*(1-exp(-c*x))) for x >= 0, a,b,c > 0.

a, b, c are the first, second and third shape parameters.

3.18. Statistical functions (scipy.stats) 409

SciPy Reference Guide, Release 0.7

genextreme()
A generalized extreme value continuous random variable.

Continuous random variables are defined from a standard form and may require some shape parameters to
complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as
given below:

Parameters
x : array-like

quantiles
q : array-like

lower or upper tail probability
c : array-like

shape parameters
loc : array-like, optional

location parameter (default=0)
scale : array-like, optional

scale parameter (default=1)
size : int or tuple of ints, optional

shape of random variates (default computed from input arguments)
moments : string, optional

composed of letters [’mvsk’] specifying which moments to compute where ‘m’
= mean, ‘v’ = variance, ‘s’ = (Fisher’s) skew and ‘k’ = (Fisher’s) kurtosis. (de-
fault=’mv’)

Methods
genextreme.rvs(c,loc=0,scale=1,size=1) :

• random variates
genextreme.pdf(x,c,loc=0,scale=1) :

• probability density function
genextreme.cdf(x,c,loc=0,scale=1) :

• cumulative density function
genextreme.sf(x,c,loc=0,scale=1) :

• survival function (1-cdf — sometimes more accurate)
genextreme.ppf(q,c,loc=0,scale=1) :

• percent point function (inverse of cdf — percentiles)
genextreme.isf(q,c,loc=0,scale=1) :

• inverse survival function (inverse of sf)
genextreme.stats(c,loc=0,scale=1,moments=’mv’) :

• mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’)
genextreme.entropy(c,loc=0,scale=1) :

• (differential) entropy of the RV.
genextreme.fit(data,c,loc=0,scale=1) :

• Parameter estimates for genextreme data
Alternatively, the object may be called (as a function) to fix the shape, :
location, and scale parameters returning a “frozen” continuous RV object: :
rv = genextreme(c,loc=0,scale=1) :

• frozen RV object with the same methods but holding the given shape, location, and scale
fixed

410 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

Examples

>>> import matplotlib.pyplot as plt
>>> numargs = genextreme.numargs
>>> [c] = [0.9,]*numargs
>>> rv = genextreme(c)

Display frozen pdf

>>> x = np.linspace(0,np.minimum(rv.dist.b,3))
>>> h=plt.plot(x,rv.pdf(x))

Check accuracy of cdf and ppf

>>> prb = genextreme.cdf(x,c)
>>> h=plt.semilogy(np.abs(x-genextreme.ppf(prb,c))+1e-20)

Random number generation

>>> R = genextreme.rvs(c,size=100)

Generalized extreme value (see gumbel_r for c=0)

genextreme.pdf(x,c) = exp(-exp(-x))*exp(-x) for c==0 genextreme.pdf(x,c) = exp(-(1-c*x)**(1/c))*(1-
c*x)**(1/c-1) for x <= 1/c, c > 0

gausshyper()
A Gauss hypergeometric continuous random variable.

Continuous random variables are defined from a standard form and may require some shape parameters to
complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as
given below:

Parameters
x : array-like

quantiles

q : array-like

lower or upper tail probability

a,b,c,z : array-like

shape parameters

loc : array-like, optional

location parameter (default=0)

scale : array-like, optional

scale parameter (default=1)

size : int or tuple of ints, optional

shape of random variates (default computed from input arguments)

moments : string, optional

composed of letters [’mvsk’] specifying which moments to compute where ‘m’
= mean, ‘v’ = variance, ‘s’ = (Fisher’s) skew and ‘k’ = (Fisher’s) kurtosis. (de-
fault=’mv’)

Methods
gausshyper.rvs(a,b,c,z,loc=0,scale=1,size=1) :

3.18. Statistical functions (scipy.stats) 411

SciPy Reference Guide, Release 0.7

• random variates

gausshyper.pdf(x,a,b,c,z,loc=0,scale=1) :

• probability density function

gausshyper.cdf(x,a,b,c,z,loc=0,scale=1) :

• cumulative density function

gausshyper.sf(x,a,b,c,z,loc=0,scale=1) :

• survival function (1-cdf — sometimes more accurate)

gausshyper.ppf(q,a,b,c,z,loc=0,scale=1) :

• percent point function (inverse of cdf — percentiles)

gausshyper.isf(q,a,b,c,z,loc=0,scale=1) :

• inverse survival function (inverse of sf)

gausshyper.stats(a,b,c,z,loc=0,scale=1,moments=’mv’) :

• mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’)

gausshyper.entropy(a,b,c,z,loc=0,scale=1) :

• (differential) entropy of the RV.

gausshyper.fit(data,a,b,c,z,loc=0,scale=1) :

• Parameter estimates for gausshyper data

Alternatively, the object may be called (as a function) to fix the shape, :
location, and scale parameters returning a “frozen” continuous RV object: :
rv = gausshyper(a,b,c,z,loc=0,scale=1) :

• frozen RV object with the same methods but holding the given shape, location, and scale
fixed

Examples

>>> import matplotlib.pyplot as plt
>>> numargs = gausshyper.numargs
>>> [a,b,c,z] = [0.9,]*numargs
>>> rv = gausshyper(a,b,c,z)

Display frozen pdf

>>> x = np.linspace(0,np.minimum(rv.dist.b,3))
>>> h=plt.plot(x,rv.pdf(x))

Check accuracy of cdf and ppf

>>> prb = gausshyper.cdf(x,a,b,c,z)
>>> h=plt.semilogy(np.abs(x-gausshyper.ppf(prb,c))+1e-20)

Random number generation

>>> R = gausshyper.rvs(a,b,c,z,size=100)

Gauss hypergeometric distribution

gausshyper.pdf(x,a,b,c,z) = C * x**(a-1) * (1-x)**(b-1) * (1+z*x)**(-c) for 0 <= x <= 1, a > 0, b > 0, and C =
1/(B(a,b)F[2,1](c,a;a+b;-z))

412 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

gamma()
A gamma continuous random variable.

Continuous random variables are defined from a standard form and may require some shape parameters to
complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as
given below:

Parameters
x : array-like

quantiles
q : array-like

lower or upper tail probability
a : array-like

shape parameters
loc : array-like, optional

location parameter (default=0)
scale : array-like, optional

scale parameter (default=1)
size : int or tuple of ints, optional

shape of random variates (default computed from input arguments)
moments : string, optional

composed of letters [’mvsk’] specifying which moments to compute where ‘m’
= mean, ‘v’ = variance, ‘s’ = (Fisher’s) skew and ‘k’ = (Fisher’s) kurtosis. (de-
fault=’mv’)

Methods
gamma.rvs(a,loc=0,scale=1,size=1) :

• random variates
gamma.pdf(x,a,loc=0,scale=1) :

• probability density function
gamma.cdf(x,a,loc=0,scale=1) :

• cumulative density function
gamma.sf(x,a,loc=0,scale=1) :

• survival function (1-cdf — sometimes more accurate)
gamma.ppf(q,a,loc=0,scale=1) :

• percent point function (inverse of cdf — percentiles)
gamma.isf(q,a,loc=0,scale=1) :

• inverse survival function (inverse of sf)
gamma.stats(a,loc=0,scale=1,moments=’mv’) :

• mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’)
gamma.entropy(a,loc=0,scale=1) :

• (differential) entropy of the RV.
gamma.fit(data,a,loc=0,scale=1) :

• Parameter estimates for gamma data
Alternatively, the object may be called (as a function) to fix the shape, :
location, and scale parameters returning a “frozen” continuous RV object: :
rv = gamma(a,loc=0,scale=1) :

• frozen RV object with the same methods but holding the given shape, location, and scale
fixed

3.18. Statistical functions (scipy.stats) 413

SciPy Reference Guide, Release 0.7

Examples

>>> import matplotlib.pyplot as plt
>>> numargs = gamma.numargs
>>> [a] = [0.9,]*numargs
>>> rv = gamma(a)

Display frozen pdf

>>> x = np.linspace(0,np.minimum(rv.dist.b,3))
>>> h=plt.plot(x,rv.pdf(x))

Check accuracy of cdf and ppf

>>> prb = gamma.cdf(x,a)
>>> h=plt.semilogy(np.abs(x-gamma.ppf(prb,c))+1e-20)

Random number generation

>>> R = gamma.rvs(a,size=100)

Gamma distribution

For a = integer, this is the Erlang distribution, and for a=1 it is the exponential distribution.

gamma.pdf(x,a) = x**(a-1)*exp(-x)/gamma(a) for x >= 0, a > 0.

gengamma()
A generalized gamma continuous random variable.

Continuous random variables are defined from a standard form and may require some shape parameters to
complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as
given below:

Parameters
x : array-like

quantiles

q : array-like

lower or upper tail probability

a,c : array-like

shape parameters

loc : array-like, optional

location parameter (default=0)

scale : array-like, optional

scale parameter (default=1)

size : int or tuple of ints, optional

shape of random variates (default computed from input arguments)

moments : string, optional

composed of letters [’mvsk’] specifying which moments to compute where ‘m’
= mean, ‘v’ = variance, ‘s’ = (Fisher’s) skew and ‘k’ = (Fisher’s) kurtosis. (de-
fault=’mv’)

Methods
gengamma.rvs(a,c,loc=0,scale=1,size=1) :

414 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

• random variates

gengamma.pdf(x,a,c,loc=0,scale=1) :

• probability density function

gengamma.cdf(x,a,c,loc=0,scale=1) :

• cumulative density function

gengamma.sf(x,a,c,loc=0,scale=1) :

• survival function (1-cdf — sometimes more accurate)

gengamma.ppf(q,a,c,loc=0,scale=1) :

• percent point function (inverse of cdf — percentiles)

gengamma.isf(q,a,c,loc=0,scale=1) :

• inverse survival function (inverse of sf)

gengamma.stats(a,c,loc=0,scale=1,moments=’mv’) :

• mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’)

gengamma.entropy(a,c,loc=0,scale=1) :

• (differential) entropy of the RV.

gengamma.fit(data,a,c,loc=0,scale=1) :

• Parameter estimates for gengamma data

Alternatively, the object may be called (as a function) to fix the shape, :
location, and scale parameters returning a “frozen” continuous RV object: :
rv = gengamma(a,c,loc=0,scale=1) :

• frozen RV object with the same methods but holding the given shape, location, and scale
fixed

Examples

>>> import matplotlib.pyplot as plt
>>> numargs = gengamma.numargs
>>> [a,c] = [0.9,]*numargs
>>> rv = gengamma(a,c)

Display frozen pdf

>>> x = np.linspace(0,np.minimum(rv.dist.b,3))
>>> h=plt.plot(x,rv.pdf(x))

Check accuracy of cdf and ppf

>>> prb = gengamma.cdf(x,a,c)
>>> h=plt.semilogy(np.abs(x-gengamma.ppf(prb,c))+1e-20)

Random number generation

>>> R = gengamma.rvs(a,c,size=100)

Generalized gamma distribution

gengamma.pdf(x,a,c) = abs(c)*x**(c*a-1)*exp(-x**c)/gamma(a) for x > 0, a > 0, and c != 0.

3.18. Statistical functions (scipy.stats) 415

SciPy Reference Guide, Release 0.7

genhalflogistic()
A generalized half-logistic continuous random variable.

Continuous random variables are defined from a standard form and may require some shape parameters to
complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as
given below:

Parameters
x : array-like

quantiles
q : array-like

lower or upper tail probability
c : array-like

shape parameters
loc : array-like, optional

location parameter (default=0)
scale : array-like, optional

scale parameter (default=1)
size : int or tuple of ints, optional

shape of random variates (default computed from input arguments)
moments : string, optional

composed of letters [’mvsk’] specifying which moments to compute where ‘m’
= mean, ‘v’ = variance, ‘s’ = (Fisher’s) skew and ‘k’ = (Fisher’s) kurtosis. (de-
fault=’mv’)

Methods
genhalflogistic.rvs(c,loc=0,scale=1,size=1) :

• random variates
genhalflogistic.pdf(x,c,loc=0,scale=1) :

• probability density function
genhalflogistic.cdf(x,c,loc=0,scale=1) :

• cumulative density function
genhalflogistic.sf(x,c,loc=0,scale=1) :

• survival function (1-cdf — sometimes more accurate)
genhalflogistic.ppf(q,c,loc=0,scale=1) :

• percent point function (inverse of cdf — percentiles)
genhalflogistic.isf(q,c,loc=0,scale=1) :

• inverse survival function (inverse of sf)
genhalflogistic.stats(c,loc=0,scale=1,moments=’mv’) :

• mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’)
genhalflogistic.entropy(c,loc=0,scale=1) :

• (differential) entropy of the RV.
genhalflogistic.fit(data,c,loc=0,scale=1) :

• Parameter estimates for genhalflogistic data
Alternatively, the object may be called (as a function) to fix the shape, :
location, and scale parameters returning a “frozen” continuous RV object: :
rv = genhalflogistic(c,loc=0,scale=1) :

• frozen RV object with the same methods but holding the given shape, location, and scale
fixed

416 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

Examples

>>> import matplotlib.pyplot as plt
>>> numargs = genhalflogistic.numargs
>>> [c] = [0.9,]*numargs
>>> rv = genhalflogistic(c)

Display frozen pdf

>>> x = np.linspace(0,np.minimum(rv.dist.b,3))
>>> h=plt.plot(x,rv.pdf(x))

Check accuracy of cdf and ppf

>>> prb = genhalflogistic.cdf(x,c)
>>> h=plt.semilogy(np.abs(x-genhalflogistic.ppf(prb,c))+1e-20)

Random number generation

>>> R = genhalflogistic.rvs(c,size=100)

Generalized half-logistic

genhalflogistic.pdf(x,c) = 2*(1-c*x)**(1/c-1) / (1+(1-c*x)**(1/c))**2 for 0 <= x <= 1/c, and c > 0.

gompertz()
A Gompertz (truncated Gumbel) distribution continuous random variable.

Continuous random variables are defined from a standard form and may require some shape parameters to
complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as
given below:

Parameters
x : array-like

quantiles

q : array-like

lower or upper tail probability

c : array-like

shape parameters

loc : array-like, optional

location parameter (default=0)

scale : array-like, optional

scale parameter (default=1)

size : int or tuple of ints, optional

shape of random variates (default computed from input arguments)

moments : string, optional

composed of letters [’mvsk’] specifying which moments to compute where ‘m’
= mean, ‘v’ = variance, ‘s’ = (Fisher’s) skew and ‘k’ = (Fisher’s) kurtosis. (de-
fault=’mv’)

Methods
gompertz.rvs(c,loc=0,scale=1,size=1) :

• random variates

3.18. Statistical functions (scipy.stats) 417

SciPy Reference Guide, Release 0.7

gompertz.pdf(x,c,loc=0,scale=1) :
• probability density function

gompertz.cdf(x,c,loc=0,scale=1) :
• cumulative density function

gompertz.sf(x,c,loc=0,scale=1) :
• survival function (1-cdf — sometimes more accurate)

gompertz.ppf(q,c,loc=0,scale=1) :
• percent point function (inverse of cdf — percentiles)

gompertz.isf(q,c,loc=0,scale=1) :
• inverse survival function (inverse of sf)

gompertz.stats(c,loc=0,scale=1,moments=’mv’) :
• mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’)

gompertz.entropy(c,loc=0,scale=1) :
• (differential) entropy of the RV.

gompertz.fit(data,c,loc=0,scale=1) :
• Parameter estimates for gompertz data

Alternatively, the object may be called (as a function) to fix the shape, :
location, and scale parameters returning a “frozen” continuous RV object: :
rv = gompertz(c,loc=0,scale=1) :

• frozen RV object with the same methods but holding the given shape, location, and scale
fixed

Examples

>>> import matplotlib.pyplot as plt
>>> numargs = gompertz.numargs
>>> [c] = [0.9,]*numargs
>>> rv = gompertz(c)

Display frozen pdf

>>> x = np.linspace(0,np.minimum(rv.dist.b,3))
>>> h=plt.plot(x,rv.pdf(x))

Check accuracy of cdf and ppf

>>> prb = gompertz.cdf(x,c)
>>> h=plt.semilogy(np.abs(x-gompertz.ppf(prb,c))+1e-20)

Random number generation

>>> R = gompertz.rvs(c,size=100)

Gompertz (truncated Gumbel) distribution

gompertz.pdf(x,c) = c*exp(x) * exp(-c*(exp(x)-1)) for x >= 0, c > 0.

gumbel_r()
A (right-skewed) Gumbel continuous random variable.

Continuous random variables are defined from a standard form and may require some shape parameters to
complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as
given below:

418 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

Parameters
x : array-like

quantiles

q : array-like

lower or upper tail probability

<shape(s)> : array-like

shape parameters

loc : array-like, optional

location parameter (default=0)

scale : array-like, optional

scale parameter (default=1)

size : int or tuple of ints, optional

shape of random variates (default computed from input arguments)

moments : string, optional

composed of letters [’mvsk’] specifying which moments to compute where ‘m’
= mean, ‘v’ = variance, ‘s’ = (Fisher’s) skew and ‘k’ = (Fisher’s) kurtosis. (de-
fault=’mv’)

Methods
gumbel_r.rvs(loc=0,scale=1,size=1) :

• random variates

gumbel_r.pdf(x,loc=0,scale=1) :

• probability density function

gumbel_r.cdf(x,loc=0,scale=1) :

• cumulative density function

gumbel_r.sf(x,loc=0,scale=1) :

• survival function (1-cdf — sometimes more accurate)

gumbel_r.ppf(q,loc=0,scale=1) :

• percent point function (inverse of cdf — percentiles)

gumbel_r.isf(q,loc=0,scale=1) :

• inverse survival function (inverse of sf)

gumbel_r.stats(loc=0,scale=1,moments=’mv’) :

• mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’)

gumbel_r.entropy(loc=0,scale=1) :

• (differential) entropy of the RV.

gumbel_r.fit(data,loc=0,scale=1) :

• Parameter estimates for gumbel_r data

Alternatively, the object may be called (as a function) to fix the shape, :
location, and scale parameters returning a “frozen” continuous RV object: :
rv = gumbel_r(loc=0,scale=1) :

• frozen RV object with the same methods but holding the given shape, location, and scale
fixed

Examples

3.18. Statistical functions (scipy.stats) 419

SciPy Reference Guide, Release 0.7

>>> import matplotlib.pyplot as plt
>>> numargs = gumbel_r.numargs
>>> [<shape(s)>] = [0.9,]*numargs
>>> rv = gumbel_r(<shape(s)>)

Display frozen pdf

>>> x = np.linspace(0,np.minimum(rv.dist.b,3))
>>> h=plt.plot(x,rv.pdf(x))

Check accuracy of cdf and ppf

>>> prb = gumbel_r.cdf(x,<shape(s)>)
>>> h=plt.semilogy(np.abs(x-gumbel_r.ppf(prb,c))+1e-20)

Random number generation

>>> R = gumbel_r.rvs(size=100)

Right-skewed Gumbel (Log-Weibull, Fisher-Tippett, Gompertz) distribution

gumbel_r.pdf(x) = exp(-(x+exp(-x)))

gumbel_l()
A left-skewed Gumbel continuous random variable.

Continuous random variables are defined from a standard form and may require some shape parameters to
complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as
given below:

Parameters
x : array-like

quantiles

q : array-like

lower or upper tail probability

<shape(s)> : array-like

shape parameters

loc : array-like, optional

location parameter (default=0)

scale : array-like, optional

scale parameter (default=1)

size : int or tuple of ints, optional

shape of random variates (default computed from input arguments)

moments : string, optional

composed of letters [’mvsk’] specifying which moments to compute where ‘m’
= mean, ‘v’ = variance, ‘s’ = (Fisher’s) skew and ‘k’ = (Fisher’s) kurtosis. (de-
fault=’mv’)

Methods
gumbel_l.rvs(loc=0,scale=1,size=1) :

• random variates

gumbel_l.pdf(x,loc=0,scale=1) :

420 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

• probability density function

gumbel_l.cdf(x,loc=0,scale=1) :

• cumulative density function

gumbel_l.sf(x,loc=0,scale=1) :

• survival function (1-cdf — sometimes more accurate)

gumbel_l.ppf(q,loc=0,scale=1) :

• percent point function (inverse of cdf — percentiles)

gumbel_l.isf(q,loc=0,scale=1) :

• inverse survival function (inverse of sf)

gumbel_l.stats(loc=0,scale=1,moments=’mv’) :

• mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’)

gumbel_l.entropy(loc=0,scale=1) :

• (differential) entropy of the RV.

gumbel_l.fit(data,loc=0,scale=1) :

• Parameter estimates for gumbel_l data

Alternatively, the object may be called (as a function) to fix the shape, :
location, and scale parameters returning a “frozen” continuous RV object: :
rv = gumbel_l(loc=0,scale=1) :

• frozen RV object with the same methods but holding the given shape, location, and scale
fixed

Examples

>>> import matplotlib.pyplot as plt
>>> numargs = gumbel_l.numargs
>>> [<shape(s)>] = [0.9,]*numargs
>>> rv = gumbel_l(<shape(s)>)

Display frozen pdf

>>> x = np.linspace(0,np.minimum(rv.dist.b,3))
>>> h=plt.plot(x,rv.pdf(x))

Check accuracy of cdf and ppf

>>> prb = gumbel_l.cdf(x,<shape(s)>)
>>> h=plt.semilogy(np.abs(x-gumbel_l.ppf(prb,c))+1e-20)

Random number generation

>>> R = gumbel_l.rvs(size=100)

Left-skewed Gumbel distribution

gumbel_l.pdf(x) = exp(x - exp(x))

halfcauchy()
A Half-Cauchy continuous random variable.

Continuous random variables are defined from a standard form and may require some shape parameters to
complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as
given below:

3.18. Statistical functions (scipy.stats) 421

SciPy Reference Guide, Release 0.7

Parameters
x : array-like

quantiles

q : array-like

lower or upper tail probability

<shape(s)> : array-like

shape parameters

loc : array-like, optional

location parameter (default=0)

scale : array-like, optional

scale parameter (default=1)

size : int or tuple of ints, optional

shape of random variates (default computed from input arguments)

moments : string, optional

composed of letters [’mvsk’] specifying which moments to compute where ‘m’
= mean, ‘v’ = variance, ‘s’ = (Fisher’s) skew and ‘k’ = (Fisher’s) kurtosis. (de-
fault=’mv’)

Methods
halfcauchy.rvs(loc=0,scale=1,size=1) :

• random variates

halfcauchy.pdf(x,loc=0,scale=1) :

• probability density function

halfcauchy.cdf(x,loc=0,scale=1) :

• cumulative density function

halfcauchy.sf(x,loc=0,scale=1) :

• survival function (1-cdf — sometimes more accurate)

halfcauchy.ppf(q,loc=0,scale=1) :

• percent point function (inverse of cdf — percentiles)

halfcauchy.isf(q,loc=0,scale=1) :

• inverse survival function (inverse of sf)

halfcauchy.stats(loc=0,scale=1,moments=’mv’) :

• mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’)

halfcauchy.entropy(loc=0,scale=1) :

• (differential) entropy of the RV.

halfcauchy.fit(data,loc=0,scale=1) :

• Parameter estimates for halfcauchy data

Alternatively, the object may be called (as a function) to fix the shape, :
location, and scale parameters returning a “frozen” continuous RV object: :
rv = halfcauchy(loc=0,scale=1) :

• frozen RV object with the same methods but holding the given shape, location, and scale
fixed

Examples

422 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

>>> import matplotlib.pyplot as plt
>>> numargs = halfcauchy.numargs
>>> [<shape(s)>] = [0.9,]*numargs
>>> rv = halfcauchy(<shape(s)>)

Display frozen pdf

>>> x = np.linspace(0,np.minimum(rv.dist.b,3))
>>> h=plt.plot(x,rv.pdf(x))

Check accuracy of cdf and ppf

>>> prb = halfcauchy.cdf(x,<shape(s)>)
>>> h=plt.semilogy(np.abs(x-halfcauchy.ppf(prb,c))+1e-20)

Random number generation

>>> R = halfcauchy.rvs(size=100)

Half-Cauchy distribution

halfcauchy.pdf(x) = 2/(pi*(1+x**2)) for x >= 0.

halflogistic()
A half-logistic continuous random variable.

Continuous random variables are defined from a standard form and may require some shape parameters to
complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as
given below:

Parameters
x : array-like

quantiles

q : array-like

lower or upper tail probability

<shape(s)> : array-like

shape parameters

loc : array-like, optional

location parameter (default=0)

scale : array-like, optional

scale parameter (default=1)

size : int or tuple of ints, optional

shape of random variates (default computed from input arguments)

moments : string, optional

composed of letters [’mvsk’] specifying which moments to compute where ‘m’
= mean, ‘v’ = variance, ‘s’ = (Fisher’s) skew and ‘k’ = (Fisher’s) kurtosis. (de-
fault=’mv’)

Methods
halflogistic.rvs(loc=0,scale=1,size=1) :

• random variates

halflogistic.pdf(x,loc=0,scale=1) :

3.18. Statistical functions (scipy.stats) 423

SciPy Reference Guide, Release 0.7

• probability density function

halflogistic.cdf(x,loc=0,scale=1) :

• cumulative density function

halflogistic.sf(x,loc=0,scale=1) :

• survival function (1-cdf — sometimes more accurate)

halflogistic.ppf(q,loc=0,scale=1) :

• percent point function (inverse of cdf — percentiles)

halflogistic.isf(q,loc=0,scale=1) :

• inverse survival function (inverse of sf)

halflogistic.stats(loc=0,scale=1,moments=’mv’) :

• mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’)

halflogistic.entropy(loc=0,scale=1) :

• (differential) entropy of the RV.

halflogistic.fit(data,loc=0,scale=1) :

• Parameter estimates for halflogistic data

Alternatively, the object may be called (as a function) to fix the shape, :
location, and scale parameters returning a “frozen” continuous RV object: :
rv = halflogistic(loc=0,scale=1) :

• frozen RV object with the same methods but holding the given shape, location, and scale
fixed

Examples

>>> import matplotlib.pyplot as plt
>>> numargs = halflogistic.numargs
>>> [<shape(s)>] = [0.9,]*numargs
>>> rv = halflogistic(<shape(s)>)

Display frozen pdf

>>> x = np.linspace(0,np.minimum(rv.dist.b,3))
>>> h=plt.plot(x,rv.pdf(x))

Check accuracy of cdf and ppf

>>> prb = halflogistic.cdf(x,<shape(s)>)
>>> h=plt.semilogy(np.abs(x-halflogistic.ppf(prb,c))+1e-20)

Random number generation

>>> R = halflogistic.rvs(size=100)

Half-logistic distribution

halflogistic.pdf(x) = 2*exp(-x)/(1+exp(-x))**2 = 1/2*sech(x/2)**2 for x >= 0.

halfnorm()
A half-normal continuous random variable.

Continuous random variables are defined from a standard form and may require some shape parameters to
complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as
given below:

424 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

Parameters
x : array-like

quantiles

q : array-like

lower or upper tail probability

<shape(s)> : array-like

shape parameters

loc : array-like, optional

location parameter (default=0)

scale : array-like, optional

scale parameter (default=1)

size : int or tuple of ints, optional

shape of random variates (default computed from input arguments)

moments : string, optional

composed of letters [’mvsk’] specifying which moments to compute where ‘m’
= mean, ‘v’ = variance, ‘s’ = (Fisher’s) skew and ‘k’ = (Fisher’s) kurtosis. (de-
fault=’mv’)

Methods
halfnorm.rvs(loc=0,scale=1,size=1) :

• random variates

halfnorm.pdf(x,loc=0,scale=1) :

• probability density function

halfnorm.cdf(x,loc=0,scale=1) :

• cumulative density function

halfnorm.sf(x,loc=0,scale=1) :

• survival function (1-cdf — sometimes more accurate)

halfnorm.ppf(q,loc=0,scale=1) :

• percent point function (inverse of cdf — percentiles)

halfnorm.isf(q,loc=0,scale=1) :

• inverse survival function (inverse of sf)

halfnorm.stats(loc=0,scale=1,moments=’mv’) :

• mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’)

halfnorm.entropy(loc=0,scale=1) :

• (differential) entropy of the RV.

halfnorm.fit(data,loc=0,scale=1) :

• Parameter estimates for halfnorm data

Alternatively, the object may be called (as a function) to fix the shape, :
location, and scale parameters returning a “frozen” continuous RV object: :
rv = halfnorm(loc=0,scale=1) :

• frozen RV object with the same methods but holding the given shape, location, and scale
fixed

Examples

3.18. Statistical functions (scipy.stats) 425

SciPy Reference Guide, Release 0.7

>>> import matplotlib.pyplot as plt
>>> numargs = halfnorm.numargs
>>> [<shape(s)>] = [0.9,]*numargs
>>> rv = halfnorm(<shape(s)>)

Display frozen pdf

>>> x = np.linspace(0,np.minimum(rv.dist.b,3))
>>> h=plt.plot(x,rv.pdf(x))

Check accuracy of cdf and ppf

>>> prb = halfnorm.cdf(x,<shape(s)>)
>>> h=plt.semilogy(np.abs(x-halfnorm.ppf(prb,c))+1e-20)

Random number generation

>>> R = halfnorm.rvs(size=100)

Half-normal distribution

halfnorm.pdf(x) = sqrt(2/pi) * exp(-x**2/2) for x > 0.

hypsecant()
A hyperbolic secant continuous random variable.

Continuous random variables are defined from a standard form and may require some shape parameters to
complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as
given below:

Parameters
x : array-like

quantiles

q : array-like

lower or upper tail probability

<shape(s)> : array-like

shape parameters

loc : array-like, optional

location parameter (default=0)

scale : array-like, optional

scale parameter (default=1)

size : int or tuple of ints, optional

shape of random variates (default computed from input arguments)

moments : string, optional

composed of letters [’mvsk’] specifying which moments to compute where ‘m’
= mean, ‘v’ = variance, ‘s’ = (Fisher’s) skew and ‘k’ = (Fisher’s) kurtosis. (de-
fault=’mv’)

Methods
hypsecant.rvs(loc=0,scale=1,size=1) :

• random variates

hypsecant.pdf(x,loc=0,scale=1) :

426 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

• probability density function

hypsecant.cdf(x,loc=0,scale=1) :

• cumulative density function

hypsecant.sf(x,loc=0,scale=1) :

• survival function (1-cdf — sometimes more accurate)

hypsecant.ppf(q,loc=0,scale=1) :

• percent point function (inverse of cdf — percentiles)

hypsecant.isf(q,loc=0,scale=1) :

• inverse survival function (inverse of sf)

hypsecant.stats(loc=0,scale=1,moments=’mv’) :

• mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’)

hypsecant.entropy(loc=0,scale=1) :

• (differential) entropy of the RV.

hypsecant.fit(data,loc=0,scale=1) :

• Parameter estimates for hypsecant data

Alternatively, the object may be called (as a function) to fix the shape, :
location, and scale parameters returning a “frozen” continuous RV object: :
rv = hypsecant(loc=0,scale=1) :

• frozen RV object with the same methods but holding the given shape, location, and scale
fixed

Examples

>>> import matplotlib.pyplot as plt
>>> numargs = hypsecant.numargs
>>> [<shape(s)>] = [0.9,]*numargs
>>> rv = hypsecant(<shape(s)>)

Display frozen pdf

>>> x = np.linspace(0,np.minimum(rv.dist.b,3))
>>> h=plt.plot(x,rv.pdf(x))

Check accuracy of cdf and ppf

>>> prb = hypsecant.cdf(x,<shape(s)>)
>>> h=plt.semilogy(np.abs(x-hypsecant.ppf(prb,c))+1e-20)

Random number generation

>>> R = hypsecant.rvs(size=100)

Hyperbolic secant distribution

hypsecant.pdf(x) = 1/pi * sech(x)

invgamma()
An inverted gamma continuous random variable.

Continuous random variables are defined from a standard form and may require some shape parameters to
complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as
given below:

3.18. Statistical functions (scipy.stats) 427

SciPy Reference Guide, Release 0.7

Parameters
x : array-like

quantiles

q : array-like

lower or upper tail probability

a : array-like

shape parameters

loc : array-like, optional

location parameter (default=0)

scale : array-like, optional

scale parameter (default=1)

size : int or tuple of ints, optional

shape of random variates (default computed from input arguments)

moments : string, optional

composed of letters [’mvsk’] specifying which moments to compute where ‘m’
= mean, ‘v’ = variance, ‘s’ = (Fisher’s) skew and ‘k’ = (Fisher’s) kurtosis. (de-
fault=’mv’)

Methods
invgamma.rvs(a,loc=0,scale=1,size=1) :

• random variates

invgamma.pdf(x,a,loc=0,scale=1) :

• probability density function

invgamma.cdf(x,a,loc=0,scale=1) :

• cumulative density function

invgamma.sf(x,a,loc=0,scale=1) :

• survival function (1-cdf — sometimes more accurate)

invgamma.ppf(q,a,loc=0,scale=1) :

• percent point function (inverse of cdf — percentiles)

invgamma.isf(q,a,loc=0,scale=1) :

• inverse survival function (inverse of sf)

invgamma.stats(a,loc=0,scale=1,moments=’mv’) :

• mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’)

invgamma.entropy(a,loc=0,scale=1) :

• (differential) entropy of the RV.

invgamma.fit(data,a,loc=0,scale=1) :

• Parameter estimates for invgamma data

Alternatively, the object may be called (as a function) to fix the shape, :
location, and scale parameters returning a “frozen” continuous RV object: :
rv = invgamma(a,loc=0,scale=1) :

• frozen RV object with the same methods but holding the given shape, location, and scale
fixed

Examples

428 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

>>> import matplotlib.pyplot as plt
>>> numargs = invgamma.numargs
>>> [a] = [0.9,]*numargs
>>> rv = invgamma(a)

Display frozen pdf

>>> x = np.linspace(0,np.minimum(rv.dist.b,3))
>>> h=plt.plot(x,rv.pdf(x))

Check accuracy of cdf and ppf

>>> prb = invgamma.cdf(x,a)
>>> h=plt.semilogy(np.abs(x-invgamma.ppf(prb,c))+1e-20)

Random number generation

>>> R = invgamma.rvs(a,size=100)

Inverted gamma distribution

invgamma.pdf(x,a) = x**(-a-1)/gamma(a) * exp(-1/x) for x > 0, a > 0.

invnorm()
An inverse normal continuous random variable.

Continuous random variables are defined from a standard form and may require some shape parameters to
complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as
given below:

Parameters
x : array-like

quantiles

q : array-like

lower or upper tail probability

mu : array-like

shape parameters

loc : array-like, optional

location parameter (default=0)

scale : array-like, optional

scale parameter (default=1)

size : int or tuple of ints, optional

shape of random variates (default computed from input arguments)

moments : string, optional

composed of letters [’mvsk’] specifying which moments to compute where ‘m’
= mean, ‘v’ = variance, ‘s’ = (Fisher’s) skew and ‘k’ = (Fisher’s) kurtosis. (de-
fault=’mv’)

Methods
invnorm.rvs(mu,loc=0,scale=1,size=1) :

• random variates

invnorm.pdf(x,mu,loc=0,scale=1) :

3.18. Statistical functions (scipy.stats) 429

SciPy Reference Guide, Release 0.7

• probability density function

invnorm.cdf(x,mu,loc=0,scale=1) :

• cumulative density function

invnorm.sf(x,mu,loc=0,scale=1) :

• survival function (1-cdf — sometimes more accurate)

invnorm.ppf(q,mu,loc=0,scale=1) :

• percent point function (inverse of cdf — percentiles)

invnorm.isf(q,mu,loc=0,scale=1) :

• inverse survival function (inverse of sf)

invnorm.stats(mu,loc=0,scale=1,moments=’mv’) :

• mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’)

invnorm.entropy(mu,loc=0,scale=1) :

• (differential) entropy of the RV.

invnorm.fit(data,mu,loc=0,scale=1) :

• Parameter estimates for invnorm data

Alternatively, the object may be called (as a function) to fix the shape, :
location, and scale parameters returning a “frozen” continuous RV object: :
rv = invnorm(mu,loc=0,scale=1) :

• frozen RV object with the same methods but holding the given shape, location, and scale
fixed

Examples

>>> import matplotlib.pyplot as plt
>>> numargs = invnorm.numargs
>>> [mu] = [0.9,]*numargs
>>> rv = invnorm(mu)

Display frozen pdf

>>> x = np.linspace(0,np.minimum(rv.dist.b,3))
>>> h=plt.plot(x,rv.pdf(x))

Check accuracy of cdf and ppf

>>> prb = invnorm.cdf(x,mu)
>>> h=plt.semilogy(np.abs(x-invnorm.ppf(prb,c))+1e-20)

Random number generation

>>> R = invnorm.rvs(mu,size=100)

Inverse normal distribution

invnorm.pdf(x,mu) = 1/sqrt(2*pi*x**3) * exp(-(x-mu)**2/(2*x*mu**2)) for x > 0.

invweibull()
An inverted Weibull continuous random variable.

Continuous random variables are defined from a standard form and may require some shape parameters to
complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as
given below:

430 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

Parameters
x : array-like

quantiles

q : array-like

lower or upper tail probability

c : array-like

shape parameters

loc : array-like, optional

location parameter (default=0)

scale : array-like, optional

scale parameter (default=1)

size : int or tuple of ints, optional

shape of random variates (default computed from input arguments)

moments : string, optional

composed of letters [’mvsk’] specifying which moments to compute where ‘m’
= mean, ‘v’ = variance, ‘s’ = (Fisher’s) skew and ‘k’ = (Fisher’s) kurtosis. (de-
fault=’mv’)

Methods
invweibull.rvs(c,loc=0,scale=1,size=1) :

• random variates

invweibull.pdf(x,c,loc=0,scale=1) :

• probability density function

invweibull.cdf(x,c,loc=0,scale=1) :

• cumulative density function

invweibull.sf(x,c,loc=0,scale=1) :

• survival function (1-cdf — sometimes more accurate)

invweibull.ppf(q,c,loc=0,scale=1) :

• percent point function (inverse of cdf — percentiles)

invweibull.isf(q,c,loc=0,scale=1) :

• inverse survival function (inverse of sf)

invweibull.stats(c,loc=0,scale=1,moments=’mv’) :

• mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’)

invweibull.entropy(c,loc=0,scale=1) :

• (differential) entropy of the RV.

invweibull.fit(data,c,loc=0,scale=1) :

• Parameter estimates for invweibull data

Alternatively, the object may be called (as a function) to fix the shape, :
location, and scale parameters returning a “frozen” continuous RV object: :
rv = invweibull(c,loc=0,scale=1) :

• frozen RV object with the same methods but holding the given shape, location, and scale
fixed

Examples

3.18. Statistical functions (scipy.stats) 431

SciPy Reference Guide, Release 0.7

>>> import matplotlib.pyplot as plt
>>> numargs = invweibull.numargs
>>> [c] = [0.9,]*numargs
>>> rv = invweibull(c)

Display frozen pdf

>>> x = np.linspace(0,np.minimum(rv.dist.b,3))
>>> h=plt.plot(x,rv.pdf(x))

Check accuracy of cdf and ppf

>>> prb = invweibull.cdf(x,c)
>>> h=plt.semilogy(np.abs(x-invweibull.ppf(prb,c))+1e-20)

Random number generation

>>> R = invweibull.rvs(c,size=100)

Inverted Weibull distribution

invweibull.pdf(x,c) = c*x**(-c-1)*exp(-x**(-c)) for x > 0, c > 0.

johnsonsb()
A Johnson SB continuous random variable.

Continuous random variables are defined from a standard form and may require some shape parameters to
complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as
given below:

Parameters
x : array-like

quantiles

q : array-like

lower or upper tail probability

a,b : array-like

shape parameters

loc : array-like, optional

location parameter (default=0)

scale : array-like, optional

scale parameter (default=1)

size : int or tuple of ints, optional

shape of random variates (default computed from input arguments)

moments : string, optional

composed of letters [’mvsk’] specifying which moments to compute where ‘m’
= mean, ‘v’ = variance, ‘s’ = (Fisher’s) skew and ‘k’ = (Fisher’s) kurtosis. (de-
fault=’mv’)

Methods
johnsonb.rvs(a,b,loc=0,scale=1,size=1) :

• random variates

johnsonb.pdf(x,a,b,loc=0,scale=1) :

432 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

• probability density function

johnsonb.cdf(x,a,b,loc=0,scale=1) :

• cumulative density function

johnsonb.sf(x,a,b,loc=0,scale=1) :

• survival function (1-cdf — sometimes more accurate)

johnsonb.ppf(q,a,b,loc=0,scale=1) :

• percent point function (inverse of cdf — percentiles)

johnsonb.isf(q,a,b,loc=0,scale=1) :

• inverse survival function (inverse of sf)

johnsonb.stats(a,b,loc=0,scale=1,moments=’mv’) :

• mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’)

johnsonb.entropy(a,b,loc=0,scale=1) :

• (differential) entropy of the RV.

johnsonb.fit(data,a,b,loc=0,scale=1) :

• Parameter estimates for johnsonb data

Alternatively, the object may be called (as a function) to fix the shape, :
location, and scale parameters returning a “frozen” continuous RV object: :
rv = johnsonb(a,b,loc=0,scale=1) :

• frozen RV object with the same methods but holding the given shape, location, and scale
fixed

Examples

>>> import matplotlib.pyplot as plt
>>> numargs = johnsonb.numargs
>>> [a,b] = [0.9,]*numargs
>>> rv = johnsonb(a,b)

Display frozen pdf

>>> x = np.linspace(0,np.minimum(rv.dist.b,3))
>>> h=plt.plot(x,rv.pdf(x))

Check accuracy of cdf and ppf

>>> prb = johnsonb.cdf(x,a,b)
>>> h=plt.semilogy(np.abs(x-johnsonb.ppf(prb,c))+1e-20)

Random number generation

>>> R = johnsonb.rvs(a,b,size=100)

Johnson SB distribution

johnsonsb.pdf(x,a,b) = b/(x*(1-x)) * phi(a + b*log(x/(1-x))) for 0 < x < 1 and a,b > 0, and phi is the normal pdf.

johnsonsu()
A Johnson SU continuous random variable.

Continuous random variables are defined from a standard form and may require some shape parameters to
complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as
given below:

3.18. Statistical functions (scipy.stats) 433

SciPy Reference Guide, Release 0.7

Parameters
x : array-like

quantiles

q : array-like

lower or upper tail probability

a,b : array-like

shape parameters

loc : array-like, optional

location parameter (default=0)

scale : array-like, optional

scale parameter (default=1)

size : int or tuple of ints, optional

shape of random variates (default computed from input arguments)

moments : string, optional

composed of letters [’mvsk’] specifying which moments to compute where ‘m’
= mean, ‘v’ = variance, ‘s’ = (Fisher’s) skew and ‘k’ = (Fisher’s) kurtosis. (de-
fault=’mv’)

Methods
johnsonsu.rvs(a,b,loc=0,scale=1,size=1) :

• random variates

johnsonsu.pdf(x,a,b,loc=0,scale=1) :

• probability density function

johnsonsu.cdf(x,a,b,loc=0,scale=1) :

• cumulative density function

johnsonsu.sf(x,a,b,loc=0,scale=1) :

• survival function (1-cdf — sometimes more accurate)

johnsonsu.ppf(q,a,b,loc=0,scale=1) :

• percent point function (inverse of cdf — percentiles)

johnsonsu.isf(q,a,b,loc=0,scale=1) :

• inverse survival function (inverse of sf)

johnsonsu.stats(a,b,loc=0,scale=1,moments=’mv’) :

• mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’)

johnsonsu.entropy(a,b,loc=0,scale=1) :

• (differential) entropy of the RV.

johnsonsu.fit(data,a,b,loc=0,scale=1) :

• Parameter estimates for johnsonsu data

Alternatively, the object may be called (as a function) to fix the shape, :
location, and scale parameters returning a “frozen” continuous RV object: :
rv = johnsonsu(a,b,loc=0,scale=1) :

• frozen RV object with the same methods but holding the given shape, location, and scale
fixed

Examples

434 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

>>> import matplotlib.pyplot as plt
>>> numargs = johnsonsu.numargs
>>> [a,b] = [0.9,]*numargs
>>> rv = johnsonsu(a,b)

Display frozen pdf

>>> x = np.linspace(0,np.minimum(rv.dist.b,3))
>>> h=plt.plot(x,rv.pdf(x))

Check accuracy of cdf and ppf

>>> prb = johnsonsu.cdf(x,a,b)
>>> h=plt.semilogy(np.abs(x-johnsonsu.ppf(prb,c))+1e-20)

Random number generation

>>> R = johnsonsu.rvs(a,b,size=100)

Johnson SU distribution

johnsonsu.pdf(x,a,b) = b/sqrt(x**2+1) * phi(a + b*log(x+sqrt(x**2+1))) for all x, a,b > 0, and phi is the normal
pdf.

laplace()
A Laplace continuous random variable.

Continuous random variables are defined from a standard form and may require some shape parameters to
complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as
given below:

Parameters
x : array-like

quantiles

q : array-like

lower or upper tail probability

<shape(s)> : array-like

shape parameters

loc : array-like, optional

location parameter (default=0)

scale : array-like, optional

scale parameter (default=1)

size : int or tuple of ints, optional

shape of random variates (default computed from input arguments)

moments : string, optional

composed of letters [’mvsk’] specifying which moments to compute where ‘m’
= mean, ‘v’ = variance, ‘s’ = (Fisher’s) skew and ‘k’ = (Fisher’s) kurtosis. (de-
fault=’mv’)

Methods
laplace.rvs(loc=0,scale=1,size=1) :

• random variates

3.18. Statistical functions (scipy.stats) 435

SciPy Reference Guide, Release 0.7

laplace.pdf(x,loc=0,scale=1) :
• probability density function

laplace.cdf(x,loc=0,scale=1) :
• cumulative density function

laplace.sf(x,loc=0,scale=1) :
• survival function (1-cdf — sometimes more accurate)

laplace.ppf(q,loc=0,scale=1) :
• percent point function (inverse of cdf — percentiles)

laplace.isf(q,loc=0,scale=1) :
• inverse survival function (inverse of sf)

laplace.stats(loc=0,scale=1,moments=’mv’) :
• mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’)

laplace.entropy(loc=0,scale=1) :
• (differential) entropy of the RV.

laplace.fit(data,loc=0,scale=1) :
• Parameter estimates for laplace data

Alternatively, the object may be called (as a function) to fix the shape, :
location, and scale parameters returning a “frozen” continuous RV object: :
rv = laplace(loc=0,scale=1) :

• frozen RV object with the same methods but holding the given shape, location, and scale
fixed

Examples

>>> import matplotlib.pyplot as plt
>>> numargs = laplace.numargs
>>> [<shape(s)>] = [0.9,]*numargs
>>> rv = laplace(<shape(s)>)

Display frozen pdf

>>> x = np.linspace(0,np.minimum(rv.dist.b,3))
>>> h=plt.plot(x,rv.pdf(x))

Check accuracy of cdf and ppf

>>> prb = laplace.cdf(x,<shape(s)>)
>>> h=plt.semilogy(np.abs(x-laplace.ppf(prb,c))+1e-20)

Random number generation

>>> R = laplace.rvs(size=100)

Laplacian distribution

laplace.pdf(x) = 1/2*exp(-abs(x))

logistic()
A logistic continuous random variable.

Continuous random variables are defined from a standard form and may require some shape parameters to
complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as
given below:

436 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

Parameters
x : array-like

quantiles

q : array-like

lower or upper tail probability

<shape(s)> : array-like

shape parameters

loc : array-like, optional

location parameter (default=0)

scale : array-like, optional

scale parameter (default=1)

size : int or tuple of ints, optional

shape of random variates (default computed from input arguments)

moments : string, optional

composed of letters [’mvsk’] specifying which moments to compute where ‘m’
= mean, ‘v’ = variance, ‘s’ = (Fisher’s) skew and ‘k’ = (Fisher’s) kurtosis. (de-
fault=’mv’)

Methods
logistic.rvs(loc=0,scale=1,size=1) :

• random variates

logistic.pdf(x,loc=0,scale=1) :

• probability density function

logistic.cdf(x,loc=0,scale=1) :

• cumulative density function

logistic.sf(x,loc=0,scale=1) :

• survival function (1-cdf — sometimes more accurate)

logistic.ppf(q,loc=0,scale=1) :

• percent point function (inverse of cdf — percentiles)

logistic.isf(q,loc=0,scale=1) :

• inverse survival function (inverse of sf)

logistic.stats(loc=0,scale=1,moments=’mv’) :

• mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’)

logistic.entropy(loc=0,scale=1) :

• (differential) entropy of the RV.

logistic.fit(data,loc=0,scale=1) :

• Parameter estimates for logistic data

Alternatively, the object may be called (as a function) to fix the shape, :
location, and scale parameters returning a “frozen” continuous RV object: :
rv = logistic(loc=0,scale=1) :

• frozen RV object with the same methods but holding the given shape, location, and scale
fixed

Examples

3.18. Statistical functions (scipy.stats) 437

SciPy Reference Guide, Release 0.7

>>> import matplotlib.pyplot as plt
>>> numargs = logistic.numargs
>>> [<shape(s)>] = [0.9,]*numargs
>>> rv = logistic(<shape(s)>)

Display frozen pdf

>>> x = np.linspace(0,np.minimum(rv.dist.b,3))
>>> h=plt.plot(x,rv.pdf(x))

Check accuracy of cdf and ppf

>>> prb = logistic.cdf(x,<shape(s)>)
>>> h=plt.semilogy(np.abs(x-logistic.ppf(prb,c))+1e-20)

Random number generation

>>> R = logistic.rvs(size=100)

Logistic distribution

logistic.pdf(x) = exp(-x)/(1+exp(-x))**2

loggamma()
A log gamma continuous random variable.

Continuous random variables are defined from a standard form and may require some shape parameters to
complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as
given below:

Parameters
x : array-like

quantiles

q : array-like

lower or upper tail probability

<shape(s)> : array-like

shape parameters

loc : array-like, optional

location parameter (default=0)

scale : array-like, optional

scale parameter (default=1)

size : int or tuple of ints, optional

shape of random variates (default computed from input arguments)

moments : string, optional

composed of letters [’mvsk’] specifying which moments to compute where ‘m’
= mean, ‘v’ = variance, ‘s’ = (Fisher’s) skew and ‘k’ = (Fisher’s) kurtosis. (de-
fault=’mv’)

Methods
loggamma.rvs(loc=0,scale=1,size=1) :

• random variates

loggamma.pdf(x,loc=0,scale=1) :

438 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

• probability density function

loggamma.cdf(x,loc=0,scale=1) :

• cumulative density function

loggamma.sf(x,loc=0,scale=1) :

• survival function (1-cdf — sometimes more accurate)

loggamma.ppf(q,loc=0,scale=1) :

• percent point function (inverse of cdf — percentiles)

loggamma.isf(q,loc=0,scale=1) :

• inverse survival function (inverse of sf)

loggamma.stats(loc=0,scale=1,moments=’mv’) :

• mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’)

loggamma.entropy(loc=0,scale=1) :

• (differential) entropy of the RV.

loggamma.fit(data,loc=0,scale=1) :

• Parameter estimates for loggamma data

Alternatively, the object may be called (as a function) to fix the shape, :
location, and scale parameters returning a “frozen” continuous RV object: :
rv = loggamma(loc=0,scale=1) :

• frozen RV object with the same methods but holding the given shape, location, and scale
fixed

Examples

>>> import matplotlib.pyplot as plt
>>> numargs = loggamma.numargs
>>> [<shape(s)>] = [0.9,]*numargs
>>> rv = loggamma(<shape(s)>)

Display frozen pdf

>>> x = np.linspace(0,np.minimum(rv.dist.b,3))
>>> h=plt.plot(x,rv.pdf(x))

Check accuracy of cdf and ppf

>>> prb = loggamma.cdf(x,<shape(s)>)
>>> h=plt.semilogy(np.abs(x-loggamma.ppf(prb,c))+1e-20)

Random number generation

>>> R = loggamma.rvs(size=100)

Log gamma distribution

loggamma.pdf(x,c) = exp(c*x-exp(x)) / gamma(c) for all x, c > 0.

loglaplace()
A log-Laplace continuous random variable.

Continuous random variables are defined from a standard form and may require some shape parameters to
complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as
given below:

3.18. Statistical functions (scipy.stats) 439

SciPy Reference Guide, Release 0.7

Parameters
x : array-like

quantiles

q : array-like

lower or upper tail probability

c : array-like

shape parameters

loc : array-like, optional

location parameter (default=0)

scale : array-like, optional

scale parameter (default=1)

size : int or tuple of ints, optional

shape of random variates (default computed from input arguments)

moments : string, optional

composed of letters [’mvsk’] specifying which moments to compute where ‘m’
= mean, ‘v’ = variance, ‘s’ = (Fisher’s) skew and ‘k’ = (Fisher’s) kurtosis. (de-
fault=’mv’)

Methods
loglaplace.rvs(c,loc=0,scale=1,size=1) :

• random variates

loglaplace.pdf(x,c,loc=0,scale=1) :

• probability density function

loglaplace.cdf(x,c,loc=0,scale=1) :

• cumulative density function

loglaplace.sf(x,c,loc=0,scale=1) :

• survival function (1-cdf — sometimes more accurate)

loglaplace.ppf(q,c,loc=0,scale=1) :

• percent point function (inverse of cdf — percentiles)

loglaplace.isf(q,c,loc=0,scale=1) :

• inverse survival function (inverse of sf)

loglaplace.stats(c,loc=0,scale=1,moments=’mv’) :

• mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’)

loglaplace.entropy(c,loc=0,scale=1) :

• (differential) entropy of the RV.

loglaplace.fit(data,c,loc=0,scale=1) :

• Parameter estimates for loglaplace data

Alternatively, the object may be called (as a function) to fix the shape, :
location, and scale parameters returning a “frozen” continuous RV object: :
rv = loglaplace(c,loc=0,scale=1) :

• frozen RV object with the same methods but holding the given shape, location, and scale
fixed

Examples

440 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

>>> import matplotlib.pyplot as plt
>>> numargs = loglaplace.numargs
>>> [c] = [0.9,]*numargs
>>> rv = loglaplace(c)

Display frozen pdf

>>> x = np.linspace(0,np.minimum(rv.dist.b,3))
>>> h=plt.plot(x,rv.pdf(x))

Check accuracy of cdf and ppf

>>> prb = loglaplace.cdf(x,c)
>>> h=plt.semilogy(np.abs(x-loglaplace.ppf(prb,c))+1e-20)

Random number generation

>>> R = loglaplace.rvs(c,size=100)

Log-Laplace distribution (Log Double Exponential)

loglaplace.pdf(x,c) = c/2*x**(c-1) for 0 < x < 1
= c/2*x**(-c-1) for x >= 1

for c > 0.

lognorm()
A lognormal continuous random variable.

Continuous random variables are defined from a standard form and may require some shape parameters to
complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as
given below:

Parameters
x : array-like

quantiles

q : array-like

lower or upper tail probability

s : array-like

shape parameters

loc : array-like, optional

location parameter (default=0)

scale : array-like, optional

scale parameter (default=1)

size : int or tuple of ints, optional

shape of random variates (default computed from input arguments)

moments : string, optional

composed of letters [’mvsk’] specifying which moments to compute where ‘m’
= mean, ‘v’ = variance, ‘s’ = (Fisher’s) skew and ‘k’ = (Fisher’s) kurtosis. (de-
fault=’mv’)

3.18. Statistical functions (scipy.stats) 441

SciPy Reference Guide, Release 0.7

Methods
lognorm.rvs(s,loc=0,scale=1,size=1) :

• random variates

lognorm.pdf(x,s,loc=0,scale=1) :

• probability density function

lognorm.cdf(x,s,loc=0,scale=1) :

• cumulative density function

lognorm.sf(x,s,loc=0,scale=1) :

• survival function (1-cdf — sometimes more accurate)

lognorm.ppf(q,s,loc=0,scale=1) :

• percent point function (inverse of cdf — percentiles)

lognorm.isf(q,s,loc=0,scale=1) :

• inverse survival function (inverse of sf)

lognorm.stats(s,loc=0,scale=1,moments=’mv’) :

• mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’)

lognorm.entropy(s,loc=0,scale=1) :

• (differential) entropy of the RV.

lognorm.fit(data,s,loc=0,scale=1) :

• Parameter estimates for lognorm data

Alternatively, the object may be called (as a function) to fix the shape, :
location, and scale parameters returning a “frozen” continuous RV object: :
rv = lognorm(s,loc=0,scale=1) :

• frozen RV object with the same methods but holding the given shape, location, and scale
fixed

Examples

>>> import matplotlib.pyplot as plt
>>> numargs = lognorm.numargs
>>> [s] = [0.9,]*numargs
>>> rv = lognorm(s)

Display frozen pdf

>>> x = np.linspace(0,np.minimum(rv.dist.b,3))
>>> h=plt.plot(x,rv.pdf(x))

Check accuracy of cdf and ppf

>>> prb = lognorm.cdf(x,s)
>>> h=plt.semilogy(np.abs(x-lognorm.ppf(prb,c))+1e-20)

Random number generation

>>> R = lognorm.rvs(s,size=100)

442 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

Lognormal distribution

lognorm.pdf(x,s) = 1/(s*x*sqrt(2*pi)) * exp(-1/2*(log(x)/s)**2) for x > 0, s > 0.

If log x is normally distributed with mean mu and variance sigma**2, then x is log-normally distributed with
shape paramter sigma and scale parameter exp(mu).

gilbrat()
A Gilbrat continuous random variable.

Continuous random variables are defined from a standard form and may require some shape parameters to
complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as
given below:

Parameters
x : array-like

quantiles

q : array-like

lower or upper tail probability

<shape(s)> : array-like

shape parameters

loc : array-like, optional

location parameter (default=0)

scale : array-like, optional

scale parameter (default=1)

size : int or tuple of ints, optional

shape of random variates (default computed from input arguments)

moments : string, optional

composed of letters [’mvsk’] specifying which moments to compute where ‘m’
= mean, ‘v’ = variance, ‘s’ = (Fisher’s) skew and ‘k’ = (Fisher’s) kurtosis. (de-
fault=’mv’)

Methods
gilbrat.rvs(loc=0,scale=1,size=1) :

• random variates

gilbrat.pdf(x,loc=0,scale=1) :

• probability density function

gilbrat.cdf(x,loc=0,scale=1) :

• cumulative density function

gilbrat.sf(x,loc=0,scale=1) :

• survival function (1-cdf — sometimes more accurate)

gilbrat.ppf(q,loc=0,scale=1) :

• percent point function (inverse of cdf — percentiles)

gilbrat.isf(q,loc=0,scale=1) :

• inverse survival function (inverse of sf)

gilbrat.stats(loc=0,scale=1,moments=’mv’) :

• mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’)

gilbrat.entropy(loc=0,scale=1) :

• (differential) entropy of the RV.

3.18. Statistical functions (scipy.stats) 443

SciPy Reference Guide, Release 0.7

gilbrat.fit(data,loc=0,scale=1) :

• Parameter estimates for gilbrat data

Alternatively, the object may be called (as a function) to fix the shape, :
location, and scale parameters returning a “frozen” continuous RV object: :
rv = gilbrat(loc=0,scale=1) :

• frozen RV object with the same methods but holding the given shape, location, and scale
fixed

Examples

>>> import matplotlib.pyplot as plt
>>> numargs = gilbrat.numargs
>>> [<shape(s)>] = [0.9,]*numargs
>>> rv = gilbrat(<shape(s)>)

Display frozen pdf

>>> x = np.linspace(0,np.minimum(rv.dist.b,3))
>>> h=plt.plot(x,rv.pdf(x))

Check accuracy of cdf and ppf

>>> prb = gilbrat.cdf(x,<shape(s)>)
>>> h=plt.semilogy(np.abs(x-gilbrat.ppf(prb,c))+1e-20)

Random number generation

>>> R = gilbrat.rvs(size=100)

Gilbrat distribution

gilbrat.pdf(x) = 1/(x*sqrt(2*pi)) * exp(-1/2*(log(x))**2)

lomax()
A Lomax (Pareto of the second kind) continuous random variable.

Continuous random variables are defined from a standard form and may require some shape parameters to
complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as
given below:

Parameters
x : array-like

quantiles

q : array-like

lower or upper tail probability

c : array-like

shape parameters

loc : array-like, optional

location parameter (default=0)

scale : array-like, optional

scale parameter (default=1)

size : int or tuple of ints, optional

444 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

shape of random variates (default computed from input arguments)

moments : string, optional

composed of letters [’mvsk’] specifying which moments to compute where ‘m’
= mean, ‘v’ = variance, ‘s’ = (Fisher’s) skew and ‘k’ = (Fisher’s) kurtosis. (de-
fault=’mv’)

Methods
lomax.rvs(c,loc=0,scale=1,size=1) :

• random variates

lomax.pdf(x,c,loc=0,scale=1) :

• probability density function

lomax.cdf(x,c,loc=0,scale=1) :

• cumulative density function

lomax.sf(x,c,loc=0,scale=1) :

• survival function (1-cdf — sometimes more accurate)

lomax.ppf(q,c,loc=0,scale=1) :

• percent point function (inverse of cdf — percentiles)

lomax.isf(q,c,loc=0,scale=1) :

• inverse survival function (inverse of sf)

lomax.stats(c,loc=0,scale=1,moments=’mv’) :

• mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’)

lomax.entropy(c,loc=0,scale=1) :

• (differential) entropy of the RV.

lomax.fit(data,c,loc=0,scale=1) :

• Parameter estimates for lomax data

Alternatively, the object may be called (as a function) to fix the shape, :
location, and scale parameters returning a “frozen” continuous RV object: :
rv = lomax(c,loc=0,scale=1) :

• frozen RV object with the same methods but holding the given shape, location, and scale
fixed

Examples

>>> import matplotlib.pyplot as plt
>>> numargs = lomax.numargs
>>> [c] = [0.9,]*numargs
>>> rv = lomax(c)

Display frozen pdf

>>> x = np.linspace(0,np.minimum(rv.dist.b,3))
>>> h=plt.plot(x,rv.pdf(x))

Check accuracy of cdf and ppf

>>> prb = lomax.cdf(x,c)
>>> h=plt.semilogy(np.abs(x-lomax.ppf(prb,c))+1e-20)

Random number generation

3.18. Statistical functions (scipy.stats) 445

SciPy Reference Guide, Release 0.7

>>> R = lomax.rvs(c,size=100)

Lomax (Pareto of the second kind) distribution

lomax.pdf(x,c) = c / (1+x)**(c+1) for x >= 0, c > 0.

maxwell()
A Maxwell continuous random variable.

Continuous random variables are defined from a standard form and may require some shape parameters to
complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as
given below:

Parameters
x : array-like

quantiles

q : array-like

lower or upper tail probability

<shape(s)> : array-like

shape parameters

loc : array-like, optional

location parameter (default=0)

scale : array-like, optional

scale parameter (default=1)

size : int or tuple of ints, optional

shape of random variates (default computed from input arguments)

moments : string, optional

composed of letters [’mvsk’] specifying which moments to compute where ‘m’
= mean, ‘v’ = variance, ‘s’ = (Fisher’s) skew and ‘k’ = (Fisher’s) kurtosis. (de-
fault=’mv’)

Methods
maxwell.rvs(loc=0,scale=1,size=1) :

• random variates

maxwell.pdf(x,loc=0,scale=1) :

• probability density function

maxwell.cdf(x,loc=0,scale=1) :

• cumulative density function

maxwell.sf(x,loc=0,scale=1) :

• survival function (1-cdf — sometimes more accurate)

maxwell.ppf(q,loc=0,scale=1) :

• percent point function (inverse of cdf — percentiles)

maxwell.isf(q,loc=0,scale=1) :

• inverse survival function (inverse of sf)

maxwell.stats(loc=0,scale=1,moments=’mv’) :

• mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’)

maxwell.entropy(loc=0,scale=1) :

446 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

• (differential) entropy of the RV.

maxwell.fit(data,loc=0,scale=1) :

• Parameter estimates for maxwell data

Alternatively, the object may be called (as a function) to fix the shape, :
location, and scale parameters returning a “frozen” continuous RV object: :
rv = maxwell(loc=0,scale=1) :

• frozen RV object with the same methods but holding the given shape, location, and scale
fixed

Examples

>>> import matplotlib.pyplot as plt
>>> numargs = maxwell.numargs
>>> [<shape(s)>] = [0.9,]*numargs
>>> rv = maxwell(<shape(s)>)

Display frozen pdf

>>> x = np.linspace(0,np.minimum(rv.dist.b,3))
>>> h=plt.plot(x,rv.pdf(x))

Check accuracy of cdf and ppf

>>> prb = maxwell.cdf(x,<shape(s)>)
>>> h=plt.semilogy(np.abs(x-maxwell.ppf(prb,c))+1e-20)

Random number generation

>>> R = maxwell.rvs(size=100)

Maxwell distribution

maxwell.pdf(x) = sqrt(2/pi) * x**2 * exp(-x**2/2) for x > 0.

mielke()
A Mielke’s Beta-Kappa continuous random variable.

Continuous random variables are defined from a standard form and may require some shape parameters to
complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as
given below:

Parameters
x : array-like

quantiles

q : array-like

lower or upper tail probability

k,s : array-like

shape parameters

loc : array-like, optional

location parameter (default=0)

scale : array-like, optional

scale parameter (default=1)

3.18. Statistical functions (scipy.stats) 447

SciPy Reference Guide, Release 0.7

size : int or tuple of ints, optional

shape of random variates (default computed from input arguments)

moments : string, optional

composed of letters [’mvsk’] specifying which moments to compute where ‘m’
= mean, ‘v’ = variance, ‘s’ = (Fisher’s) skew and ‘k’ = (Fisher’s) kurtosis. (de-
fault=’mv’)

Methods
mielke.rvs(k,s,loc=0,scale=1,size=1) :

• random variates

mielke.pdf(x,k,s,loc=0,scale=1) :

• probability density function

mielke.cdf(x,k,s,loc=0,scale=1) :

• cumulative density function

mielke.sf(x,k,s,loc=0,scale=1) :

• survival function (1-cdf — sometimes more accurate)

mielke.ppf(q,k,s,loc=0,scale=1) :

• percent point function (inverse of cdf — percentiles)

mielke.isf(q,k,s,loc=0,scale=1) :

• inverse survival function (inverse of sf)

mielke.stats(k,s,loc=0,scale=1,moments=’mv’) :

• mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’)

mielke.entropy(k,s,loc=0,scale=1) :

• (differential) entropy of the RV.

mielke.fit(data,k,s,loc=0,scale=1) :

• Parameter estimates for mielke data

Alternatively, the object may be called (as a function) to fix the shape, :
location, and scale parameters returning a “frozen” continuous RV object: :
rv = mielke(k,s,loc=0,scale=1) :

• frozen RV object with the same methods but holding the given shape, location, and scale
fixed

Examples

>>> import matplotlib.pyplot as plt
>>> numargs = mielke.numargs
>>> [k,s] = [0.9,]*numargs
>>> rv = mielke(k,s)

Display frozen pdf

>>> x = np.linspace(0,np.minimum(rv.dist.b,3))
>>> h=plt.plot(x,rv.pdf(x))

Check accuracy of cdf and ppf

>>> prb = mielke.cdf(x,k,s)
>>> h=plt.semilogy(np.abs(x-mielke.ppf(prb,c))+1e-20)

448 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

Random number generation

>>> R = mielke.rvs(k,s,size=100)

Mielke’s Beta-Kappa distribution

mielke.pdf(x,k,s) = k*x**(k-1) / (1+x**s)**(1+k/s) for x > 0.

nakagami()
A Nakagami continuous random variable.

Continuous random variables are defined from a standard form and may require some shape parameters to
complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as
given below:

Parameters
x : array-like

quantiles

q : array-like

lower or upper tail probability

nu : array-like

shape parameters

loc : array-like, optional

location parameter (default=0)

scale : array-like, optional

scale parameter (default=1)

size : int or tuple of ints, optional

shape of random variates (default computed from input arguments)

moments : string, optional

composed of letters [’mvsk’] specifying which moments to compute where ‘m’
= mean, ‘v’ = variance, ‘s’ = (Fisher’s) skew and ‘k’ = (Fisher’s) kurtosis. (de-
fault=’mv’)

Methods
nakagami.rvs(nu,loc=0,scale=1,size=1) :

• random variates

nakagami.pdf(x,nu,loc=0,scale=1) :

• probability density function

nakagami.cdf(x,nu,loc=0,scale=1) :

• cumulative density function

nakagami.sf(x,nu,loc=0,scale=1) :

• survival function (1-cdf — sometimes more accurate)

nakagami.ppf(q,nu,loc=0,scale=1) :

• percent point function (inverse of cdf — percentiles)

nakagami.isf(q,nu,loc=0,scale=1) :

• inverse survival function (inverse of sf)

nakagami.stats(nu,loc=0,scale=1,moments=’mv’) :

• mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’)

3.18. Statistical functions (scipy.stats) 449

SciPy Reference Guide, Release 0.7

nakagami.entropy(nu,loc=0,scale=1) :

• (differential) entropy of the RV.

nakagami.fit(data,nu,loc=0,scale=1) :

• Parameter estimates for nakagami data

Alternatively, the object may be called (as a function) to fix the shape, :
location, and scale parameters returning a “frozen” continuous RV object: :
rv = nakagami(nu,loc=0,scale=1) :

• frozen RV object with the same methods but holding the given shape, location, and scale
fixed

Examples

>>> import matplotlib.pyplot as plt
>>> numargs = nakagami.numargs
>>> [nu] = [0.9,]*numargs
>>> rv = nakagami(nu)

Display frozen pdf

>>> x = np.linspace(0,np.minimum(rv.dist.b,3))
>>> h=plt.plot(x,rv.pdf(x))

Check accuracy of cdf and ppf

>>> prb = nakagami.cdf(x,nu)
>>> h=plt.semilogy(np.abs(x-nakagami.ppf(prb,c))+1e-20)

Random number generation

>>> R = nakagami.rvs(nu,size=100)

Nakagami distribution

nakagami.pdf(x,nu) = 2*nu**nu/gamma(nu) * x**(2*nu-1) * exp(-nu*x**2) for x > 0, nu > 0.

ncx2()
A non-central chi-squared continuous random variable.

Continuous random variables are defined from a standard form and may require some shape parameters to
complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as
given below:

Parameters
x : array-like

quantiles

q : array-like

lower or upper tail probability

df,nc : array-like

shape parameters

loc : array-like, optional

location parameter (default=0)

scale : array-like, optional

450 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

scale parameter (default=1)

size : int or tuple of ints, optional

shape of random variates (default computed from input arguments)

moments : string, optional

composed of letters [’mvsk’] specifying which moments to compute where ‘m’
= mean, ‘v’ = variance, ‘s’ = (Fisher’s) skew and ‘k’ = (Fisher’s) kurtosis. (de-
fault=’mv’)

Methods
ncx2.rvs(df,nc,loc=0,scale=1,size=1) :

• random variates

ncx2.pdf(x,df,nc,loc=0,scale=1) :

• probability density function

ncx2.cdf(x,df,nc,loc=0,scale=1) :

• cumulative density function

ncx2.sf(x,df,nc,loc=0,scale=1) :

• survival function (1-cdf — sometimes more accurate)

ncx2.ppf(q,df,nc,loc=0,scale=1) :

• percent point function (inverse of cdf — percentiles)

ncx2.isf(q,df,nc,loc=0,scale=1) :

• inverse survival function (inverse of sf)

ncx2.stats(df,nc,loc=0,scale=1,moments=’mv’) :

• mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’)

ncx2.entropy(df,nc,loc=0,scale=1) :

• (differential) entropy of the RV.

ncx2.fit(data,df,nc,loc=0,scale=1) :

• Parameter estimates for ncx2 data

Alternatively, the object may be called (as a function) to fix the shape, :
location, and scale parameters returning a “frozen” continuous RV object: :
rv = ncx2(df,nc,loc=0,scale=1) :

• frozen RV object with the same methods but holding the given shape, location, and scale
fixed

Examples

>>> import matplotlib.pyplot as plt
>>> numargs = ncx2.numargs
>>> [df,nc] = [0.9,]*numargs
>>> rv = ncx2(df,nc)

Display frozen pdf

>>> x = np.linspace(0,np.minimum(rv.dist.b,3))
>>> h=plt.plot(x,rv.pdf(x))

Check accuracy of cdf and ppf

3.18. Statistical functions (scipy.stats) 451

SciPy Reference Guide, Release 0.7

>>> prb = ncx2.cdf(x,df,nc)
>>> h=plt.semilogy(np.abs(x-ncx2.ppf(prb,c))+1e-20)

Random number generation

>>> R = ncx2.rvs(df,nc,size=100)

Non-central chi-squared distribution

ncx2.pdf(x,df,nc) = exp(-(nc+df)/2)*1/2*(x/nc)**((df-2)/4)

• I[(df-2)/2](sqrt(nc*x))

for x > 0.

ncf()
A non-central F distribution continuous random variable.

Continuous random variables are defined from a standard form and may require some shape parameters to
complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as
given below:

Parameters
x : array-like

quantiles

q : array-like

lower or upper tail probability

dfn,dfd,nc : array-like

shape parameters

loc : array-like, optional

location parameter (default=0)

scale : array-like, optional

scale parameter (default=1)

size : int or tuple of ints, optional

shape of random variates (default computed from input arguments)

moments : string, optional

composed of letters [’mvsk’] specifying which moments to compute where ‘m’
= mean, ‘v’ = variance, ‘s’ = (Fisher’s) skew and ‘k’ = (Fisher’s) kurtosis. (de-
fault=’mv’)

Methods
ncf.rvs(dfn,dfd,nc,loc=0,scale=1,size=1) :

• random variates

ncf.pdf(x,dfn,dfd,nc,loc=0,scale=1) :

• probability density function

ncf.cdf(x,dfn,dfd,nc,loc=0,scale=1) :

• cumulative density function

ncf.sf(x,dfn,dfd,nc,loc=0,scale=1) :

• survival function (1-cdf — sometimes more accurate)

452 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

ncf.ppf(q,dfn,dfd,nc,loc=0,scale=1) :

• percent point function (inverse of cdf — percentiles)

ncf.isf(q,dfn,dfd,nc,loc=0,scale=1) :

• inverse survival function (inverse of sf)

ncf.stats(dfn,dfd,nc,loc=0,scale=1,moments=’mv’) :

• mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’)

ncf.entropy(dfn,dfd,nc,loc=0,scale=1) :

• (differential) entropy of the RV.

ncf.fit(data,dfn,dfd,nc,loc=0,scale=1) :

• Parameter estimates for ncf data

Alternatively, the object may be called (as a function) to fix the shape, :
location, and scale parameters returning a “frozen” continuous RV object: :
rv = ncf(dfn,dfd,nc,loc=0,scale=1) :

• frozen RV object with the same methods but holding the given shape, location, and scale
fixed

Examples

>>> import matplotlib.pyplot as plt
>>> numargs = ncf.numargs
>>> [dfn,dfd,nc] = [0.9,]*numargs
>>> rv = ncf(dfn,dfd,nc)

Display frozen pdf

>>> x = np.linspace(0,np.minimum(rv.dist.b,3))
>>> h=plt.plot(x,rv.pdf(x))

Check accuracy of cdf and ppf

>>> prb = ncf.cdf(x,dfn,dfd,nc)
>>> h=plt.semilogy(np.abs(x-ncf.ppf(prb,c))+1e-20)

Random number generation

>>> R = ncf.rvs(dfn,dfd,nc,size=100)

Non-central F distribution

ncf.pdf(x,df1,df2,nc) = exp(nc/2 + nc*df1*x/(2*(df1*x+df2)))

• df1**(df1/2) * df2**(df2/2) * x**(df1/2-1)

• (df2+df1*x)**(-(df1+df2)/2)

• gamma(df1/2)*gamma(1+df2/2)

• L^{v1/2-1}^{v2/2}(-nc*v1*x/(2*(v1*x+v2)))

/ (B(v1/2, v2/2) * gamma((v1+v2)/2))

for df1, df2, nc > 0.

3.18. Statistical functions (scipy.stats) 453

SciPy Reference Guide, Release 0.7

t()
Student’s T continuous random variable.

Continuous random variables are defined from a standard form and may require some shape parameters to
complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as
given below:

Parameters
x : array-like

quantiles
q : array-like

lower or upper tail probability
df : array-like

shape parameters
loc : array-like, optional

location parameter (default=0)
scale : array-like, optional

scale parameter (default=1)
size : int or tuple of ints, optional

shape of random variates (default computed from input arguments)
moments : string, optional

composed of letters [’mvsk’] specifying which moments to compute where ‘m’
= mean, ‘v’ = variance, ‘s’ = (Fisher’s) skew and ‘k’ = (Fisher’s) kurtosis. (de-
fault=’mv’)

Methods
t.rvs(df,loc=0,scale=1,size=1) :

• random variates
t.pdf(x,df,loc=0,scale=1) :

• probability density function
t.cdf(x,df,loc=0,scale=1) :

• cumulative density function
t.sf(x,df,loc=0,scale=1) :

• survival function (1-cdf — sometimes more accurate)
t.ppf(q,df,loc=0,scale=1) :

• percent point function (inverse of cdf — percentiles)
t.isf(q,df,loc=0,scale=1) :

• inverse survival function (inverse of sf)
t.stats(df,loc=0,scale=1,moments=’mv’) :

• mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’)
t.entropy(df,loc=0,scale=1) :

• (differential) entropy of the RV.
t.fit(data,df,loc=0,scale=1) :

• Parameter estimates for t data
Alternatively, the object may be called (as a function) to fix the shape, :
location, and scale parameters returning a “frozen” continuous RV object: :
rv = t(df,loc=0,scale=1) :

• frozen RV object with the same methods but holding the given shape, location, and scale
fixed

454 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

Examples

>>> import matplotlib.pyplot as plt
>>> numargs = t.numargs
>>> [df] = [0.9,]*numargs
>>> rv = t(df)

Display frozen pdf

>>> x = np.linspace(0,np.minimum(rv.dist.b,3))
>>> h=plt.plot(x,rv.pdf(x))

Check accuracy of cdf and ppf

>>> prb = t.cdf(x,df)
>>> h=plt.semilogy(np.abs(x-t.ppf(prb,c))+1e-20)

Random number generation

>>> R = t.rvs(df,size=100)

Student’s T distribution

gamma((df+1)/2)

t.pdf(x,df) = ———————————————–
sqrt(pi*df)*gamma(df/2)*(1+x**2/df)**((df+1)/2)

for df > 0.

nct()
A Noncentral T continuous random variable.

Continuous random variables are defined from a standard form and may require some shape parameters to
complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as
given below:

Parameters
x : array-like

quantiles

q : array-like

lower or upper tail probability

df,nc : array-like

shape parameters

loc : array-like, optional

location parameter (default=0)

scale : array-like, optional

scale parameter (default=1)

size : int or tuple of ints, optional

shape of random variates (default computed from input arguments)

moments : string, optional

3.18. Statistical functions (scipy.stats) 455

SciPy Reference Guide, Release 0.7

composed of letters [’mvsk’] specifying which moments to compute where ‘m’
= mean, ‘v’ = variance, ‘s’ = (Fisher’s) skew and ‘k’ = (Fisher’s) kurtosis. (de-
fault=’mv’)

Methods
nct.rvs(df,nc,loc=0,scale=1,size=1) :

• random variates

nct.pdf(x,df,nc,loc=0,scale=1) :

• probability density function

nct.cdf(x,df,nc,loc=0,scale=1) :

• cumulative density function

nct.sf(x,df,nc,loc=0,scale=1) :

• survival function (1-cdf — sometimes more accurate)

nct.ppf(q,df,nc,loc=0,scale=1) :

• percent point function (inverse of cdf — percentiles)

nct.isf(q,df,nc,loc=0,scale=1) :

• inverse survival function (inverse of sf)

nct.stats(df,nc,loc=0,scale=1,moments=’mv’) :

• mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’)

nct.entropy(df,nc,loc=0,scale=1) :

• (differential) entropy of the RV.

nct.fit(data,df,nc,loc=0,scale=1) :

• Parameter estimates for nct data

Alternatively, the object may be called (as a function) to fix the shape, :
location, and scale parameters returning a “frozen” continuous RV object: :
rv = nct(df,nc,loc=0,scale=1) :

• frozen RV object with the same methods but holding the given shape, location, and scale
fixed

Examples

>>> import matplotlib.pyplot as plt
>>> numargs = nct.numargs
>>> [df,nc] = [0.9,]*numargs
>>> rv = nct(df,nc)

Display frozen pdf

>>> x = np.linspace(0,np.minimum(rv.dist.b,3))
>>> h=plt.plot(x,rv.pdf(x))

Check accuracy of cdf and ppf

>>> prb = nct.cdf(x,df,nc)
>>> h=plt.semilogy(np.abs(x-nct.ppf(prb,c))+1e-20)

Random number generation

456 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

>>> R = nct.rvs(df,nc,size=100)

Non-central Student T distribution

df**(df/2) * gamma(df+1)

nct.pdf(x,df,nc) = ————————————————–
2**df*exp(nc**2/2)*(df+x**2)**(df/2) * gamma(df/2)

for df > 0, nc > 0.

pareto()
A Pareto continuous random variable.

Continuous random variables are defined from a standard form and may require some shape parameters to
complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as
given below:

Parameters
x : array-like

quantiles

q : array-like

lower or upper tail probability

b : array-like

shape parameters

loc : array-like, optional

location parameter (default=0)

scale : array-like, optional

scale parameter (default=1)

size : int or tuple of ints, optional

shape of random variates (default computed from input arguments)

moments : string, optional

composed of letters [’mvsk’] specifying which moments to compute where ‘m’
= mean, ‘v’ = variance, ‘s’ = (Fisher’s) skew and ‘k’ = (Fisher’s) kurtosis. (de-
fault=’mv’)

Methods
pareto.rvs(b,loc=0,scale=1,size=1) :

• random variates

pareto.pdf(x,b,loc=0,scale=1) :

• probability density function

pareto.cdf(x,b,loc=0,scale=1) :

• cumulative density function

pareto.sf(x,b,loc=0,scale=1) :

• survival function (1-cdf — sometimes more accurate)

pareto.ppf(q,b,loc=0,scale=1) :

• percent point function (inverse of cdf — percentiles)

3.18. Statistical functions (scipy.stats) 457

SciPy Reference Guide, Release 0.7

pareto.isf(q,b,loc=0,scale=1) :

• inverse survival function (inverse of sf)

pareto.stats(b,loc=0,scale=1,moments=’mv’) :

• mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’)

pareto.entropy(b,loc=0,scale=1) :

• (differential) entropy of the RV.

pareto.fit(data,b,loc=0,scale=1) :

• Parameter estimates for pareto data

Alternatively, the object may be called (as a function) to fix the shape, :
location, and scale parameters returning a “frozen” continuous RV object: :
rv = pareto(b,loc=0,scale=1) :

• frozen RV object with the same methods but holding the given shape, location, and scale
fixed

Examples

>>> import matplotlib.pyplot as plt
>>> numargs = pareto.numargs
>>> [b] = [0.9,]*numargs
>>> rv = pareto(b)

Display frozen pdf

>>> x = np.linspace(0,np.minimum(rv.dist.b,3))
>>> h=plt.plot(x,rv.pdf(x))

Check accuracy of cdf and ppf

>>> prb = pareto.cdf(x,b)
>>> h=plt.semilogy(np.abs(x-pareto.ppf(prb,c))+1e-20)

Random number generation

>>> R = pareto.rvs(b,size=100)

Pareto distribution

pareto.pdf(x,b) = b/x**(b+1) for x >= 1, b > 0.

powerlaw()
A power-function continuous random variable.

Continuous random variables are defined from a standard form and may require some shape parameters to
complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as
given below:

Parameters
x : array-like

quantiles

q : array-like

lower or upper tail probability

a : array-like

458 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

shape parameters

loc : array-like, optional

location parameter (default=0)

scale : array-like, optional

scale parameter (default=1)

size : int or tuple of ints, optional

shape of random variates (default computed from input arguments)

moments : string, optional

composed of letters [’mvsk’] specifying which moments to compute where ‘m’
= mean, ‘v’ = variance, ‘s’ = (Fisher’s) skew and ‘k’ = (Fisher’s) kurtosis. (de-
fault=’mv’)

Methods
powerlaw.rvs(a,loc=0,scale=1,size=1) :

• random variates

powerlaw.pdf(x,a,loc=0,scale=1) :

• probability density function

powerlaw.cdf(x,a,loc=0,scale=1) :

• cumulative density function

powerlaw.sf(x,a,loc=0,scale=1) :

• survival function (1-cdf — sometimes more accurate)

powerlaw.ppf(q,a,loc=0,scale=1) :

• percent point function (inverse of cdf — percentiles)

powerlaw.isf(q,a,loc=0,scale=1) :

• inverse survival function (inverse of sf)

powerlaw.stats(a,loc=0,scale=1,moments=’mv’) :

• mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’)

powerlaw.entropy(a,loc=0,scale=1) :

• (differential) entropy of the RV.

powerlaw.fit(data,a,loc=0,scale=1) :

• Parameter estimates for powerlaw data

Alternatively, the object may be called (as a function) to fix the shape, :
location, and scale parameters returning a “frozen” continuous RV object: :
rv = powerlaw(a,loc=0,scale=1) :

• frozen RV object with the same methods but holding the given shape, location, and scale
fixed

Examples

>>> import matplotlib.pyplot as plt
>>> numargs = powerlaw.numargs
>>> [a] = [0.9,]*numargs
>>> rv = powerlaw(a)

Display frozen pdf

3.18. Statistical functions (scipy.stats) 459

SciPy Reference Guide, Release 0.7

>>> x = np.linspace(0,np.minimum(rv.dist.b,3))
>>> h=plt.plot(x,rv.pdf(x))

Check accuracy of cdf and ppf

>>> prb = powerlaw.cdf(x,a)
>>> h=plt.semilogy(np.abs(x-powerlaw.ppf(prb,c))+1e-20)

Random number generation

>>> R = powerlaw.rvs(a,size=100)

Power-function distribution

powerlaw.pdf(x,a) = a**x**(a-1) for 0 <= x <= 1, a > 0.

powerlognorm()
A power log-normal continuous random variable.

Continuous random variables are defined from a standard form and may require some shape parameters to
complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as
given below:

Parameters
x : array-like

quantiles

q : array-like

lower or upper tail probability

c,s : array-like

shape parameters

loc : array-like, optional

location parameter (default=0)

scale : array-like, optional

scale parameter (default=1)

size : int or tuple of ints, optional

shape of random variates (default computed from input arguments)

moments : string, optional

composed of letters [’mvsk’] specifying which moments to compute where ‘m’
= mean, ‘v’ = variance, ‘s’ = (Fisher’s) skew and ‘k’ = (Fisher’s) kurtosis. (de-
fault=’mv’)

Methods
powerlognorm.rvs(c,s,loc=0,scale=1,size=1) :

• random variates

powerlognorm.pdf(x,c,s,loc=0,scale=1) :

• probability density function

powerlognorm.cdf(x,c,s,loc=0,scale=1) :

• cumulative density function

powerlognorm.sf(x,c,s,loc=0,scale=1) :

• survival function (1-cdf — sometimes more accurate)

460 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

powerlognorm.ppf(q,c,s,loc=0,scale=1) :

• percent point function (inverse of cdf — percentiles)

powerlognorm.isf(q,c,s,loc=0,scale=1) :

• inverse survival function (inverse of sf)

powerlognorm.stats(c,s,loc=0,scale=1,moments=’mv’) :

• mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’)

powerlognorm.entropy(c,s,loc=0,scale=1) :

• (differential) entropy of the RV.

powerlognorm.fit(data,c,s,loc=0,scale=1) :

• Parameter estimates for powerlognorm data

Alternatively, the object may be called (as a function) to fix the shape, :
location, and scale parameters returning a “frozen” continuous RV object: :
rv = powerlognorm(c,s,loc=0,scale=1) :

• frozen RV object with the same methods but holding the given shape, location, and scale
fixed

Examples

>>> import matplotlib.pyplot as plt
>>> numargs = powerlognorm.numargs
>>> [c,s] = [0.9,]*numargs
>>> rv = powerlognorm(c,s)

Display frozen pdf

>>> x = np.linspace(0,np.minimum(rv.dist.b,3))
>>> h=plt.plot(x,rv.pdf(x))

Check accuracy of cdf and ppf

>>> prb = powerlognorm.cdf(x,c,s)
>>> h=plt.semilogy(np.abs(x-powerlognorm.ppf(prb,c))+1e-20)

Random number generation

>>> R = powerlognorm.rvs(c,s,size=100)

Power log-normal distribution

powerlognorm.pdf(x,c,s) = c/(x*s) * phi(log(x)/s) * (Phi(-log(x)/s))**(c-1) where phi is the normal pdf, and Phi
is the normal cdf, and x > 0, s,c > 0.

powernorm()
A power normal continuous random variable.

Continuous random variables are defined from a standard form and may require some shape parameters to
complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as
given below:

Parameters
x : array-like

quantiles

3.18. Statistical functions (scipy.stats) 461

SciPy Reference Guide, Release 0.7

q : array-like

lower or upper tail probability

c : array-like

shape parameters

loc : array-like, optional

location parameter (default=0)

scale : array-like, optional

scale parameter (default=1)

size : int or tuple of ints, optional

shape of random variates (default computed from input arguments)

moments : string, optional

composed of letters [’mvsk’] specifying which moments to compute where ‘m’
= mean, ‘v’ = variance, ‘s’ = (Fisher’s) skew and ‘k’ = (Fisher’s) kurtosis. (de-
fault=’mv’)

Methods
powernorm.rvs(c,loc=0,scale=1,size=1) :

• random variates

powernorm.pdf(x,c,loc=0,scale=1) :

• probability density function

powernorm.cdf(x,c,loc=0,scale=1) :

• cumulative density function

powernorm.sf(x,c,loc=0,scale=1) :

• survival function (1-cdf — sometimes more accurate)

powernorm.ppf(q,c,loc=0,scale=1) :

• percent point function (inverse of cdf — percentiles)

powernorm.isf(q,c,loc=0,scale=1) :

• inverse survival function (inverse of sf)

powernorm.stats(c,loc=0,scale=1,moments=’mv’) :

• mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’)

powernorm.entropy(c,loc=0,scale=1) :

• (differential) entropy of the RV.

powernorm.fit(data,c,loc=0,scale=1) :

• Parameter estimates for powernorm data

Alternatively, the object may be called (as a function) to fix the shape, :
location, and scale parameters returning a “frozen” continuous RV object: :
rv = powernorm(c,loc=0,scale=1) :

• frozen RV object with the same methods but holding the given shape, location, and scale
fixed

462 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

Examples

>>> import matplotlib.pyplot as plt
>>> numargs = powernorm.numargs
>>> [c] = [0.9,]*numargs
>>> rv = powernorm(c)

Display frozen pdf

>>> x = np.linspace(0,np.minimum(rv.dist.b,3))
>>> h=plt.plot(x,rv.pdf(x))

Check accuracy of cdf and ppf

>>> prb = powernorm.cdf(x,c)
>>> h=plt.semilogy(np.abs(x-powernorm.ppf(prb,c))+1e-20)

Random number generation

>>> R = powernorm.rvs(c,size=100)

Power normal distribution

powernorm.pdf(x,c) = c * phi(x)*(Phi(-x))**(c-1) where phi is the normal pdf, and Phi is the normal cdf, and x
> 0, c > 0.

rdist()
An R-distributed continuous random variable.

Continuous random variables are defined from a standard form and may require some shape parameters to
complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as
given below:

Parameters
x : array-like

quantiles

q : array-like

lower or upper tail probability

c : array-like

shape parameters

loc : array-like, optional

location parameter (default=0)

scale : array-like, optional

scale parameter (default=1)

size : int or tuple of ints, optional

shape of random variates (default computed from input arguments)

moments : string, optional

composed of letters [’mvsk’] specifying which moments to compute where ‘m’
= mean, ‘v’ = variance, ‘s’ = (Fisher’s) skew and ‘k’ = (Fisher’s) kurtosis. (de-
fault=’mv’)

Methods
rdist.rvs(c,loc=0,scale=1,size=1) :

3.18. Statistical functions (scipy.stats) 463

SciPy Reference Guide, Release 0.7

• random variates

rdist.pdf(x,c,loc=0,scale=1) :

• probability density function

rdist.cdf(x,c,loc=0,scale=1) :

• cumulative density function

rdist.sf(x,c,loc=0,scale=1) :

• survival function (1-cdf — sometimes more accurate)

rdist.ppf(q,c,loc=0,scale=1) :

• percent point function (inverse of cdf — percentiles)

rdist.isf(q,c,loc=0,scale=1) :

• inverse survival function (inverse of sf)

rdist.stats(c,loc=0,scale=1,moments=’mv’) :

• mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’)

rdist.entropy(c,loc=0,scale=1) :

• (differential) entropy of the RV.

rdist.fit(data,c,loc=0,scale=1) :

• Parameter estimates for rdist data

Alternatively, the object may be called (as a function) to fix the shape, :
location, and scale parameters returning a “frozen” continuous RV object: :
rv = rdist(c,loc=0,scale=1) :

• frozen RV object with the same methods but holding the given shape, location, and scale
fixed

Examples

>>> import matplotlib.pyplot as plt
>>> numargs = rdist.numargs
>>> [c] = [0.9,]*numargs
>>> rv = rdist(c)

Display frozen pdf

>>> x = np.linspace(0,np.minimum(rv.dist.b,3))
>>> h=plt.plot(x,rv.pdf(x))

Check accuracy of cdf and ppf

>>> prb = rdist.cdf(x,c)
>>> h=plt.semilogy(np.abs(x-rdist.ppf(prb,c))+1e-20)

Random number generation

>>> R = rdist.rvs(c,size=100)

R-distribution

rdist.pdf(x,c) = (1-x**2)**(c/2-1) / B(1/2, c/2) for -1 <= x <= 1, c > 0.

464 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

reciprocal()
A reciprocal continuous random variable.

Continuous random variables are defined from a standard form and may require some shape parameters to
complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as
given below:

Parameters
x : array-like

quantiles
q : array-like

lower or upper tail probability
a,b : array-like

shape parameters
loc : array-like, optional

location parameter (default=0)
scale : array-like, optional

scale parameter (default=1)
size : int or tuple of ints, optional

shape of random variates (default computed from input arguments)
moments : string, optional

composed of letters [’mvsk’] specifying which moments to compute where ‘m’
= mean, ‘v’ = variance, ‘s’ = (Fisher’s) skew and ‘k’ = (Fisher’s) kurtosis. (de-
fault=’mv’)

Methods
reciprocal.rvs(a,b,loc=0,scale=1,size=1) :

• random variates
reciprocal.pdf(x,a,b,loc=0,scale=1) :

• probability density function
reciprocal.cdf(x,a,b,loc=0,scale=1) :

• cumulative density function
reciprocal.sf(x,a,b,loc=0,scale=1) :

• survival function (1-cdf — sometimes more accurate)
reciprocal.ppf(q,a,b,loc=0,scale=1) :

• percent point function (inverse of cdf — percentiles)
reciprocal.isf(q,a,b,loc=0,scale=1) :

• inverse survival function (inverse of sf)
reciprocal.stats(a,b,loc=0,scale=1,moments=’mv’) :

• mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’)
reciprocal.entropy(a,b,loc=0,scale=1) :

• (differential) entropy of the RV.
reciprocal.fit(data,a,b,loc=0,scale=1) :

• Parameter estimates for reciprocal data
Alternatively, the object may be called (as a function) to fix the shape, :
location, and scale parameters returning a “frozen” continuous RV object: :
rv = reciprocal(a,b,loc=0,scale=1) :

• frozen RV object with the same methods but holding the given shape, location, and scale
fixed

3.18. Statistical functions (scipy.stats) 465

SciPy Reference Guide, Release 0.7

Examples

>>> import matplotlib.pyplot as plt
>>> numargs = reciprocal.numargs
>>> [a,b] = [0.9,]*numargs
>>> rv = reciprocal(a,b)

Display frozen pdf

>>> x = np.linspace(0,np.minimum(rv.dist.b,3))
>>> h=plt.plot(x,rv.pdf(x))

Check accuracy of cdf and ppf

>>> prb = reciprocal.cdf(x,a,b)
>>> h=plt.semilogy(np.abs(x-reciprocal.ppf(prb,c))+1e-20)

Random number generation

>>> R = reciprocal.rvs(a,b,size=100)

Reciprocal distribution

reciprocal.pdf(x,a,b) = 1/(x*log(b/a)) for a <= x <= b, a,b > 0.

rayleigh()
A Rayleigh continuous random variable.

Continuous random variables are defined from a standard form and may require some shape parameters to
complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as
given below:

Parameters
x : array-like

quantiles

q : array-like

lower or upper tail probability

<shape(s)> : array-like

shape parameters

loc : array-like, optional

location parameter (default=0)

scale : array-like, optional

scale parameter (default=1)

size : int or tuple of ints, optional

shape of random variates (default computed from input arguments)

moments : string, optional

composed of letters [’mvsk’] specifying which moments to compute where ‘m’
= mean, ‘v’ = variance, ‘s’ = (Fisher’s) skew and ‘k’ = (Fisher’s) kurtosis. (de-
fault=’mv’)

Methods
rayleigh.rvs(loc=0,scale=1,size=1) :

• random variates

466 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

rayleigh.pdf(x,loc=0,scale=1) :
• probability density function

rayleigh.cdf(x,loc=0,scale=1) :
• cumulative density function

rayleigh.sf(x,loc=0,scale=1) :
• survival function (1-cdf — sometimes more accurate)

rayleigh.ppf(q,loc=0,scale=1) :
• percent point function (inverse of cdf — percentiles)

rayleigh.isf(q,loc=0,scale=1) :
• inverse survival function (inverse of sf)

rayleigh.stats(loc=0,scale=1,moments=’mv’) :
• mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’)

rayleigh.entropy(loc=0,scale=1) :
• (differential) entropy of the RV.

rayleigh.fit(data,loc=0,scale=1) :
• Parameter estimates for rayleigh data

Alternatively, the object may be called (as a function) to fix the shape, :
location, and scale parameters returning a “frozen” continuous RV object: :
rv = rayleigh(loc=0,scale=1) :

• frozen RV object with the same methods but holding the given shape, location, and scale
fixed

Examples

>>> import matplotlib.pyplot as plt
>>> numargs = rayleigh.numargs
>>> [<shape(s)>] = [0.9,]*numargs
>>> rv = rayleigh(<shape(s)>)

Display frozen pdf

>>> x = np.linspace(0,np.minimum(rv.dist.b,3))
>>> h=plt.plot(x,rv.pdf(x))

Check accuracy of cdf and ppf

>>> prb = rayleigh.cdf(x,<shape(s)>)
>>> h=plt.semilogy(np.abs(x-rayleigh.ppf(prb,c))+1e-20)

Random number generation

>>> R = rayleigh.rvs(size=100)

Rayleigh distribution

rayleigh.pdf(r) = r * exp(-r**2/2) for x >= 0.

rice()
A Rice continuous random variable.

Continuous random variables are defined from a standard form and may require some shape parameters to
complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as
given below:

3.18. Statistical functions (scipy.stats) 467

SciPy Reference Guide, Release 0.7

Parameters
x : array-like

quantiles

q : array-like

lower or upper tail probability

b : array-like

shape parameters

loc : array-like, optional

location parameter (default=0)

scale : array-like, optional

scale parameter (default=1)

size : int or tuple of ints, optional

shape of random variates (default computed from input arguments)

moments : string, optional

composed of letters [’mvsk’] specifying which moments to compute where ‘m’
= mean, ‘v’ = variance, ‘s’ = (Fisher’s) skew and ‘k’ = (Fisher’s) kurtosis. (de-
fault=’mv’)

Methods
rice.rvs(b,loc=0,scale=1,size=1) :

• random variates

rice.pdf(x,b,loc=0,scale=1) :

• probability density function

rice.cdf(x,b,loc=0,scale=1) :

• cumulative density function

rice.sf(x,b,loc=0,scale=1) :

• survival function (1-cdf — sometimes more accurate)

rice.ppf(q,b,loc=0,scale=1) :

• percent point function (inverse of cdf — percentiles)

rice.isf(q,b,loc=0,scale=1) :

• inverse survival function (inverse of sf)

rice.stats(b,loc=0,scale=1,moments=’mv’) :

• mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’)

rice.entropy(b,loc=0,scale=1) :

• (differential) entropy of the RV.

rice.fit(data,b,loc=0,scale=1) :

• Parameter estimates for rice data

Alternatively, the object may be called (as a function) to fix the shape, :
location, and scale parameters returning a “frozen” continuous RV object: :
rv = rice(b,loc=0,scale=1) :

• frozen RV object with the same methods but holding the given shape, location, and scale
fixed

Examples

468 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

>>> import matplotlib.pyplot as plt
>>> numargs = rice.numargs
>>> [b] = [0.9,]*numargs
>>> rv = rice(b)

Display frozen pdf

>>> x = np.linspace(0,np.minimum(rv.dist.b,3))
>>> h=plt.plot(x,rv.pdf(x))

Check accuracy of cdf and ppf

>>> prb = rice.cdf(x,b)
>>> h=plt.semilogy(np.abs(x-rice.ppf(prb,c))+1e-20)

Random number generation

>>> R = rice.rvs(b,size=100)

Rician distribution

rice.pdf(x,b) = x * exp(-(x**2+b**2)/2) * I[0](x*b) for x > 0, b > 0.

recipinvgauss()
A reciprocal inverse Gaussian continuous random variable.

Continuous random variables are defined from a standard form and may require some shape parameters to
complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as
given below:

Parameters
x : array-like

quantiles

q : array-like

lower or upper tail probability

mu : array-like

shape parameters

loc : array-like, optional

location parameter (default=0)

scale : array-like, optional

scale parameter (default=1)

size : int or tuple of ints, optional

shape of random variates (default computed from input arguments)

moments : string, optional

composed of letters [’mvsk’] specifying which moments to compute where ‘m’
= mean, ‘v’ = variance, ‘s’ = (Fisher’s) skew and ‘k’ = (Fisher’s) kurtosis. (de-
fault=’mv’)

Methods
recipinvgauss.rvs(mu,loc=0,scale=1,size=1) :

• random variates

recipinvgauss.pdf(x,mu,loc=0,scale=1) :

3.18. Statistical functions (scipy.stats) 469

SciPy Reference Guide, Release 0.7

• probability density function

recipinvgauss.cdf(x,mu,loc=0,scale=1) :

• cumulative density function

recipinvgauss.sf(x,mu,loc=0,scale=1) :

• survival function (1-cdf — sometimes more accurate)

recipinvgauss.ppf(q,mu,loc=0,scale=1) :

• percent point function (inverse of cdf — percentiles)

recipinvgauss.isf(q,mu,loc=0,scale=1) :

• inverse survival function (inverse of sf)

recipinvgauss.stats(mu,loc=0,scale=1,moments=’mv’) :

• mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’)

recipinvgauss.entropy(mu,loc=0,scale=1) :

• (differential) entropy of the RV.

recipinvgauss.fit(data,mu,loc=0,scale=1) :

• Parameter estimates for recipinvgauss data

Alternatively, the object may be called (as a function) to fix the shape, :
location, and scale parameters returning a “frozen” continuous RV object: :
rv = recipinvgauss(mu,loc=0,scale=1) :

• frozen RV object with the same methods but holding the given shape, location, and scale
fixed

Examples

>>> import matplotlib.pyplot as plt
>>> numargs = recipinvgauss.numargs
>>> [mu] = [0.9,]*numargs
>>> rv = recipinvgauss(mu)

Display frozen pdf

>>> x = np.linspace(0,np.minimum(rv.dist.b,3))
>>> h=plt.plot(x,rv.pdf(x))

Check accuracy of cdf and ppf

>>> prb = recipinvgauss.cdf(x,mu)
>>> h=plt.semilogy(np.abs(x-recipinvgauss.ppf(prb,c))+1e-20)

Random number generation

>>> R = recipinvgauss.rvs(mu,size=100)

Reciprocal inverse Gaussian

recipinvgauss.pdf(x, mu) = 1/sqrt(2*pi*x) * exp(-(1-mu*x)**2/(2*x*mu**2)) for x >= 0.

semicircular()
A semicircular continuous random variable.

Continuous random variables are defined from a standard form and may require some shape parameters to
complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as
given below:

470 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

Parameters
x : array-like

quantiles

q : array-like

lower or upper tail probability

<shape(s)> : array-like

shape parameters

loc : array-like, optional

location parameter (default=0)

scale : array-like, optional

scale parameter (default=1)

size : int or tuple of ints, optional

shape of random variates (default computed from input arguments)

moments : string, optional

composed of letters [’mvsk’] specifying which moments to compute where ‘m’
= mean, ‘v’ = variance, ‘s’ = (Fisher’s) skew and ‘k’ = (Fisher’s) kurtosis. (de-
fault=’mv’)

Methods
semicircular.rvs(loc=0,scale=1,size=1) :

• random variates

semicircular.pdf(x,loc=0,scale=1) :

• probability density function

semicircular.cdf(x,loc=0,scale=1) :

• cumulative density function

semicircular.sf(x,loc=0,scale=1) :

• survival function (1-cdf — sometimes more accurate)

semicircular.ppf(q,loc=0,scale=1) :

• percent point function (inverse of cdf — percentiles)

semicircular.isf(q,loc=0,scale=1) :

• inverse survival function (inverse of sf)

semicircular.stats(loc=0,scale=1,moments=’mv’) :

• mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’)

semicircular.entropy(loc=0,scale=1) :

• (differential) entropy of the RV.

semicircular.fit(data,loc=0,scale=1) :

• Parameter estimates for semicircular data

Alternatively, the object may be called (as a function) to fix the shape, :
location, and scale parameters returning a “frozen” continuous RV object: :
rv = semicircular(loc=0,scale=1) :

• frozen RV object with the same methods but holding the given shape, location, and scale
fixed

Examples

3.18. Statistical functions (scipy.stats) 471

SciPy Reference Guide, Release 0.7

>>> import matplotlib.pyplot as plt
>>> numargs = semicircular.numargs
>>> [<shape(s)>] = [0.9,]*numargs
>>> rv = semicircular(<shape(s)>)

Display frozen pdf

>>> x = np.linspace(0,np.minimum(rv.dist.b,3))
>>> h=plt.plot(x,rv.pdf(x))

Check accuracy of cdf and ppf

>>> prb = semicircular.cdf(x,<shape(s)>)
>>> h=plt.semilogy(np.abs(x-semicircular.ppf(prb,c))+1e-20)

Random number generation

>>> R = semicircular.rvs(size=100)

Semicircular distribution

semicircular.pdf(x) = 2/pi * sqrt(1-x**2) for -1 <= x <= 1.

triang()
A Triangular continuous random variable.

Continuous random variables are defined from a standard form and may require some shape parameters to
complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as
given below:

Parameters
x : array-like

quantiles

q : array-like

lower or upper tail probability

c : array-like

shape parameters

loc : array-like, optional

location parameter (default=0)

scale : array-like, optional

scale parameter (default=1)

size : int or tuple of ints, optional

shape of random variates (default computed from input arguments)

moments : string, optional

composed of letters [’mvsk’] specifying which moments to compute where ‘m’
= mean, ‘v’ = variance, ‘s’ = (Fisher’s) skew and ‘k’ = (Fisher’s) kurtosis. (de-
fault=’mv’)

Methods
triang.rvs(c,loc=0,scale=1,size=1) :

• random variates

triang.pdf(x,c,loc=0,scale=1) :

472 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

• probability density function

triang.cdf(x,c,loc=0,scale=1) :

• cumulative density function

triang.sf(x,c,loc=0,scale=1) :

• survival function (1-cdf — sometimes more accurate)

triang.ppf(q,c,loc=0,scale=1) :

• percent point function (inverse of cdf — percentiles)

triang.isf(q,c,loc=0,scale=1) :

• inverse survival function (inverse of sf)

triang.stats(c,loc=0,scale=1,moments=’mv’) :

• mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’)

triang.entropy(c,loc=0,scale=1) :

• (differential) entropy of the RV.

triang.fit(data,c,loc=0,scale=1) :

• Parameter estimates for triang data

Alternatively, the object may be called (as a function) to fix the shape, :
location, and scale parameters returning a “frozen” continuous RV object: :
rv = triang(c,loc=0,scale=1) :

• frozen RV object with the same methods but holding the given shape, location, and scale
fixed

Examples

>>> import matplotlib.pyplot as plt
>>> numargs = triang.numargs
>>> [c] = [0.9,]*numargs
>>> rv = triang(c)

Display frozen pdf

>>> x = np.linspace(0,np.minimum(rv.dist.b,3))
>>> h=plt.plot(x,rv.pdf(x))

Check accuracy of cdf and ppf

>>> prb = triang.cdf(x,c)
>>> h=plt.semilogy(np.abs(x-triang.ppf(prb,c))+1e-20)

Random number generation

>>> R = triang.rvs(c,size=100)

Triangular distribution

up-sloping line from loc to (loc + c*scale) and then downsloping for (loc + c*scale) to (loc+scale).

•standard form is in the range [0,1] with c the mode.

•location parameter shifts the start to loc

•scale changes the width from 1 to scale

3.18. Statistical functions (scipy.stats) 473

SciPy Reference Guide, Release 0.7

truncexpon()
A truncated exponential continuous random variable.

Continuous random variables are defined from a standard form and may require some shape parameters to
complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as
given below:

Parameters
x : array-like

quantiles
q : array-like

lower or upper tail probability
b : array-like

shape parameters
loc : array-like, optional

location parameter (default=0)
scale : array-like, optional

scale parameter (default=1)
size : int or tuple of ints, optional

shape of random variates (default computed from input arguments)
moments : string, optional

composed of letters [’mvsk’] specifying which moments to compute where ‘m’
= mean, ‘v’ = variance, ‘s’ = (Fisher’s) skew and ‘k’ = (Fisher’s) kurtosis. (de-
fault=’mv’)

Methods
truncexpon.rvs(b,loc=0,scale=1,size=1) :

• random variates
truncexpon.pdf(x,b,loc=0,scale=1) :

• probability density function
truncexpon.cdf(x,b,loc=0,scale=1) :

• cumulative density function
truncexpon.sf(x,b,loc=0,scale=1) :

• survival function (1-cdf — sometimes more accurate)
truncexpon.ppf(q,b,loc=0,scale=1) :

• percent point function (inverse of cdf — percentiles)
truncexpon.isf(q,b,loc=0,scale=1) :

• inverse survival function (inverse of sf)
truncexpon.stats(b,loc=0,scale=1,moments=’mv’) :

• mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’)
truncexpon.entropy(b,loc=0,scale=1) :

• (differential) entropy of the RV.
truncexpon.fit(data,b,loc=0,scale=1) :

• Parameter estimates for truncexpon data
Alternatively, the object may be called (as a function) to fix the shape, :
location, and scale parameters returning a “frozen” continuous RV object: :
rv = truncexpon(b,loc=0,scale=1) :

• frozen RV object with the same methods but holding the given shape, location, and scale
fixed

474 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

Examples

>>> import matplotlib.pyplot as plt
>>> numargs = truncexpon.numargs
>>> [b] = [0.9,]*numargs
>>> rv = truncexpon(b)

Display frozen pdf

>>> x = np.linspace(0,np.minimum(rv.dist.b,3))
>>> h=plt.plot(x,rv.pdf(x))

Check accuracy of cdf and ppf

>>> prb = truncexpon.cdf(x,b)
>>> h=plt.semilogy(np.abs(x-truncexpon.ppf(prb,c))+1e-20)

Random number generation

>>> R = truncexpon.rvs(b,size=100)

Truncated exponential distribution

truncexpon.pdf(x,b) = exp(-x)/(1-exp(-b)) for 0 < x < b.

truncnorm()
A truncated normal continuous random variable.

Continuous random variables are defined from a standard form and may require some shape parameters to
complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as
given below:

Parameters
x : array-like

quantiles

q : array-like

lower or upper tail probability

a,b : array-like

shape parameters

loc : array-like, optional

location parameter (default=0)

scale : array-like, optional

scale parameter (default=1)

size : int or tuple of ints, optional

shape of random variates (default computed from input arguments)

moments : string, optional

composed of letters [’mvsk’] specifying which moments to compute where ‘m’
= mean, ‘v’ = variance, ‘s’ = (Fisher’s) skew and ‘k’ = (Fisher’s) kurtosis. (de-
fault=’mv’)

Methods
truncnorm.rvs(a,b,loc=0,scale=1,size=1) :

• random variates

3.18. Statistical functions (scipy.stats) 475

SciPy Reference Guide, Release 0.7

truncnorm.pdf(x,a,b,loc=0,scale=1) :

• probability density function

truncnorm.cdf(x,a,b,loc=0,scale=1) :

• cumulative density function

truncnorm.sf(x,a,b,loc=0,scale=1) :

• survival function (1-cdf — sometimes more accurate)

truncnorm.ppf(q,a,b,loc=0,scale=1) :

• percent point function (inverse of cdf — percentiles)

truncnorm.isf(q,a,b,loc=0,scale=1) :

• inverse survival function (inverse of sf)

truncnorm.stats(a,b,loc=0,scale=1,moments=’mv’) :

• mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’)

truncnorm.entropy(a,b,loc=0,scale=1) :

• (differential) entropy of the RV.

truncnorm.fit(data,a,b,loc=0,scale=1) :

• Parameter estimates for truncnorm data

Alternatively, the object may be called (as a function) to fix the shape, :
location, and scale parameters returning a “frozen” continuous RV object: :
rv = truncnorm(a,b,loc=0,scale=1) :

• frozen RV object with the same methods but holding the given shape, location, and scale
fixed

Examples

>>> import matplotlib.pyplot as plt
>>> numargs = truncnorm.numargs
>>> [a,b] = [0.9,]*numargs
>>> rv = truncnorm(a,b)

Display frozen pdf

>>> x = np.linspace(0,np.minimum(rv.dist.b,3))
>>> h=plt.plot(x,rv.pdf(x))

Check accuracy of cdf and ppf

>>> prb = truncnorm.cdf(x,a,b)
>>> h=plt.semilogy(np.abs(x-truncnorm.ppf(prb,c))+1e-20)

Random number generation

>>> R = truncnorm.rvs(a,b,size=100)

Truncated Normal distribution.

The standard form of this distribution is a standard normal truncated to the range [a,b] — notice
that a and b are defined over the domain of the standard normal. To convert clip values for a specific
mean and standard deviation use a,b = (myclip_a-my_mean)/my_std, (myclip_b-my_mean)/my_std

476 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

tukeylambda()
A Tukey-Lambda continuous random variable.

Continuous random variables are defined from a standard form and may require some shape parameters to
complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as
given below:

Parameters
x : array-like

quantiles
q : array-like

lower or upper tail probability
lam : array-like

shape parameters
loc : array-like, optional

location parameter (default=0)
scale : array-like, optional

scale parameter (default=1)
size : int or tuple of ints, optional

shape of random variates (default computed from input arguments)
moments : string, optional

composed of letters [’mvsk’] specifying which moments to compute where ‘m’
= mean, ‘v’ = variance, ‘s’ = (Fisher’s) skew and ‘k’ = (Fisher’s) kurtosis. (de-
fault=’mv’)

Methods
tukeylambda.rvs(lam,loc=0,scale=1,size=1) :

• random variates
tukeylambda.pdf(x,lam,loc=0,scale=1) :

• probability density function
tukeylambda.cdf(x,lam,loc=0,scale=1) :

• cumulative density function
tukeylambda.sf(x,lam,loc=0,scale=1) :

• survival function (1-cdf — sometimes more accurate)
tukeylambda.ppf(q,lam,loc=0,scale=1) :

• percent point function (inverse of cdf — percentiles)
tukeylambda.isf(q,lam,loc=0,scale=1) :

• inverse survival function (inverse of sf)
tukeylambda.stats(lam,loc=0,scale=1,moments=’mv’) :

• mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’)
tukeylambda.entropy(lam,loc=0,scale=1) :

• (differential) entropy of the RV.
tukeylambda.fit(data,lam,loc=0,scale=1) :

• Parameter estimates for tukeylambda data
Alternatively, the object may be called (as a function) to fix the shape, :
location, and scale parameters returning a “frozen” continuous RV object: :
rv = tukeylambda(lam,loc=0,scale=1) :

• frozen RV object with the same methods but holding the given shape, location, and scale
fixed

3.18. Statistical functions (scipy.stats) 477

SciPy Reference Guide, Release 0.7

Examples

>>> import matplotlib.pyplot as plt
>>> numargs = tukeylambda.numargs
>>> [lam] = [0.9,]*numargs
>>> rv = tukeylambda(lam)

Display frozen pdf

>>> x = np.linspace(0,np.minimum(rv.dist.b,3))
>>> h=plt.plot(x,rv.pdf(x))

Check accuracy of cdf and ppf

>>> prb = tukeylambda.cdf(x,lam)
>>> h=plt.semilogy(np.abs(x-tukeylambda.ppf(prb,c))+1e-20)

Random number generation

>>> R = tukeylambda.rvs(lam,size=100)

Tukey-Lambda distribution

A flexible distribution ranging from Cauchy (lam=-1) to logistic (lam=0.0) to approx Normal
(lam=0.14) to u-shape (lam = 0.5) to Uniform from -1 to 1 (lam = 1)

uniform()
A uniform continuous random variable.

Continuous random variables are defined from a standard form and may require some shape parameters to
complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as
given below:

Parameters
x : array-like

quantiles

q : array-like

lower or upper tail probability

<shape(s)> : array-like

shape parameters

loc : array-like, optional

location parameter (default=0)

scale : array-like, optional

scale parameter (default=1)

size : int or tuple of ints, optional

shape of random variates (default computed from input arguments)

moments : string, optional

composed of letters [’mvsk’] specifying which moments to compute where ‘m’
= mean, ‘v’ = variance, ‘s’ = (Fisher’s) skew and ‘k’ = (Fisher’s) kurtosis. (de-
fault=’mv’)

Methods
uniform.rvs(loc=0,scale=1,size=1) :

478 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

• random variates

uniform.pdf(x,loc=0,scale=1) :

• probability density function

uniform.cdf(x,loc=0,scale=1) :

• cumulative density function

uniform.sf(x,loc=0,scale=1) :

• survival function (1-cdf — sometimes more accurate)

uniform.ppf(q,loc=0,scale=1) :

• percent point function (inverse of cdf — percentiles)

uniform.isf(q,loc=0,scale=1) :

• inverse survival function (inverse of sf)

uniform.stats(loc=0,scale=1,moments=’mv’) :

• mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’)

uniform.entropy(loc=0,scale=1) :

• (differential) entropy of the RV.

uniform.fit(data,loc=0,scale=1) :

• Parameter estimates for uniform data

Alternatively, the object may be called (as a function) to fix the shape, :
location, and scale parameters returning a “frozen” continuous RV object: :
rv = uniform(loc=0,scale=1) :

• frozen RV object with the same methods but holding the given shape, location, and scale
fixed

Examples

>>> import matplotlib.pyplot as plt
>>> numargs = uniform.numargs
>>> [<shape(s)>] = [0.9,]*numargs
>>> rv = uniform(<shape(s)>)

Display frozen pdf

>>> x = np.linspace(0,np.minimum(rv.dist.b,3))
>>> h=plt.plot(x,rv.pdf(x))

Check accuracy of cdf and ppf

>>> prb = uniform.cdf(x,<shape(s)>)
>>> h=plt.semilogy(np.abs(x-uniform.ppf(prb,c))+1e-20)

Random number generation

>>> R = uniform.rvs(size=100)

Uniform distribution

constant between loc and loc+scale

3.18. Statistical functions (scipy.stats) 479

SciPy Reference Guide, Release 0.7

wald()
A Wald continuous random variable.

Continuous random variables are defined from a standard form and may require some shape parameters to
complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as
given below:

Parameters
x : array-like

quantiles
q : array-like

lower or upper tail probability
<shape(s)> : array-like

shape parameters
loc : array-like, optional

location parameter (default=0)
scale : array-like, optional

scale parameter (default=1)
size : int or tuple of ints, optional

shape of random variates (default computed from input arguments)
moments : string, optional

composed of letters [’mvsk’] specifying which moments to compute where ‘m’
= mean, ‘v’ = variance, ‘s’ = (Fisher’s) skew and ‘k’ = (Fisher’s) kurtosis. (de-
fault=’mv’)

Methods
wald.rvs(loc=0,scale=1,size=1) :

• random variates
wald.pdf(x,loc=0,scale=1) :

• probability density function
wald.cdf(x,loc=0,scale=1) :

• cumulative density function
wald.sf(x,loc=0,scale=1) :

• survival function (1-cdf — sometimes more accurate)
wald.ppf(q,loc=0,scale=1) :

• percent point function (inverse of cdf — percentiles)
wald.isf(q,loc=0,scale=1) :

• inverse survival function (inverse of sf)
wald.stats(loc=0,scale=1,moments=’mv’) :

• mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’)
wald.entropy(loc=0,scale=1) :

• (differential) entropy of the RV.
wald.fit(data,loc=0,scale=1) :

• Parameter estimates for wald data
Alternatively, the object may be called (as a function) to fix the shape, :
location, and scale parameters returning a “frozen” continuous RV object: :
rv = wald(loc=0,scale=1) :

• frozen RV object with the same methods but holding the given shape, location, and scale
fixed

480 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

Examples

>>> import matplotlib.pyplot as plt
>>> numargs = wald.numargs
>>> [<shape(s)>] = [0.9,]*numargs
>>> rv = wald(<shape(s)>)

Display frozen pdf

>>> x = np.linspace(0,np.minimum(rv.dist.b,3))
>>> h=plt.plot(x,rv.pdf(x))

Check accuracy of cdf and ppf

>>> prb = wald.cdf(x,<shape(s)>)
>>> h=plt.semilogy(np.abs(x-wald.ppf(prb,c))+1e-20)

Random number generation

>>> R = wald.rvs(size=100)

Wald distribution

wald.pdf(x) = 1/sqrt(2*pi*x**3) * exp(-(x-1)**2/(2*x)) for x > 0.

weibull_min()
A Weibull minimum continuous random variable.

Continuous random variables are defined from a standard form and may require some shape parameters to
complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as
given below:

Parameters
x : array-like

quantiles

q : array-like

lower or upper tail probability

c : array-like

shape parameters

loc : array-like, optional

location parameter (default=0)

scale : array-like, optional

scale parameter (default=1)

size : int or tuple of ints, optional

shape of random variates (default computed from input arguments)

moments : string, optional

composed of letters [’mvsk’] specifying which moments to compute where ‘m’
= mean, ‘v’ = variance, ‘s’ = (Fisher’s) skew and ‘k’ = (Fisher’s) kurtosis. (de-
fault=’mv’)

Methods
weibull_min.rvs(c,loc=0,scale=1,size=1) :

• random variates

3.18. Statistical functions (scipy.stats) 481

SciPy Reference Guide, Release 0.7

weibull_min.pdf(x,c,loc=0,scale=1) :
• probability density function

weibull_min.cdf(x,c,loc=0,scale=1) :
• cumulative density function

weibull_min.sf(x,c,loc=0,scale=1) :
• survival function (1-cdf — sometimes more accurate)

weibull_min.ppf(q,c,loc=0,scale=1) :
• percent point function (inverse of cdf — percentiles)

weibull_min.isf(q,c,loc=0,scale=1) :
• inverse survival function (inverse of sf)

weibull_min.stats(c,loc=0,scale=1,moments=’mv’) :
• mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’)

weibull_min.entropy(c,loc=0,scale=1) :
• (differential) entropy of the RV.

weibull_min.fit(data,c,loc=0,scale=1) :
• Parameter estimates for weibull_min data

Alternatively, the object may be called (as a function) to fix the shape, :
location, and scale parameters returning a “frozen” continuous RV object: :
rv = weibull_min(c,loc=0,scale=1) :

• frozen RV object with the same methods but holding the given shape, location, and scale
fixed

Examples

>>> import matplotlib.pyplot as plt
>>> numargs = weibull_min.numargs
>>> [c] = [0.9,]*numargs
>>> rv = weibull_min(c)

Display frozen pdf

>>> x = np.linspace(0,np.minimum(rv.dist.b,3))
>>> h=plt.plot(x,rv.pdf(x))

Check accuracy of cdf and ppf

>>> prb = weibull_min.cdf(x,c)
>>> h=plt.semilogy(np.abs(x-weibull_min.ppf(prb,c))+1e-20)

Random number generation

>>> R = weibull_min.rvs(c,size=100)

A Weibull minimum distribution (also called a Frechet (right) distribution)

weibull_min.pdf(x,c) = c*x**(c-1)*exp(-x**c) for x > 0, c > 0.

weibull_max()
A Weibull maximum continuous random variable.

Continuous random variables are defined from a standard form and may require some shape parameters to
complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as
given below:

482 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

Parameters
x : array-like

quantiles

q : array-like

lower or upper tail probability

c : array-like

shape parameters

loc : array-like, optional

location parameter (default=0)

scale : array-like, optional

scale parameter (default=1)

size : int or tuple of ints, optional

shape of random variates (default computed from input arguments)

moments : string, optional

composed of letters [’mvsk’] specifying which moments to compute where ‘m’
= mean, ‘v’ = variance, ‘s’ = (Fisher’s) skew and ‘k’ = (Fisher’s) kurtosis. (de-
fault=’mv’)

Methods
weibull_max.rvs(c,loc=0,scale=1,size=1) :

• random variates

weibull_max.pdf(x,c,loc=0,scale=1) :

• probability density function

weibull_max.cdf(x,c,loc=0,scale=1) :

• cumulative density function

weibull_max.sf(x,c,loc=0,scale=1) :

• survival function (1-cdf — sometimes more accurate)

weibull_max.ppf(q,c,loc=0,scale=1) :

• percent point function (inverse of cdf — percentiles)

weibull_max.isf(q,c,loc=0,scale=1) :

• inverse survival function (inverse of sf)

weibull_max.stats(c,loc=0,scale=1,moments=’mv’) :

• mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’)

weibull_max.entropy(c,loc=0,scale=1) :

• (differential) entropy of the RV.

weibull_max.fit(data,c,loc=0,scale=1) :

• Parameter estimates for weibull_max data

Alternatively, the object may be called (as a function) to fix the shape, :
location, and scale parameters returning a “frozen” continuous RV object: :
rv = weibull_max(c,loc=0,scale=1) :

• frozen RV object with the same methods but holding the given shape, location, and scale
fixed

Examples

3.18. Statistical functions (scipy.stats) 483

SciPy Reference Guide, Release 0.7

>>> import matplotlib.pyplot as plt
>>> numargs = weibull_max.numargs
>>> [c] = [0.9,]*numargs
>>> rv = weibull_max(c)

Display frozen pdf

>>> x = np.linspace(0,np.minimum(rv.dist.b,3))
>>> h=plt.plot(x,rv.pdf(x))

Check accuracy of cdf and ppf

>>> prb = weibull_max.cdf(x,c)
>>> h=plt.semilogy(np.abs(x-weibull_max.ppf(prb,c))+1e-20)

Random number generation

>>> R = weibull_max.rvs(c,size=100)

A Weibull maximum distribution (also called a Frechet (left) distribution)

weibull_max.pdf(x,c) = c * (-x)**(c-1) * exp(-(-x)**c) for x < 0, c > 0.

wrapcauchy()
A wrapped Cauchy continuous random variable.

Continuous random variables are defined from a standard form and may require some shape parameters to
complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as
given below:

Parameters
x : array-like

quantiles

q : array-like

lower or upper tail probability

c : array-like

shape parameters

loc : array-like, optional

location parameter (default=0)

scale : array-like, optional

scale parameter (default=1)

size : int or tuple of ints, optional

shape of random variates (default computed from input arguments)

moments : string, optional

composed of letters [’mvsk’] specifying which moments to compute where ‘m’
= mean, ‘v’ = variance, ‘s’ = (Fisher’s) skew and ‘k’ = (Fisher’s) kurtosis. (de-
fault=’mv’)

Methods
wrapcauchy.rvs(c,loc=0,scale=1,size=1) :

• random variates

wrapcauchy.pdf(x,c,loc=0,scale=1) :

484 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

• probability density function

wrapcauchy.cdf(x,c,loc=0,scale=1) :

• cumulative density function

wrapcauchy.sf(x,c,loc=0,scale=1) :

• survival function (1-cdf — sometimes more accurate)

wrapcauchy.ppf(q,c,loc=0,scale=1) :

• percent point function (inverse of cdf — percentiles)

wrapcauchy.isf(q,c,loc=0,scale=1) :

• inverse survival function (inverse of sf)

wrapcauchy.stats(c,loc=0,scale=1,moments=’mv’) :

• mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’)

wrapcauchy.entropy(c,loc=0,scale=1) :

• (differential) entropy of the RV.

wrapcauchy.fit(data,c,loc=0,scale=1) :

• Parameter estimates for wrapcauchy data

Alternatively, the object may be called (as a function) to fix the shape, :
location, and scale parameters returning a “frozen” continuous RV object: :
rv = wrapcauchy(c,loc=0,scale=1) :

• frozen RV object with the same methods but holding the given shape, location, and scale
fixed

Examples

>>> import matplotlib.pyplot as plt
>>> numargs = wrapcauchy.numargs
>>> [c] = [0.9,]*numargs
>>> rv = wrapcauchy(c)

Display frozen pdf

>>> x = np.linspace(0,np.minimum(rv.dist.b,3))
>>> h=plt.plot(x,rv.pdf(x))

Check accuracy of cdf and ppf

>>> prb = wrapcauchy.cdf(x,c)
>>> h=plt.semilogy(np.abs(x-wrapcauchy.ppf(prb,c))+1e-20)

Random number generation

>>> R = wrapcauchy.rvs(c,size=100)

Wrapped Cauchy distribution

wrapcauchy.pdf(x,c) = (1-c**2) / (2*pi*(1+c**2-2*c*cos(x))) for 0 <= x <= 2*pi, 0 < c < 1.

ksone()
Kolmogorov-Smirnov A one-sided test statistic. continuous random variable.

Continuous random variables are defined from a standard form and may require some shape parameters to
complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as
given below:

3.18. Statistical functions (scipy.stats) 485

SciPy Reference Guide, Release 0.7

Parameters
x : array-like

quantiles

q : array-like

lower or upper tail probability

n : array-like

shape parameters

loc : array-like, optional

location parameter (default=0)

scale : array-like, optional

scale parameter (default=1)

size : int or tuple of ints, optional

shape of random variates (default computed from input arguments)

moments : string, optional

composed of letters [’mvsk’] specifying which moments to compute where ‘m’
= mean, ‘v’ = variance, ‘s’ = (Fisher’s) skew and ‘k’ = (Fisher’s) kurtosis. (de-
fault=’mv’)

Methods
ksone.rvs(n,loc=0,scale=1,size=1) :

• random variates

ksone.pdf(x,n,loc=0,scale=1) :

• probability density function

ksone.cdf(x,n,loc=0,scale=1) :

• cumulative density function

ksone.sf(x,n,loc=0,scale=1) :

• survival function (1-cdf — sometimes more accurate)

ksone.ppf(q,n,loc=0,scale=1) :

• percent point function (inverse of cdf — percentiles)

ksone.isf(q,n,loc=0,scale=1) :

• inverse survival function (inverse of sf)

ksone.stats(n,loc=0,scale=1,moments=’mv’) :

• mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’)

ksone.entropy(n,loc=0,scale=1) :

• (differential) entropy of the RV.

ksone.fit(data,n,loc=0,scale=1) :

• Parameter estimates for ksone data

Alternatively, the object may be called (as a function) to fix the shape, :
location, and scale parameters returning a “frozen” continuous RV object: :
rv = ksone(n,loc=0,scale=1) :

• frozen RV object with the same methods but holding the given shape, location, and scale
fixed

Examples

486 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

>>> import matplotlib.pyplot as plt
>>> numargs = ksone.numargs
>>> [n] = [0.9,]*numargs
>>> rv = ksone(n)

Display frozen pdf

>>> x = np.linspace(0,np.minimum(rv.dist.b,3))
>>> h=plt.plot(x,rv.pdf(x))

Check accuracy of cdf and ppf

>>> prb = ksone.cdf(x,n)
>>> h=plt.semilogy(np.abs(x-ksone.ppf(prb,c))+1e-20)

Random number generation

>>> R = ksone.rvs(n,size=100)

General Kolmogorov-Smirnov one-sided test.

kstwobign()
Kolmogorov-Smirnov two-sided (for large N) continuous random variable.

Continuous random variables are defined from a standard form and may require some shape parameters to
complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as
given below:

Parameters
x : array-like

quantiles

q : array-like

lower or upper tail probability

<shape(s)> : array-like

shape parameters

loc : array-like, optional

location parameter (default=0)

scale : array-like, optional

scale parameter (default=1)

size : int or tuple of ints, optional

shape of random variates (default computed from input arguments)

moments : string, optional

composed of letters [’mvsk’] specifying which moments to compute where ‘m’
= mean, ‘v’ = variance, ‘s’ = (Fisher’s) skew and ‘k’ = (Fisher’s) kurtosis. (de-
fault=’mv’)

Methods
kstwobign.rvs(loc=0,scale=1,size=1) :

• random variates

kstwobign.pdf(x,loc=0,scale=1) :

• probability density function

3.18. Statistical functions (scipy.stats) 487

SciPy Reference Guide, Release 0.7

kstwobign.cdf(x,loc=0,scale=1) :

• cumulative density function

kstwobign.sf(x,loc=0,scale=1) :

• survival function (1-cdf — sometimes more accurate)

kstwobign.ppf(q,loc=0,scale=1) :

• percent point function (inverse of cdf — percentiles)

kstwobign.isf(q,loc=0,scale=1) :

• inverse survival function (inverse of sf)

kstwobign.stats(loc=0,scale=1,moments=’mv’) :

• mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’)

kstwobign.entropy(loc=0,scale=1) :

• (differential) entropy of the RV.

kstwobign.fit(data,loc=0,scale=1) :

• Parameter estimates for kstwobign data

Alternatively, the object may be called (as a function) to fix the shape, :
location, and scale parameters returning a “frozen” continuous RV object: :
rv = kstwobign(loc=0,scale=1) :

• frozen RV object with the same methods but holding the given shape, location, and scale
fixed

Examples

>>> import matplotlib.pyplot as plt
>>> numargs = kstwobign.numargs
>>> [<shape(s)>] = [0.9,]*numargs
>>> rv = kstwobign(<shape(s)>)

Display frozen pdf

>>> x = np.linspace(0,np.minimum(rv.dist.b,3))
>>> h=plt.plot(x,rv.pdf(x))

Check accuracy of cdf and ppf

>>> prb = kstwobign.cdf(x,<shape(s)>)
>>> h=plt.semilogy(np.abs(x-kstwobign.ppf(prb,c))+1e-20)

Random number generation

>>> R = kstwobign.rvs(size=100)

Kolmogorov-Smirnov two-sided test for large N

488 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

3.18.3 Discrete distributions

binom () A binom discrete random variable.

bernoulli () A bernoulli discrete random variable.

nbinom () A negative binomial discrete random variable.

geom () A geometric discrete random variable.

hypergeom () A hypergeometric discrete random variable.

logser () A logarithmic discrete random variable.

poisson () A Poisson discrete random variable.

planck () A discrete exponential discrete random variable.

boltzmann () A truncated discrete exponential discrete random variable.

randint () A discrete uniform (random integer) discrete random variable.

zipf () A Zipf discrete random variable.

dlaplace () A discrete Laplacian discrete random variable.

binom()
A binom discrete random variable.

Discrete random variables are defined from a standard form and may require some shape parameters to complete
its specification. Any optional keyword parameters can be passed to the methods of the RV object as given
below:

Methods
binom.rvs(n,pr,loc=0,size=1) :

• random variates

binom.pmf(x,n,pr,loc=0) :

• probability mass function

binom.cdf(x,n,pr,loc=0) :

• cumulative density function

binom.sf(x,n,pr,loc=0) :

• survival function (1-cdf — sometimes more accurate)

binom.ppf(q,n,pr,loc=0) :

• percent point function (inverse of cdf — percentiles)

binom.isf(q,n,pr,loc=0) :

• inverse survival function (inverse of sf)

binom.stats(n,pr,loc=0,moments=’mv’) :

• mean(‘m’,axis=0), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’)

binom.entropy(n,pr,loc=0) :

• entropy of the RV

3.18. Statistical functions (scipy.stats) 489

SciPy Reference Guide, Release 0.7

Alternatively, the object may be called (as a function) to fix :
the shape and location parameters returning a :
“frozen” discrete RV object: :
myrv = binom(n,pr,loc=0) :

• frozen RV object with the same methods but holding the given shape and location fixed.

You can construct an aribtrary discrete rv where P{X=xk} = pk :
by passing to the rv_discrete initialization method (through the values= :
keyword) a tuple of sequences (xk,pk) which describes only those values of :
X (xk) that occur with nonzero probability (pk). :

Examples

>>> import matplotlib.pyplot as plt
>>> numargs = binom.numargs
>>> [n,pr] = [’Replace with resonable value’,]*numargs

Display frozen pmf:

>>> rv = binom(n,pr)
>>> x = np.arange(0,np.min(rv.dist.b,3)+1)
>>> h = plt.plot(x,rv.pmf(x))

Check accuracy of cdf and ppf:

>>> prb = binom.cdf(x,n,pr)
>>> h = plt.semilogy(np.abs(x-binom.ppf(prb,n,pr))+1e-20)

Random number generation:

>>> R = binom.rvs(n,pr,size=100)

Custom made discrete distribution:

>>> vals = [arange(7),(0.1,0.2,0.3,0.1,0.1,0.1,0.1)]
>>> custm = rv_discrete(name=’custm’,values=vals)
>>> h = plt.plot(vals[0],custm.pmf(vals[0]))

Binomial distribution

Counts the number of successes in n independent trials when the probability of success each time
is pr.

binom.pmf(k,n,p) = choose(n,k)*p**k*(1-p)**(n-k) for k in {0,1,...,n}

bernoulli()
A bernoulli discrete random variable.

Discrete random variables are defined from a standard form and may require some shape parameters to complete
its specification. Any optional keyword parameters can be passed to the methods of the RV object as given
below:

Methods
bernoulli.rvs(pr,loc=0,size=1) :

• random variates

490 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

bernoulli.pmf(x,pr,loc=0) :

• probability mass function

bernoulli.cdf(x,pr,loc=0) :

• cumulative density function

bernoulli.sf(x,pr,loc=0) :

• survival function (1-cdf — sometimes more accurate)

bernoulli.ppf(q,pr,loc=0) :

• percent point function (inverse of cdf — percentiles)

bernoulli.isf(q,pr,loc=0) :

• inverse survival function (inverse of sf)

bernoulli.stats(pr,loc=0,moments=’mv’) :

• mean(‘m’,axis=0), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’)

bernoulli.entropy(pr,loc=0) :

• entropy of the RV

Alternatively, the object may be called (as a function) to fix :
the shape and location parameters returning a :
“frozen” discrete RV object: :
myrv = bernoulli(pr,loc=0) :

• frozen RV object with the same methods but holding the given shape and location fixed.

You can construct an aribtrary discrete rv where P{X=xk} = pk :
by passing to the rv_discrete initialization method (through the values= :
keyword) a tuple of sequences (xk,pk) which describes only those values of :
X (xk) that occur with nonzero probability (pk). :

Examples

>>> import matplotlib.pyplot as plt
>>> numargs = bernoulli.numargs
>>> [pr] = [’Replace with resonable value’,]*numargs

Display frozen pmf:

>>> rv = bernoulli(pr)
>>> x = np.arange(0,np.min(rv.dist.b,3)+1)
>>> h = plt.plot(x,rv.pmf(x))

Check accuracy of cdf and ppf:

>>> prb = bernoulli.cdf(x,pr)
>>> h = plt.semilogy(np.abs(x-bernoulli.ppf(prb,pr))+1e-20)

Random number generation:

>>> R = bernoulli.rvs(pr,size=100)

Custom made discrete distribution:

>>> vals = [arange(7),(0.1,0.2,0.3,0.1,0.1,0.1,0.1)]
>>> custm = rv_discrete(name=’custm’,values=vals)
>>> h = plt.plot(vals[0],custm.pmf(vals[0]))

3.18. Statistical functions (scipy.stats) 491

SciPy Reference Guide, Release 0.7

Bernoulli distribution

1 if binary experiment succeeds, 0 otherwise. Experiment succeeds with probabilty pr.

bernoulli.pmf(k,p) = 1-p if k = 0
= p if k = 1

for k = 0,1

nbinom()
A negative binomial discrete random variable.

Discrete random variables are defined from a standard form and may require some shape parameters to complete
its specification. Any optional keyword parameters can be passed to the methods of the RV object as given
below:

Methods
nbinom.rvs(n,pr,loc=0,size=1) :

• random variates

nbinom.pmf(x,n,pr,loc=0) :

• probability mass function

nbinom.cdf(x,n,pr,loc=0) :

• cumulative density function

nbinom.sf(x,n,pr,loc=0) :

• survival function (1-cdf — sometimes more accurate)

nbinom.ppf(q,n,pr,loc=0) :

• percent point function (inverse of cdf — percentiles)

nbinom.isf(q,n,pr,loc=0) :

• inverse survival function (inverse of sf)

nbinom.stats(n,pr,loc=0,moments=’mv’) :

• mean(‘m’,axis=0), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’)

nbinom.entropy(n,pr,loc=0) :

• entropy of the RV

Alternatively, the object may be called (as a function) to fix :
the shape and location parameters returning a :
“frozen” discrete RV object: :
myrv = nbinom(n,pr,loc=0) :

• frozen RV object with the same methods but holding the given shape and location fixed.

You can construct an aribtrary discrete rv where P{X=xk} = pk :
by passing to the rv_discrete initialization method (through the values= :
keyword) a tuple of sequences (xk,pk) which describes only those values of :
X (xk) that occur with nonzero probability (pk). :

Examples

>>> import matplotlib.pyplot as plt
>>> numargs = nbinom.numargs
>>> [n,pr] = [’Replace with resonable value’,]*numargs

Display frozen pmf:

492 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

>>> rv = nbinom(n,pr)
>>> x = np.arange(0,np.min(rv.dist.b,3)+1)
>>> h = plt.plot(x,rv.pmf(x))

Check accuracy of cdf and ppf:

>>> prb = nbinom.cdf(x,n,pr)
>>> h = plt.semilogy(np.abs(x-nbinom.ppf(prb,n,pr))+1e-20)

Random number generation:

>>> R = nbinom.rvs(n,pr,size=100)

Custom made discrete distribution:

>>> vals = [arange(7),(0.1,0.2,0.3,0.1,0.1,0.1,0.1)]
>>> custm = rv_discrete(name=’custm’,values=vals)
>>> h = plt.plot(vals[0],custm.pmf(vals[0]))

Negative binomial distribution

nbinom.pmf(k,n,p) = choose(k+n-1,n-1) * p**n * (1-p)**k for k >= 0.

geom()
A geometric discrete random variable.

Discrete random variables are defined from a standard form and may require some shape parameters to complete
its specification. Any optional keyword parameters can be passed to the methods of the RV object as given
below:

Methods
geom.rvs(pr,loc=0,size=1) :

• random variates

geom.pmf(x,pr,loc=0) :

• probability mass function

geom.cdf(x,pr,loc=0) :

• cumulative density function

geom.sf(x,pr,loc=0) :

• survival function (1-cdf — sometimes more accurate)

geom.ppf(q,pr,loc=0) :

• percent point function (inverse of cdf — percentiles)

geom.isf(q,pr,loc=0) :

• inverse survival function (inverse of sf)

geom.stats(pr,loc=0,moments=’mv’) :

• mean(‘m’,axis=0), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’)

geom.entropy(pr,loc=0) :

• entropy of the RV

Alternatively, the object may be called (as a function) to fix :
the shape and location parameters returning a :
“frozen” discrete RV object: :
myrv = geom(pr,loc=0) :

3.18. Statistical functions (scipy.stats) 493

SciPy Reference Guide, Release 0.7

• frozen RV object with the same methods but holding the given shape and location fixed.

You can construct an aribtrary discrete rv where P{X=xk} = pk :
by passing to the rv_discrete initialization method (through the values= :
keyword) a tuple of sequences (xk,pk) which describes only those values of :
X (xk) that occur with nonzero probability (pk). :

Examples

>>> import matplotlib.pyplot as plt
>>> numargs = geom.numargs
>>> [pr] = [’Replace with resonable value’,]*numargs

Display frozen pmf:

>>> rv = geom(pr)
>>> x = np.arange(0,np.min(rv.dist.b,3)+1)
>>> h = plt.plot(x,rv.pmf(x))

Check accuracy of cdf and ppf:

>>> prb = geom.cdf(x,pr)
>>> h = plt.semilogy(np.abs(x-geom.ppf(prb,pr))+1e-20)

Random number generation:

>>> R = geom.rvs(pr,size=100)

Custom made discrete distribution:

>>> vals = [arange(7),(0.1,0.2,0.3,0.1,0.1,0.1,0.1)]
>>> custm = rv_discrete(name=’custm’,values=vals)
>>> h = plt.plot(vals[0],custm.pmf(vals[0]))

Geometric distribution

geom.pmf(k,p) = (1-p)**(k-1)*p for k >= 1

hypergeom()
A hypergeometric discrete random variable.

Discrete random variables are defined from a standard form and may require some shape parameters to complete
its specification. Any optional keyword parameters can be passed to the methods of the RV object as given
below:

Methods
hypergeom.rvs(M,n,N,loc=0,size=1) :

• random variates

hypergeom.pmf(x,M,n,N,loc=0) :

• probability mass function

hypergeom.cdf(x,M,n,N,loc=0) :

• cumulative density function

hypergeom.sf(x,M,n,N,loc=0) :

• survival function (1-cdf — sometimes more accurate)

hypergeom.ppf(q,M,n,N,loc=0) :

494 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

• percent point function (inverse of cdf — percentiles)

hypergeom.isf(q,M,n,N,loc=0) :

• inverse survival function (inverse of sf)

hypergeom.stats(M,n,N,loc=0,moments=’mv’) :

• mean(‘m’,axis=0), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’)

hypergeom.entropy(M,n,N,loc=0) :

• entropy of the RV

Alternatively, the object may be called (as a function) to fix :
the shape and location parameters returning a :
“frozen” discrete RV object: :
myrv = hypergeom(M,n,N,loc=0) :

• frozen RV object with the same methods but holding the given shape and location fixed.

You can construct an aribtrary discrete rv where P{X=xk} = pk :
by passing to the rv_discrete initialization method (through the values= :
keyword) a tuple of sequences (xk,pk) which describes only those values of :
X (xk) that occur with nonzero probability (pk). :

Examples

>>> import matplotlib.pyplot as plt
>>> numargs = hypergeom.numargs
>>> [M,n,N] = [’Replace with resonable value’,]*numargs

Display frozen pmf:

>>> rv = hypergeom(M,n,N)
>>> x = np.arange(0,np.min(rv.dist.b,3)+1)
>>> h = plt.plot(x,rv.pmf(x))

Check accuracy of cdf and ppf:

>>> prb = hypergeom.cdf(x,M,n,N)
>>> h = plt.semilogy(np.abs(x-hypergeom.ppf(prb,M,n,N))+1e-20)

Random number generation:

>>> R = hypergeom.rvs(M,n,N,size=100)

Custom made discrete distribution:

>>> vals = [arange(7),(0.1,0.2,0.3,0.1,0.1,0.1,0.1)]
>>> custm = rv_discrete(name=’custm’,values=vals)
>>> h = plt.plot(vals[0],custm.pmf(vals[0]))

Hypergeometric distribution

Models drawing objects from a bin. M is total number of objects, n is total number of Type I objects.
RV counts number of Type I objects in N drawn without replacement from population.

hypergeom.pmf(k, M, n, N) = choose(n,k)*choose(M-n,N-k)/choose(M,N) for N - (M-n) <= k <=
min(m,N)

3.18. Statistical functions (scipy.stats) 495

SciPy Reference Guide, Release 0.7

logser()
A logarithmic discrete random variable.

Discrete random variables are defined from a standard form and may require some shape parameters to complete
its specification. Any optional keyword parameters can be passed to the methods of the RV object as given
below:

Methods
logser.rvs(pr,loc=0,size=1) :

• random variates

logser.pmf(x,pr,loc=0) :

• probability mass function

logser.cdf(x,pr,loc=0) :

• cumulative density function

logser.sf(x,pr,loc=0) :

• survival function (1-cdf — sometimes more accurate)

logser.ppf(q,pr,loc=0) :

• percent point function (inverse of cdf — percentiles)

logser.isf(q,pr,loc=0) :

• inverse survival function (inverse of sf)

logser.stats(pr,loc=0,moments=’mv’) :

• mean(‘m’,axis=0), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’)

logser.entropy(pr,loc=0) :

• entropy of the RV

Alternatively, the object may be called (as a function) to fix :
the shape and location parameters returning a :
“frozen” discrete RV object: :
myrv = logser(pr,loc=0) :

• frozen RV object with the same methods but holding the given shape and location fixed.

You can construct an aribtrary discrete rv where P{X=xk} = pk :
by passing to the rv_discrete initialization method (through the values= :
keyword) a tuple of sequences (xk,pk) which describes only those values of :
X (xk) that occur with nonzero probability (pk). :

Examples

>>> import matplotlib.pyplot as plt
>>> numargs = logser.numargs
>>> [pr] = [’Replace with resonable value’,]*numargs

Display frozen pmf:

>>> rv = logser(pr)
>>> x = np.arange(0,np.min(rv.dist.b,3)+1)
>>> h = plt.plot(x,rv.pmf(x))

Check accuracy of cdf and ppf:

496 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

>>> prb = logser.cdf(x,pr)
>>> h = plt.semilogy(np.abs(x-logser.ppf(prb,pr))+1e-20)

Random number generation:

>>> R = logser.rvs(pr,size=100)

Custom made discrete distribution:

>>> vals = [arange(7),(0.1,0.2,0.3,0.1,0.1,0.1,0.1)]
>>> custm = rv_discrete(name=’custm’,values=vals)
>>> h = plt.plot(vals[0],custm.pmf(vals[0]))

Logarithmic (Log-Series, Series) distribution

logser.pmf(k,p) = - p**k / (k*log(1-p)) for k >= 1

poisson()
A Poisson discrete random variable.

Discrete random variables are defined from a standard form and may require some shape parameters to complete
its specification. Any optional keyword parameters can be passed to the methods of the RV object as given
below:

Methods
poisson.rvs(mu,loc=0,size=1) :

• random variates

poisson.pmf(x,mu,loc=0) :

• probability mass function

poisson.cdf(x,mu,loc=0) :

• cumulative density function

poisson.sf(x,mu,loc=0) :

• survival function (1-cdf — sometimes more accurate)

poisson.ppf(q,mu,loc=0) :

• percent point function (inverse of cdf — percentiles)

poisson.isf(q,mu,loc=0) :

• inverse survival function (inverse of sf)

poisson.stats(mu,loc=0,moments=’mv’) :

• mean(‘m’,axis=0), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’)

poisson.entropy(mu,loc=0) :

• entropy of the RV

Alternatively, the object may be called (as a function) to fix :
the shape and location parameters returning a :
“frozen” discrete RV object: :
myrv = poisson(mu,loc=0) :

• frozen RV object with the same methods but holding the given shape and location fixed.

You can construct an aribtrary discrete rv where P{X=xk} = pk :
by passing to the rv_discrete initialization method (through the values= :
keyword) a tuple of sequences (xk,pk) which describes only those values of :
X (xk) that occur with nonzero probability (pk). :

3.18. Statistical functions (scipy.stats) 497

SciPy Reference Guide, Release 0.7

Examples

>>> import matplotlib.pyplot as plt
>>> numargs = poisson.numargs
>>> [mu] = [’Replace with resonable value’,]*numargs

Display frozen pmf:

>>> rv = poisson(mu)
>>> x = np.arange(0,np.min(rv.dist.b,3)+1)
>>> h = plt.plot(x,rv.pmf(x))

Check accuracy of cdf and ppf:

>>> prb = poisson.cdf(x,mu)
>>> h = plt.semilogy(np.abs(x-poisson.ppf(prb,mu))+1e-20)

Random number generation:

>>> R = poisson.rvs(mu,size=100)

Custom made discrete distribution:

>>> vals = [arange(7),(0.1,0.2,0.3,0.1,0.1,0.1,0.1)]
>>> custm = rv_discrete(name=’custm’,values=vals)
>>> h = plt.plot(vals[0],custm.pmf(vals[0]))

Poisson distribution

poisson.pmf(k, mu) = exp(-mu) * mu**k / k! for k >= 0

planck()
A discrete exponential discrete random variable.

Discrete random variables are defined from a standard form and may require some shape parameters to complete
its specification. Any optional keyword parameters can be passed to the methods of the RV object as given
below:

Methods
planck.rvs(lambda_,loc=0,size=1) :

• random variates

planck.pmf(x,lambda_,loc=0) :

• probability mass function

planck.cdf(x,lambda_,loc=0) :

• cumulative density function

planck.sf(x,lambda_,loc=0) :

• survival function (1-cdf — sometimes more accurate)

planck.ppf(q,lambda_,loc=0) :

• percent point function (inverse of cdf — percentiles)

planck.isf(q,lambda_,loc=0) :

• inverse survival function (inverse of sf)

planck.stats(lambda_,loc=0,moments=’mv’) :

• mean(‘m’,axis=0), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’)

498 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

planck.entropy(lambda_,loc=0) :

• entropy of the RV

Alternatively, the object may be called (as a function) to fix :
the shape and location parameters returning a :
“frozen” discrete RV object: :
myrv = planck(lambda_,loc=0) :

• frozen RV object with the same methods but holding the given shape and location fixed.

You can construct an aribtrary discrete rv where P{X=xk} = pk :
by passing to the rv_discrete initialization method (through the values= :
keyword) a tuple of sequences (xk,pk) which describes only those values of :
X (xk) that occur with nonzero probability (pk). :

Examples

>>> import matplotlib.pyplot as plt
>>> numargs = planck.numargs
>>> [lambda_] = [’Replace with resonable value’,]*numargs

Display frozen pmf:

>>> rv = planck(lambda_)
>>> x = np.arange(0,np.min(rv.dist.b,3)+1)
>>> h = plt.plot(x,rv.pmf(x))

Check accuracy of cdf and ppf:

>>> prb = planck.cdf(x,lambda_)
>>> h = plt.semilogy(np.abs(x-planck.ppf(prb,lambda_))+1e-20)

Random number generation:

>>> R = planck.rvs(lambda_,size=100)

Custom made discrete distribution:

>>> vals = [arange(7),(0.1,0.2,0.3,0.1,0.1,0.1,0.1)]
>>> custm = rv_discrete(name=’custm’,values=vals)
>>> h = plt.plot(vals[0],custm.pmf(vals[0]))

Planck (Discrete Exponential)

planck.pmf(k,b) = (1-exp(-b))*exp(-b*k) for k*b >= 0

boltzmann()
A truncated discrete exponential discrete random variable.

Discrete random variables are defined from a standard form and may require some shape parameters to complete
its specification. Any optional keyword parameters can be passed to the methods of the RV object as given
below:

Methods
boltzmann.rvs(lambda_,N,loc=0,size=1) :

• random variates

boltzmann.pmf(x,lambda_,N,loc=0) :

3.18. Statistical functions (scipy.stats) 499

SciPy Reference Guide, Release 0.7

• probability mass function

boltzmann.cdf(x,lambda_,N,loc=0) :

• cumulative density function

boltzmann.sf(x,lambda_,N,loc=0) :

• survival function (1-cdf — sometimes more accurate)

boltzmann.ppf(q,lambda_,N,loc=0) :

• percent point function (inverse of cdf — percentiles)

boltzmann.isf(q,lambda_,N,loc=0) :

• inverse survival function (inverse of sf)

boltzmann.stats(lambda_,N,loc=0,moments=’mv’) :

• mean(‘m’,axis=0), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’)

boltzmann.entropy(lambda_,N,loc=0) :

• entropy of the RV

Alternatively, the object may be called (as a function) to fix :
the shape and location parameters returning a :
“frozen” discrete RV object: :
myrv = boltzmann(lambda_,N,loc=0) :

• frozen RV object with the same methods but holding the given shape and location fixed.

You can construct an aribtrary discrete rv where P{X=xk} = pk :
by passing to the rv_discrete initialization method (through the values= :
keyword) a tuple of sequences (xk,pk) which describes only those values of :
X (xk) that occur with nonzero probability (pk). :

Examples

>>> import matplotlib.pyplot as plt
>>> numargs = boltzmann.numargs
>>> [lambda_,N] = [’Replace with resonable value’,]*numargs

Display frozen pmf:

>>> rv = boltzmann(lambda_,N)
>>> x = np.arange(0,np.min(rv.dist.b,3)+1)
>>> h = plt.plot(x,rv.pmf(x))

Check accuracy of cdf and ppf:

>>> prb = boltzmann.cdf(x,lambda_,N)
>>> h = plt.semilogy(np.abs(x-boltzmann.ppf(prb,lambda_,N))+1e-20)

Random number generation:

>>> R = boltzmann.rvs(lambda_,N,size=100)

Custom made discrete distribution:

>>> vals = [arange(7),(0.1,0.2,0.3,0.1,0.1,0.1,0.1)]
>>> custm = rv_discrete(name=’custm’,values=vals)
>>> h = plt.plot(vals[0],custm.pmf(vals[0]))

500 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

Boltzmann (Truncated Discrete Exponential)

boltzmann.pmf(k,b,N) = (1-exp(-b))*exp(-b*k)/(1-exp(-b*N)) for k=0,..,N-1

randint()
A discrete uniform (random integer) discrete random variable.

Discrete random variables are defined from a standard form and may require some shape parameters to complete
its specification. Any optional keyword parameters can be passed to the methods of the RV object as given
below:

Methods
randint.rvs(min,max,loc=0,size=1) :

• random variates

randint.pmf(x,min,max,loc=0) :

• probability mass function

randint.cdf(x,min,max,loc=0) :

• cumulative density function

randint.sf(x,min,max,loc=0) :

• survival function (1-cdf — sometimes more accurate)

randint.ppf(q,min,max,loc=0) :

• percent point function (inverse of cdf — percentiles)

randint.isf(q,min,max,loc=0) :

• inverse survival function (inverse of sf)

randint.stats(min,max,loc=0,moments=’mv’) :

• mean(‘m’,axis=0), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’)

randint.entropy(min,max,loc=0) :

• entropy of the RV

Alternatively, the object may be called (as a function) to fix :
the shape and location parameters returning a :
“frozen” discrete RV object: :
myrv = randint(min,max,loc=0) :

• frozen RV object with the same methods but holding the given shape and location fixed.

You can construct an aribtrary discrete rv where P{X=xk} = pk :
by passing to the rv_discrete initialization method (through the values= :
keyword) a tuple of sequences (xk,pk) which describes only those values of :
X (xk) that occur with nonzero probability (pk). :

Examples

>>> import matplotlib.pyplot as plt
>>> numargs = randint.numargs
>>> [min,max] = [’Replace with resonable value’,]*numargs

Display frozen pmf:

>>> rv = randint(min,max)
>>> x = np.arange(0,np.min(rv.dist.b,3)+1)
>>> h = plt.plot(x,rv.pmf(x))

Check accuracy of cdf and ppf:

3.18. Statistical functions (scipy.stats) 501

SciPy Reference Guide, Release 0.7

>>> prb = randint.cdf(x,min,max)
>>> h = plt.semilogy(np.abs(x-randint.ppf(prb,min,max))+1e-20)

Random number generation:

>>> R = randint.rvs(min,max,size=100)

Custom made discrete distribution:

>>> vals = [arange(7),(0.1,0.2,0.3,0.1,0.1,0.1,0.1)]
>>> custm = rv_discrete(name=’custm’,values=vals)
>>> h = plt.plot(vals[0],custm.pmf(vals[0]))

Discrete Uniform

Random integers >=min and <max.

randint.pmf(k,min, max) = 1/(max-min) for min <= k < max.

zipf()
A Zipf discrete random variable.

Discrete random variables are defined from a standard form and may require some shape parameters to complete
its specification. Any optional keyword parameters can be passed to the methods of the RV object as given
below:

Methods
zipf.rvs(a,loc=0,size=1) :

• random variates
zipf.pmf(x,a,loc=0) :

• probability mass function
zipf.cdf(x,a,loc=0) :

• cumulative density function
zipf.sf(x,a,loc=0) :

• survival function (1-cdf — sometimes more accurate)
zipf.ppf(q,a,loc=0) :

• percent point function (inverse of cdf — percentiles)
zipf.isf(q,a,loc=0) :

• inverse survival function (inverse of sf)
zipf.stats(a,loc=0,moments=’mv’) :

• mean(‘m’,axis=0), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’)
zipf.entropy(a,loc=0) :

• entropy of the RV
Alternatively, the object may be called (as a function) to fix :
the shape and location parameters returning a :
“frozen” discrete RV object: :
myrv = zipf(a,loc=0) :

• frozen RV object with the same methods but holding the given shape and location fixed.
You can construct an aribtrary discrete rv where P{X=xk} = pk :
by passing to the rv_discrete initialization method (through the values= :
keyword) a tuple of sequences (xk,pk) which describes only those values of :
X (xk) that occur with nonzero probability (pk). :

502 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

Examples

>>> import matplotlib.pyplot as plt
>>> numargs = zipf.numargs
>>> [a] = [’Replace with resonable value’,]*numargs

Display frozen pmf:

>>> rv = zipf(a)
>>> x = np.arange(0,np.min(rv.dist.b,3)+1)
>>> h = plt.plot(x,rv.pmf(x))

Check accuracy of cdf and ppf:

>>> prb = zipf.cdf(x,a)
>>> h = plt.semilogy(np.abs(x-zipf.ppf(prb,a))+1e-20)

Random number generation:

>>> R = zipf.rvs(a,size=100)

Custom made discrete distribution:

>>> vals = [arange(7),(0.1,0.2,0.3,0.1,0.1,0.1,0.1)]
>>> custm = rv_discrete(name=’custm’,values=vals)
>>> h = plt.plot(vals[0],custm.pmf(vals[0]))

Zipf distribution

zipf.pmf(k,a) = 1/(zeta(a)*k**a) for k >= 1

dlaplace()
A discrete Laplacian discrete random variable.

Discrete random variables are defined from a standard form and may require some shape parameters to complete
its specification. Any optional keyword parameters can be passed to the methods of the RV object as given
below:

Methods
dlaplace.rvs(a,loc=0,size=1) :

• random variates

dlaplace.pmf(x,a,loc=0) :

• probability mass function

dlaplace.cdf(x,a,loc=0) :

• cumulative density function

dlaplace.sf(x,a,loc=0) :

• survival function (1-cdf — sometimes more accurate)

dlaplace.ppf(q,a,loc=0) :

• percent point function (inverse of cdf — percentiles)

dlaplace.isf(q,a,loc=0) :

• inverse survival function (inverse of sf)

dlaplace.stats(a,loc=0,moments=’mv’) :

• mean(‘m’,axis=0), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’)

3.18. Statistical functions (scipy.stats) 503

SciPy Reference Guide, Release 0.7

dlaplace.entropy(a,loc=0) :

• entropy of the RV

Alternatively, the object may be called (as a function) to fix :
the shape and location parameters returning a :
“frozen” discrete RV object: :
myrv = dlaplace(a,loc=0) :

• frozen RV object with the same methods but holding the given shape and location fixed.

You can construct an aribtrary discrete rv where P{X=xk} = pk :
by passing to the rv_discrete initialization method (through the values= :
keyword) a tuple of sequences (xk,pk) which describes only those values of :
X (xk) that occur with nonzero probability (pk). :

Examples

>>> import matplotlib.pyplot as plt
>>> numargs = dlaplace.numargs
>>> [a] = [’Replace with resonable value’,]*numargs

Display frozen pmf:

>>> rv = dlaplace(a)
>>> x = np.arange(0,np.min(rv.dist.b,3)+1)
>>> h = plt.plot(x,rv.pmf(x))

Check accuracy of cdf and ppf:

>>> prb = dlaplace.cdf(x,a)
>>> h = plt.semilogy(np.abs(x-dlaplace.ppf(prb,a))+1e-20)

Random number generation:

>>> R = dlaplace.rvs(a,size=100)

Custom made discrete distribution:

>>> vals = [arange(7),(0.1,0.2,0.3,0.1,0.1,0.1,0.1)]
>>> custm = rv_discrete(name=’custm’,values=vals)
>>> h = plt.plot(vals[0],custm.pmf(vals[0]))

Discrete Laplacian distribution.

dlapacle.pmf(k,a) = tanh(a/2) * exp(-a*abs(k)) for a > 0.

3.18.4 Statistical functions

Several of these functions have a similar version in scipy.stats.mstats which work for masked arrays.

504 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

gmean (a[, axis]) Calculates the geometric mean of the values in the passed array.

hmean (a[, axis, zero_sub])Calculates the harmonic mean of the values in the passed array.

mean (a[, axis]) Returns the arithmetic mean of m along the given dimension.

cmedian (a[, numbins])Returns the computed median value of an array.

median (a[, axis]) Returns the median of the passed array along the given axis.

mode (a[, axis]) Returns an array of the modal (most common) value in the passed array.

tmean (a[, lim-
its, inclusive, True))

Returns the arithmetic mean of all values in an array, ignoring values strictly outside given
limits.

tvar (a[, limits, in-
clusive, 1))

Returns the sample variance of values in an array, (i.e., using N-1), ignoring values strictly
outside the sequence passed to ‘limits’. Note: either limit in the sequence, or the value of
limits itself, can be set to None. The inclusive list/tuple determines whether the lower and
upper limiting bounds (respectively) are open/exclusive (0) or closed/inclusive (1).

tmin (a[, lower-
limit, axis, ...])

Returns the minimum value of a, along axis, including only values less than (or equal to, if
inclusive is True) lowerlimit. If the limit is set to None, all values in the array are used.

tmax (a, upper-
limit[, axis, inclu-
sive])

Returns the maximum value of a, along axis, including only values greater than (or equal
to, if inclusive is True) upperlimit. If the limit is set to None, a limit larger than the max
value in the array is used.

tstd (a[, limits, in-
clusive, 1))

Returns the standard deviation of all values in an array, ignoring values strictly outside the
sequence passed to ‘limits’. Note: either limit in the sequence, or the value of limits itself,
can be set to None. The inclusive list/tuple determines whether the lower and upper
limiting bounds (respectively) are open/exclusive (0) or closed/inclusive (1).

tsem (a[, limits, in-
clusive, True))

Returns the standard error of the mean for the values in an array, (i.e., using N for the
denominator), ignoring values strictly outside the sequence passed to ‘limits’. Note: either
limit in the sequence, or the value of limits itself, can be set to None. The inclusive
list/tuple determines whether the lower and upper limiting bounds (respectively) are
open/exclusive (0) or closed/inclusive (1).

moment (a[, mo-
ment, axis])

Calculates the nth moment about the mean for a sample.

variation (a[, axis])Computes the coefficient of variation, the ratio of the biased standard deviation to the
mean.

skew (a[, axis, bias]) Computes the skewness of a data set.

kurtosis (a[, axis, fisher, bias])Computes the kurtosis (Fisher or Pearson) of a dataset.

describe (a[, axis]) Computes several descriptive statistics of the passed array.

skewtest (a[, axis]) Tests whether the skew is significantly different from a normal distribution.

kurtosistest (a[, axis])Tests whether a dataset has normal kurtosis (i.e., kurtosis=3(n-1)/(n+1)).

normaltest (a[, axis])Tests whether skew and/or kurtosis of dataset differs from normal curve.

3.18. Statistical functions (scipy.stats) 505

SciPy Reference Guide, Release 0.7

gmean(a, axis=0)
Calculates the geometric mean of the values in the passed array.

That is: n-th root of (x1 * x2 * ... * xn)

Parameters
a : array of positive values
axis : int or None
zero_sub : value to substitute for zero values. Default is 0.

Returns
The geometric mean computed over a single dimension of the input array or :
all values in the array if axis==None. :

hmean(a, axis=0, zero_sub=0)
Calculates the harmonic mean of the values in the passed array.

That is: n / (1/x1 + 1/x2 + ... + 1/xn)

Parameters
a : array
axis : int or None

Returns
The harmonic mean computed over a single dimension of the input array or all :
values in the array if axis=None. :

mean(a, axis=0)
Returns the arithmetic mean of m along the given dimension.

That is: (x1 + x2 + .. + xn) / n

Parameters
a : array
axis : int or None

Returns
The arithmetic mean computed over a single dimension of the input array or :
all values in the array if axis=None. The return value will have a floating :
point dtype even if the input data are integers. :

cmedian(a, numbins=1000)
Returns the computed median value of an array.

All of the values in the input array are used. The input array is first histogrammed using numbins bins. The bin
containing the median is selected by searching for the halfway point in the cumulative histogram. The median
value is then computed by linearly interpolating across that bin.

Parameters
a : array
numbins : int

The number of bins used to histogram the data. More bins give greater accuracy to
the approximation of the median.

Returns
A floating point value approximating the median. :

506 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

References

[CRCProbStat2000] Section 2.2.6

median(a, axis=0)
Returns the median of the passed array along the given axis.

If there is an even number of entries, the mean of the 2 middle values is returned.

Parameters
a : array
axis=0 : int

Returns
The median of each remaining axis, or of all of the values in the array :
if axis is None. :

mode(a, axis=0)
Returns an array of the modal (most common) value in the passed array.

If there is more than one such value, only the first is returned. The bin-count for the modal bins is also returned.

Parameters
a : array
axis=0 : int

Returns
(array of modal values, array of counts for each mode) :

tmean(a, limits=None, inclusive=(True, True))
Returns the arithmetic mean of all values in an array, ignoring values strictly outside given limits.

Parameters
a : array
limits : None or (lower limit, upper limit)

Values in the input array less than the lower limit or greater than the upper limit will
be masked out. When limits is None, then all values are used. Either of the limit
values in the tuple can also be None representing a half-open interval.

inclusive : (bool, bool)

A tuple consisting of the (lower flag, upper flag). These flags determine whether
values exactly equal to lower or upper are allowed.

Returns
A float. :

tvar(a, limits=None, inclusive=(1, 1))
Returns the sample variance of values in an array, (i.e., using N-1), ignoring values strictly outside the sequence
passed to ‘limits’. Note: either limit in the sequence, or the value of limits itself, can be set to None. The
inclusive list/tuple determines whether the lower and upper limiting bounds (respectively) are open/exclusive
(0) or closed/inclusive (1).

tmin(a, lowerlimit=None, axis=0, inclusive=True)
Returns the minimum value of a, along axis, including only values less than (or equal to, if inclusive is True)
lowerlimit. If the limit is set to None, all values in the array are used.

tmax(a, upperlimit, axis=0, inclusive=True)
Returns the maximum value of a, along axis, including only values greater than (or equal to, if inclusive is True)
upperlimit. If the limit is set to None, a limit larger than the max value in the array is used.

3.18. Statistical functions (scipy.stats) 507

SciPy Reference Guide, Release 0.7

tstd(a, limits=None, inclusive=(1, 1))
Returns the standard deviation of all values in an array, ignoring values strictly outside the sequence passed
to ‘limits’. Note: either limit in the sequence, or the value of limits itself, can be set to None. The inclusive
list/tuple determines whether the lower and upper limiting bounds (respectively) are open/exclusive (0) or
closed/inclusive (1).

tsem(a, limits=None, inclusive=(True, True))
Returns the standard error of the mean for the values in an array, (i.e., using N for the denominator), ignoring
values strictly outside the sequence passed to ‘limits’. Note: either limit in the sequence, or the value of limits
itself, can be set to None. The inclusive list/tuple determines whether the lower and upper limiting bounds
(respectively) are open/exclusive (0) or closed/inclusive (1).

moment(a, moment=1, axis=0)
Calculates the nth moment about the mean for a sample.

Generally used to calculate coefficients of skewness and kurtosis.

Parameters
a : array
moment : int
axis : int or None

Returns
The appropriate moment along the given axis or over all values if axis is :
None. :

variation(a, axis=0)
Computes the coefficient of variation, the ratio of the biased standard deviation to the mean.

Parameters
a : array
axis : int or None

References

[CRCProbStat2000] section 2.2.20

skew(a, axis=0, bias=True)
Computes the skewness of a data set.

For normally distributed data, the skewness should be about 0. A skewness value > 0 means that there is more
weight in the left tail of the distribution. The function skewtest() can be used to determine if the skewness value
is close enough to 0, statistically speaking.

Parameters
a : array
axis : int or None
bias : bool

If False, then the calculations are corrected for statistical bias.

Returns
The skewness of values along an axis, returning 0 where all values are :
equal. :

References

[CRCProbStat2000] section 2.2.24.1

508 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

kurtosis(a, axis=0, fisher=True, bias=True)
Computes the kurtosis (Fisher or Pearson) of a dataset.

Kurtosis is the fourth central moment divided by the square of the variance. If Fisher’s definition is used, then
3.0 is subtracted from the result to give 0.0 for a normal distribution.

If bias is False then the kurtosis is calculated using k statistics to eliminate bias comming from biased moment
estimators

Use kurtosistest() to see if result is close enough to normal.

Parameters
a : array
axis : int or None
fisher : bool

If True, Fisher’s definition is used (normal ==> 0.0). If False, Pearson’s definition is
used (normal ==> 3.0).

bias : bool

If False, then the calculations are corrected for statistical bias.

Returns
The kurtosis of values along an axis. If all values are equal, return -3 for Fisher’s :
definition and 0 for Pearson’s definition. :

References

[CRCProbStat2000] section 2.2.25

describe(a, axis=0)
Computes several descriptive statistics of the passed array.

Parameters
a : array
axis : int or None

Returns
(size of the data, :

(min, max), arithmetic mean, unbiased variance, biased skewness, biased kurtosis)

skewtest(a, axis=0)
Tests whether the skew is significantly different from a normal distribution.

The size of the dataset should be >= 8.

Parameters
a : array
axis : int or None

Returns
(Z-score, :

2-tail Z-probability,

) :

kurtosistest(a, axis=0)
Tests whether a dataset has normal kurtosis (i.e., kurtosis=3(n-1)/(n+1)).

Valid only for n>20.

3.18. Statistical functions (scipy.stats) 509

SciPy Reference Guide, Release 0.7

Parameters
a : array
axis : int or None

Returns
(Z-score, :

2-tail Z-probability)

The Z-score is set to 0 for bad entries. :

normaltest(a, axis=0)
Tests whether skew and/or kurtosis of dataset differs from normal curve.

Parameters
a : array
axis : int or None

Returns
(Chi^2 score, :

2-tail probability)

Based on the D’Agostino and Pearson’s test that combines skew and :
kurtosis to produce an omnibus test of normality. :
D’Agostino, R. B. and Pearson, E. S. (1971), “An Omnibus Test of :
Normality for Moderate and Large Sample Size,” Biometrika, 58, 341-348 :
D’Agostino, R. B. and Pearson, E. S. (1973), “Testing for departures from :
Normality,” Biometrika, 60, 613-622 :

itemfreq (a) Returns a 2D array of item frequencies.

scoreatpercentile (a, per[, limit=())Calculate the score at the given ‘per’ percentile of the sequence a. For example, the
score at per=50 is the median.

percentileofscore (a, score[, kind])The percentile rank of a score relative to a list of scores.

histogram2 (a, bins) histogram2(a,bins) – Compute histogram of a using divisions in bins

histogram (a[, numbins, de-
faultlimits, ...])

Returns (i) an array of histogram bin counts, (ii) the smallest value of the histogram
binning, and (iii) the bin width (the last 2 are not necessarily integers). Default number
of bins is 10. Defaultlimits can be None (the routine picks bins spanning all the
numbers in the a) or a 2-sequence (lowerlimit, upperlimit). Returns all of the following:
array of bin values, lowerreallimit, binsize, extrapoints.

cumfreq (a[, numbins, de-
faultreallimits])

Returns a cumulative frequency histogram, using the histogram function.
Defaultreallimits can be None (use all data), or a 2-sequence containing lower and
upper limits on values to include.

relfreq (a[, numbins, de-
faultreallimits])

Returns a relative frequency histogram, using the histogram function. Defaultreallimits
can be None (use all data), or a 2-sequence containing lower and upper limits on values
to include.

itemfreq(a)
Returns a 2D array of item frequencies.

Column 1 contains item values, column 2 contains their respective counts. Assumes a 1D array is passed.

510 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

Parameters
a : array

Returns
A 2D frequency table (col [0:n-1]=scores, col n=frequencies) :

scoreatpercentile(a, per, limit=())
Calculate the score at the given ‘per’ percentile of the sequence a. For example, the score at per=50 is the
median.

If the desired quantile lies between two data points, we interpolate between them.

If the parameter ‘limit’ is provided, it should be a tuple (lower, upper) of two values. Values of ‘a’ outside this
(closed) interval will be ignored.

percentileofscore(a, score, kind=’rank’)
The percentile rank of a score relative to a list of scores.

A percentileofscore of, for example, 80% means that 80% of the scores in a are below the given score. In the
case of gaps or ties, the exact definition depends on the optional keyword, kind.

Parameters
a: array like :

Array of scores to which score is compared.

score: int or float :

Score that is compared to the elements in a.

kind: {‘rank’, ‘weak’, ‘strict’, ‘mean’}, optional :

This optional parameter specifies the interpretation of the resulting score:
• “rank”: Average percentage ranking of score. In case of

multiple matches, average the percentage rankings of all matching scores.
• “weak”: This kind corresponds to the definition of a cumulative

distribution function. A percentileofscore of 80% means that 80% of values
are less than or equal to the provided score.

• “strict”: Similar to “weak”, except that only values that are
strictly less than the given score are counted.

• “mean”: The average of the “weak” and “strict” scores, often used in
testing. See
http://en.wikipedia.org/wiki/Percentile_rank

Returns
pcos : float

Percentile-position of score (0-100) relative to a.

Examples

Three-quarters of the given values lie below a given score:

>>> percentileofscore([1, 2, 3, 4], 3)
75.0

With multiple matches, note how the scores of the two matches, 0.6 and 0.8 respectively, are averaged:

>>> percentileofscore([1, 2, 3, 3, 4], 3)
70.0

Only 2/5 values are strictly less than 3:

3.18. Statistical functions (scipy.stats) 511

http://en.wikipedia.org/wiki/Percentile_rank

SciPy Reference Guide, Release 0.7

>>> percentileofscore([1, 2, 3, 3, 4], 3, kind=’strict’)
40.0

But 4/5 values are less than or equal to 3:

>>> percentileofscore([1, 2, 3, 3, 4], 3, kind=’weak’)
80.0

The average between the weak and the strict scores is

>>> percentileofscore([1, 2, 3, 3, 4], 3, kind=’mean’)
60.0

histogram2(a, bins)
histogram2(a,bins) – Compute histogram of a using divisions in bins

Description:
Count the number of times values from array a fall into numerical ranges defined by bins. Range x is given
by bins[x] <= range_x < bins[x+1] where x =0,N and N is the length of the bins array. The last range is
given by bins[N] <= range_N < infinity. Values less than bins[0] are not included in the histogram.

Arguments:
a – 1D array. The array of values to be divied into bins bins – 1D array. Defines the ranges of values to
use during

histogramming.

Returns:
1D array. Each value represents the occurences for a given bin (range) of values.

Caveat:
This should probably have an axis argument that would histogram along a specific axis (kinda like matlab)

histogram(a, numbins=10, defaultlimits=None, printextras=True)
Returns (i) an array of histogram bin counts, (ii) the smallest value of the histogram binning, and (iii) the bin
width (the last 2 are not necessarily integers). Default number of bins is 10. Defaultlimits can be None (the
routine picks bins spanning all the numbers in the a) or a 2-sequence (lowerlimit, upperlimit). Returns all of the
following: array of bin values, lowerreallimit, binsize, extrapoints.

Returns: (array of bin counts, bin-minimum, min-width, #-points-outside-range)

cumfreq(a, numbins=10, defaultreallimits=None)
Returns a cumulative frequency histogram, using the histogram function. Defaultreallimits can be None (use all
data), or a 2-sequence containing lower and upper limits on values to include.

Returns: array of cumfreq bin values, lowerreallimit, binsize, extrapoints

relfreq(a, numbins=10, defaultreallimits=None)
Returns a relative frequency histogram, using the histogram function. Defaultreallimits can be None (use all
data), or a 2-sequence containing lower and upper limits on values to include.

Returns: array of cumfreq bin values, lowerreallimit, binsize, extrapoints

512 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

obrientransform (*args)Computes a transform on input data (any number of columns). Used to test for
homogeneity of variance prior to running one-way stats. Each array in *args is one level of
a factor. If an F_oneway() run on the transformed data and found significant, variances are
unequal. From Maxwell and Delaney, p.112.

samplevar (a[, axis])Returns the sample standard deviation of the values in the passed array (i.e., using N). Axis
can equal None (ravel array first), an integer (the axis over which to operate)

samplestd (a[, axis])Returns the sample standard deviation of the values in the passed array (i.e., using N). Axis
can equal None (ravel array first), an integer (the axis over which to operate).

signaltonoise (in-
stack[, axis])

Calculates signal-to-noise. Axis can equal None (ravel array first), an integer (the axis over
which to operate).

bayes_mvs (data[, al-
pha])

Return Bayesian confidence intervals for the mean, var, and std.

var (a[, axis, bias]) Returns the estimated population variance of the values in the passed array (i.e., N-1). Axis
can equal None (ravel array first), or an integer (the axis over which to operate).

std (a[, axis, bias]) Returns the estimated population standard deviation of the values in the passed array (i.e.,
N-1). Axis can equal None (ravel array first), or an integer (the axis over which to operate).

stderr (a[, axis]) Returns the estimated population standard error of the values in the passed array (i.e., N-1).
Axis can equal None (ravel array first), or an integer (the axis over which to operate).

sem (a[, axis]) Returns the standard error of the mean (i.e., using N) of the values in the passed array. Axis
can equal None (ravel array first), or an integer (the axis over which to operate)

z (a, score) Returns the z-score of a given input score, given thearray from which that score came. Not
appropriate for population calculations, nor for arrays > 1D.

zs (a) Returns a 1D array of z-scores, one for each score in the passed array, computed relative to
the passed array.

zmap (scores, com-
pare[, axis])

Returns an array of z-scores the shape of scores (e.g., [x,y]), compared to array passed to
compare (e.g., [time,x,y]). Assumes collapsing over dim 0 of the compare array.

obrientransform(*args)
Computes a transform on input data (any number of columns). Used to test for homogeneity of variance prior
to running one-way stats. Each array in *args is one level of a factor. If an F_oneway() run on the transformed
data and found significant, variances are unequal. From Maxwell and Delaney, p.112.

Returns: transformed data for use in an ANOVA

samplevar(a, axis=0)
Returns the sample standard deviation of the values in the passed array (i.e., using N). Axis can equal None
(ravel array first), an integer (the axis over which to operate)

samplestd(a, axis=0)
Returns the sample standard deviation of the values in the passed array (i.e., using N). Axis can equal None
(ravel array first), an integer (the axis over which to operate).

signaltonoise(instack, axis=0)
Calculates signal-to-noise. Axis can equal None (ravel array first), an integer (the axis over which to operate).

3.18. Statistical functions (scipy.stats) 513

SciPy Reference Guide, Release 0.7

Returns: array containing the value of (mean/stdev) along axis,
or 0 when stdev=0

bayes_mvs(data, alpha=0.90000000000000002)
Return Bayesian confidence intervals for the mean, var, and std.

Assumes 1-d data all has same mean and variance and uses Jeffrey’s prior for variance and std.

alpha gives the probability that the returned confidence interval contains the true parameter.

Uses mean of conditional pdf as center estimate (but centers confidence interval on the median)

Returns (center, (a, b)) for each of mean, variance and standard deviation. Requires 2 or more data-points.

var(a, axis=0, bias=False)
Returns the estimated population variance of the values in the passed array (i.e., N-1). Axis can equal None
(ravel array first), or an integer (the axis over which to operate).

std(a, axis=0, bias=False)
Returns the estimated population standard deviation of the values in the passed array (i.e., N-1). Axis can equal
None (ravel array first), or an integer (the axis over which to operate).

stderr(a, axis=0)
Returns the estimated population standard error of the values in the passed array (i.e., N-1). Axis can equal
None (ravel array first), or an integer (the axis over which to operate).

sem(a, axis=0)
Returns the standard error of the mean (i.e., using N) of the values in the passed array. Axis can equal None
(ravel array first), or an integer (the axis over which to operate)

z(a, score)
Returns the z-score of a given input score, given thearray from which that score came. Not appropriate for
population calculations, nor for arrays > 1D.

zs(a)
Returns a 1D array of z-scores, one for each score in the passed array, computed relative to the passed array.

zmap(scores, compare, axis=0)
Returns an array of z-scores the shape of scores (e.g., [x,y]), compared to array passed to compare (e.g.,
[time,x,y]). Assumes collapsing over dim 0 of the compare array.

threshold (a[, thresh-
min, threshmax, ...])

Clip array to a given value.

trimboth (a, pro-
portiontocut)

Slices off the passed proportion of items from BOTH ends of the passed array (i.e., with
proportiontocut=0.1, slices ‘leftmost’ 10% AND ‘rightmost’ 10% of scores. You must
pre-sort the array if you want “proper” trimming. Slices off LESS if proportion results
in a non-integer slice index (i.e., conservatively slices off proportiontocut).

trim1 (a, proportion-
tocut[, tail])

Slices off the passed proportion of items from ONE end of the passed array (i.e., if
proportiontocut=0.1, slices off ‘leftmost’ or ‘rightmost’ 10% of scores). Slices off
LESS if proportion results in a non-integer slice index (i.e., conservatively slices off
proportiontocut).

cov (m[, y, row-
var, bias])

Estimate the covariance matrix.

corrcoef (x[, y, row-
var, bias])

The correlation coefficients formed from 2-d array x, where the rows are the
observations, and the columns are variables.

514 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

threshold(a, threshmin=None, threshmax=None, newval=0)
Clip array to a given value.

Similar to numpy.clip(), except that values less than threshmin or greater than threshmax are replaced by newval,
instead of by threshmin and threshmax respectively.

Returns: a, with values less than threshmin or greater than threshmax
replaced with newval

trimboth(a, proportiontocut)
Slices off the passed proportion of items from BOTH ends of the passed array (i.e., with proportiontocut=0.1,
slices ‘leftmost’ 10% AND ‘rightmost’ 10% of scores. You must pre-sort the array if you want “proper”
trimming. Slices off LESS if proportion results in a non-integer slice index (i.e., conservatively slices off
proportiontocut).

Returns: trimmed version of array a

trim1(a, proportiontocut, tail=’right’)
Slices off the passed proportion of items from ONE end of the passed array (i.e., if proportiontocut=0.1, slices
off ‘leftmost’ or ‘rightmost’ 10% of scores). Slices off LESS if proportion results in a non-integer slice index
(i.e., conservatively slices off proportiontocut).

Returns: trimmed version of array a

cov(m, y=None, rowvar=False, bias=False)
Estimate the covariance matrix.

If m is a vector, return the variance. For matrices where each row is an observation, and each column a variable,
return the covariance matrix. Note that in this case diag(cov(m)) is a vector of variances for each column.

cov(m) is the same as cov(m, m)

Normalization is by (N-1) where N is the number of observations (unbiased estimate). If bias is True then
normalization is by N.

If rowvar is False, then each row is a variable with observations in the columns.

corrcoef(x, y=None, rowvar=False, bias=True)
The correlation coefficients formed from 2-d array x, where the rows are the observations, and the columns are
variables.

corrcoef(x,y) where x and y are 1d arrays is the same as corrcoef(transpose([x,y]))

If rowvar is True, then each row is a variables with observations in the columns.

f_oneway (*args)Performs a 1-way ANOVA, returning an F-value and probability given any number of groups.
From Heiman, pp.394-7.

paired

pearsonr (x, y) Calculates a Pearson correlation coefficient and the p-value for testing non-correlation.

spearmanr (x, y)Calculates a Spearman rank-order correlation coefficient and the p-value to test for
non-correlation.

pointbiserialr (x, y)Calculates a point biserial correlation coefficient and the associated p-value.

kendalltau (x, y)Calculates Kendall’s tau, a correlation measure for ordinal data, and an associated p-value.

linregress (*args)Calculates a regression line on two arrays, x and y, corresponding to x,y pairs. If a single 2D
array is passed, linregress finds dim with 2 levels and splits data into x,y pairs along that dim.

3.18. Statistical functions (scipy.stats) 515

SciPy Reference Guide, Release 0.7

f_oneway(*args)
Performs a 1-way ANOVA, returning an F-value and probability given any number of groups. From Heiman,
pp.394-7.

Usage: f_oneway (*args) where *args is 2 or more arrays, one per
treatment group

Returns: f-value, probability

pearsonr(x, y)
Calculates a Pearson correlation coefficient and the p-value for testing non-correlation.

The Pearson correlation coefficient measures the linear relationship between two datasets. Strictly speaking,
Pearson’s correlation requires that each dataset be normally distributed. Like other correlation coefficients, this
one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear
relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x
increases, y decreases.

The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson
correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable
but are probably reasonable for datasets larger than 500 or so.

Parameters
x : 1D array
y : 1D array the same length as x

Returns
(Pearson’s correlation coefficient, :

2-tailed p-value)

References

http://www.statsoft.com/textbook/glosp.html#Pearson%20Correlation

spearmanr(x, y)
Calculates a Spearman rank-order correlation coefficient and the p-value to test for non-correlation.

The Spearman correlation is a nonparametric measure of the linear relationship between two datasets. Unlike the
Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. Like
other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of
-1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative
correlations imply that as x increases, y decreases.

The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman
correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable
but are probably reasonable for datasets larger than 500 or so.

Parameters
x : 1D array
y : 1D array the same length as x

The lengths of both arrays must be > 2.

Returns
(Spearman correlation coefficient, :

2-tailed p-value)

516 Chapter 3. Reference

http://www.statsoft.com/textbook/glosp.html#Pearson%20Correlation

SciPy Reference Guide, Release 0.7

References

[CRCProbStat2000] section 14.7

pointbiserialr(x, y)
Calculates a point biserial correlation coefficient and the associated p-value.

The point biserial correlation is used to measure the relationship between a binary variable, x, and a continuous
variable, y. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation.
Correlations of -1 or +1 imply a determinative relationship.

Parameters
x : array of bools
y : array of floats

Returns
(point-biserial r, :

2-tailed p-value)

References

http://www.childrens-mercy.org/stats/definitions/biserial.htm

kendalltau(x, y)
Calculates Kendall’s tau, a correlation measure for ordinal data, and an associated p-value.

Returns: Kendall’s tau, two-tailed p-value

linregress(*args)
Calculates a regression line on two arrays, x and y, corresponding to x,y pairs. If a single 2D array is passed,
linregress finds dim with 2 levels and splits data into x,y pairs along that dim.

Returns: slope, intercept, r, two-tailed prob, stderr-of-the-estimate

3.18. Statistical functions (scipy.stats) 517

http://www.childrens-mercy.org/stats/definitions/biserial.htm

SciPy Reference Guide, Release 0.7

ttest_1samp (a, pop-
mean[, axis])

Calculates the T-test for the mean of ONE group of scores a.

ttest_ind (a, b[, axis]) Calculates the T-test for the means of TWO INDEPENDENT samples of scores.

ttest_rel (a, b[, axis]) Calculates the T-test on TWO RELATED samples of scores, a and b.

kstest (rvs, cdf[, args=(), N, al-
ternative, mode, **kwds)

Return the D-value and the p-value for a Kolmogorov-Smirnov test

chisquare (f_obs[, f_exp]) Calculates a one-way chi square for array of observed frequencies and returns the
result. If no expected frequencies are given, the total N is assumed to be equally
distributed across all groups.

ks_2samp (data1, data2) Computes the Kolmogorov-Smirnof statistic on 2 samples.

meanwhitneyu

tiecorrect (rankvals) Tie-corrector for ties in Mann Whitney U and Kruskal Wallis H tests. See Siegel,
S. (1956) Nonparametric Statistics for the Behavioral Sciences. New York:
McGraw-Hill. Code adapted from |Stat rankind.c code.

ranksums (x, y) Calculates the rank sums statistic on the provided scores and returns the result.

wilcoxon (x[, y]) Calculates the Wilcoxon signed-rank test for the null hypothesis that two samples
come from the same distribution. A non-parametric T-test. (need N > 20)

kruskal (*args) The Kruskal-Wallis H-test is a non-parametric ANOVA for 2 or more groups,
requiring at least 5 subjects in each group. This function calculates the
Kruskal-Wallis H and associated p-value for 2 or more independent samples.

friedmanchisquare (*args)Friedman Chi-Square is a non-parametric, one-way within-subjects ANOVA. This
function calculates the Friedman Chi-square test for repeated measures and returns
the result, along with the associated probability value.

ttest_1samp(a, popmean, axis=0)
Calculates the T-test for the mean of ONE group of scores a.

This is a two-sided test for the null hypothesis that the expected value (mean) of a sample of independent
observations is equal to the given population mean, popmean.

Parameters
a : array_like

sample observation

popmean : float or array_like

expected value in null hypothesis, if array_like than it must have the same shape as
a excluding the axis dimension

axis : int, optional, (default axis=0)

Axis can equal None (ravel array first), or an integer (the axis over which to operate
on a).

Returns
t : float or array

t-statistic

518 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

prob : float or array

two-tailed p-value

Examples

>>> from scipy import stats
>>> import numpy as np

>>> #fix seed to get the same result
>>> np.random.seed(7654567)
>>> rvs = stats.norm.rvs(loc=5,scale=10,size=(50,2))

test if mean of random sample is equal to true mean, and different mean. We reject the null hypothesis in the
second case and don’t reject it in the first case

>>> stats.ttest_1samp(rvs,5.0)
(array([-0.68014479, -0.04323899]), array([0.49961383, 0.96568674]))
>>> stats.ttest_1samp(rvs,0.0)
(array([2.77025808, 4.11038784]), array([0.00789095, 0.00014999]))

examples using axis and non-scalar dimension for population mean

>>> stats.ttest_1samp(rvs,[5.0,0.0])
(array([-0.68014479, 4.11038784]), array([4.99613833e-01, 1.49986458e-04]))
>>> stats.ttest_1samp(rvs.T,[5.0,0.0],axis=1)
(array([-0.68014479, 4.11038784]), array([4.99613833e-01, 1.49986458e-04]))
>>> stats.ttest_1samp(rvs,[[5.0],[0.0]])
(array([[-0.68014479, -0.04323899],

[2.77025808, 4.11038784]]), array([[4.99613833e-01, 9.65686743e-01],
[7.89094663e-03, 1.49986458e-04]]))

ttest_ind(a, b, axis=0)
Calculates the T-test for the means of TWO INDEPENDENT samples of scores.

This is a two-sided test for the null hypothesis that 2 independent samples have identical average (expected)
values.

Parameters
a, b : sequence of ndarrays

The arrays must have the same shape, except in the dimension corresponding to axis
(the first, by default).

axis : int, optional

Axis can equal None (ravel array first), or an integer (the axis over which to operate
on a and b).

Returns
t : float or array

t-statistic

prob : float or array

two-tailed p-value

3.18. Statistical functions (scipy.stats) 519

SciPy Reference Guide, Release 0.7

Notes

We can use this test, if we observe two independent samples from the same or different population, e.g. exam
scores of boys and girls or of two ethnic groups. The test measures whether the average (expected) value differs
significantly across samples. If we observe a large p-value, for example larger than 0.05 or 0.1, then we cannot
reject the null hypothesis of identical average scores. If the p-value is smaller than the threshold, e.g. 1%, 5%
or 10%, then we reject the null hypothesis of equal averages.

Examples

>>> from scipy import stats
>>> import numpy as np

>>> #fix seed to get the same result
>>> np.random.seed(12345678)

test with sample with identical means

>>> rvs1 = stats.norm.rvs(loc=5,scale=10,size=500)
>>> rvs2 = stats.norm.rvs(loc=5,scale=10,size=500)
>>> stats.ttest_ind(rvs1,rvs2)
(0.26833823296239279, 0.78849443369564765)

test with sample with different means

>>> rvs3 = stats.norm.rvs(loc=8,scale=10,size=500)
>>> stats.ttest_ind(rvs1,rvs3)
(-5.0434013458585092, 5.4302979468623391e-007)

ttest_rel(a, b, axis=0)
Calculates the T-test on TWO RELATED samples of scores, a and b.

This is a two-sided test for the null hypothesis that 2 related or repeated samples have identical
average (expected) values.

Parameters
a, b : sequence of ndarrays

The arrays must have the same shape.
axis

[int, optional, (default axis=0)] Axis can equal None (ravel array first), or an
integer (the axis over which to operate on a and b).

Returns
t : float or array

t-statistic
prob

[float or array] two-tailed p-value

Notes

Examples for the use are scores of the same set of student in different exams, or repeated sampling from the
same units. The test measures whether the average score differs significantly across samples (e.g. exams). If
we observe a large p-value, for example greater than 0.5 or 0.1 then we cannot reject the null hypothesis of
identical average scores. If the p-value is smaller than the threshold, e.g. 1%, 5% or 10%, then we reject the
null hypothesis of equal averages. Small p-values are associated with large t-statistics.

520 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

Examples

>>> from scipy import stats
>>> import numpy as np

>>> #fix random seed to get the same result
>>> np.random.seed(12345678)
>>> rvs1 = stats.norm.rvs(loc=5,scale=10,size=500)
>>> rvs2 = stats.norm.rvs(loc=5,scale=10,size=500) + stats.norm.rvs(scale=0.2,size=500)
>>> stats.ttest_rel(rvs1,rvs2)
(0.24101764965300962, 0.80964043445811562)
>>> rvs3 = stats.norm.rvs(loc=8,scale=10,size=500) + stats.norm.rvs(scale=0.2,size=500)
>>> stats.ttest_rel(rvs1,rvs3)
(-3.9995108708727933, 7.3082402191726459e-005)

kstest(rvs, cdf, args=(), N=20, alternative=’two_sided’, mode=’approx’, **kwds)
Return the D-value and the p-value for a Kolmogorov-Smirnov test

This performs a test of the distribution G(x) of an observed random variable against a given distribution F(x).
Under the null hypothesis the two distributions are identical, G(x)=F(x). The alternative hypothesis can be either
‘two_sided’ (default), ‘less’ or ‘greater’. The KS test is only valid for continuous distributions.

Parameters
rvs : string or array or callable

string: name of a distribution in scipy.stats
array: 1-D observations of random variables
callable: function to generate random variables, requires keyword argument size

cdf : string or callable
string: name of a distribution in scipy.stats, if rvs is a string then cdf can evaluate to
False or be the same as rvs callable: function to evaluate cdf

args : tuple, sequence
distribution parameters, used if rvs or cdf are strings

N : int
sample size if rvs is string or callable

alternative : ‘two_sided’ (default), ‘less’ or ‘greater’
defines the alternative hypothesis (see explanation)

mode : ‘approx’ (default) or ‘asymp’
defines the distribution used for calculating p-value
‘approx’ : use approximation to exact distribution of test statistic
‘asymp’ : use asymptotic distribution of test statistic

Returns
D : float

KS test statistic, either D, D+ or D-
p-value : float

one-tailed or two-tailed p-value

Notes
In the two one-sided test, the alternative is that the empirical cumulative distribution function of the random
variable is “less” or “greater” then the cumulative distribution function F(x) of the hypothesis, G(x)<=F(x),
resp. G(x)>=F(x).

If the p-value is greater than the significance level (say 5%), then we cannot reject the hypothesis that the data
come from the given distribution.

3.18. Statistical functions (scipy.stats) 521

SciPy Reference Guide, Release 0.7

Examples

>>> from scipy import stats
>>> import numpy as np
>>> from scipy.stats import kstest

>>> x = np.linspace(-15,15,9)
>>> kstest(x,’norm’)
(0.44435602715924361, 0.038850142705171065)

>>> np.random.seed(987654321) # set random seed to get the same result
>>> kstest(’norm’,’’,N=100)
(0.058352892479417884, 0.88531190944151261)

is equivalent to this

>>> np.random.seed(987654321)
>>> kstest(stats.norm.rvs(size=100),’norm’)
(0.058352892479417884, 0.88531190944151261)

Test against one-sided alternative hypothesis:

>>> np.random.seed(987654321)

Shift distribution to larger values, so that cdf_dgp(x)< norm.cdf(x):

>>> x = stats.norm.rvs(loc=0.2, size=100)
>>> kstest(x,’norm’, alternative = ’less’)
(0.12464329735846891, 0.040989164077641749)

Reject equal distribution against alternative hypothesis: less

>>> kstest(x,’norm’, alternative = ’greater’)
(0.0072115233216311081, 0.98531158590396395)

Don’t reject equal distribution against alternative hypothesis: greater

>>> kstest(x,’norm’, mode=’asymp’)
(0.12464329735846891, 0.08944488871182088)

Testing t distributed random variables against normal distribution:

With 100 degrees of freedom the t distribution looks close to the normal distribution, and the kstest does not
reject the hypothesis that the sample came from the normal distribution

>>> np.random.seed(987654321)
>>> stats.kstest(stats.t.rvs(100,size=100),’norm’)
(0.072018929165471257, 0.67630062862479168)

With 3 degrees of freedom the t distribution looks sufficiently different from the normal distribution, that we
can reject the hypothesis that the sample came from the normal distribution at a alpha=10% level

>>> np.random.seed(987654321)
>>> stats.kstest(stats.t.rvs(3,size=100),’norm’)
(0.131016895759829, 0.058826222555312224)

522 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

chisquare(f_obs, f_exp=None)
Calculates a one-way chi square for array of observed frequencies and returns the result. If no expected fre-
quencies are given, the total N is assumed to be equally distributed across all groups.

Returns: chisquare-statistic, associated p-value

ks_2samp(data1, data2)
Computes the Kolmogorov-Smirnof statistic on 2 samples.

This is a two-sided test for the null hypothesis that 2 independent samples are drawn from the same continuous
distribution.

Parameters
a, b : sequence of 1-D ndarrays

two arrays of sample observations assumed to be drawn from a continuous distribu-
tion, sample sizes can be different

Returns
D : float

KS statistic

p-value : float

two-tailed p-value

Notes

This tests whether 2 samples are drawn from the same distribution. Note that, like in the case of the one-sample
K-S test, the distribution is assumed to be continuous.

This is the two-sided test, one-sided tests are not implemented. The test uses the two-sided asymptotic
Kolmogorov-Smirnov distribution.

If the K-S statistic is small or the p-value is high, then we cannot reject the hypothesis that the distributions of
the two samples are the same.

tiecorrect(rankvals)
Tie-corrector for ties in Mann Whitney U and Kruskal Wallis H tests. See Siegel, S. (1956) Nonparametric
Statistics for the Behavioral Sciences. New York: McGraw-Hill. Code adapted from |Stat rankind.c code.

Returns: T correction factor for U or H

ranksums(x, y)
Calculates the rank sums statistic on the provided scores and returns the result.

Returns: z-statistic, two-tailed p-value

wilcoxon(x, y=None)
Calculates the Wilcoxon signed-rank test for the null hypothesis that two samples come from the same distribu-
tion. A non-parametric T-test. (need N > 20)

Returns: t-statistic, two-tailed p-value

kruskal(*args)
The Kruskal-Wallis H-test is a non-parametric ANOVA for 2 or more groups, requiring at least 5 subjects in
each group. This function calculates the Kruskal-Wallis H and associated p-value for 2 or more independent
samples.

Returns: H-statistic (corrected for ties), associated p-value

friedmanchisquare(*args)
Friedman Chi-Square is a non-parametric, one-way within-subjects ANOVA. This function calculates the Fried-
man Chi-square test for repeated measures and returns the result, along with the associated probability
value.

3.18. Statistical functions (scipy.stats) 523

SciPy Reference Guide, Release 0.7

This function uses Chisquared aproximation of Friedman Chisquared distribution. This is exact only if n > 10
and factor levels > 6.

Returns: friedman chi-square statistic, associated p-valueIt assumes 3 or more repeated measures. Only 3

ansari (x, y) Determine if the scale parameter for two distributions with equal medians is the same
using the Ansari-Bradley statistic.

bartlett (*args) Perform Bartlett test with the null hypothesis that all input samples have equal variances.

levene (*args, **kwds)Perform Levene test with the null hypothesis that all input samples have equal variances.

shapiro (x[, a, reta]) Shapiro and Wilk test for normality.

anderson (x[, dist]) Anderson and Darling test for normal, exponential, or Gumbel (Extreme Value Type I)
distribution.

binom_test (x[, n, p])An exact (two-sided) test of the null hypothesis that the probability of success in a
Bernoulli experiment is p.

fligner (*args, **kwds)Perform Levene test with the null hypothesis that all input samples have equal variances.

mood (x, y) Determine if the scale parameter for two distributions with equal medians is the same
using a Mood test.

oneway (*args, **kwds)Test for equal means in two or more samples from the normal distribution.

ansari(x, y)
Determine if the scale parameter for two distributions with equal medians is the same using the Ansari-Bradley
statistic.

Specifically, compute the AB statistic and the probability of error that the null hypothesis is true but rejected
with the computed statistic as the critical value.

One can reject the null hypothesis that the ratio of variances is 1 if returned probability of error is small (say <
0.05)

bartlett(*args)
Perform Bartlett test with the null hypothesis that all input samples have equal variances.

Inputs are sample vectors: bartlett(x,y,z,...)

Outputs: (T, pval)

T – the Test statistic pval – significance level if null is rejected with this value of T

(prob. that null is true but rejected with this p-value.)

Sensitive to departures from normality. The Levene test is an alternative that is less sensitive to departures from
normality.

References:

http://www.itl.nist.gov/div898/handbook/eda/section3/eda357.htm

Snedecor, George W. and Cochran, William G. (1989), Statistical
Methods, Eighth Edition, Iowa State University Press.

524 Chapter 3. Reference

http://www.itl.nist.gov/div898/handbook/eda/section3/eda357.htm

SciPy Reference Guide, Release 0.7

levene(*args, **kwds)
Perform Levene test with the null hypothesis that all input samples have equal variances.

Inputs are sample vectors: bartlett(x,y,z,...)

One keyword input, center, can be used with values
center = ‘mean’, center=’median’ (default), center=’trimmed’

center=’median’ is recommended for skewed (non-normal) distributions center=’mean’ is recommended for
symmetric, moderate-tailed, dist. center=’trimmed’ is recommended for heavy-tailed distributions.

Outputs: (W, pval)

W – the Test statistic pval – significance level if null is rejected with this value of W

(prob. that null is true but rejected with this p-value.)

References:

http://www.itl.nist.gov/div898/handbook/eda/section3/eda35a.htm

Levene, H. (1960). In Contributions to Probability and Statistics:
Essays in Honor of Harold Hotelling, I. Olkin et al. eds., Stanford University Press, pp. 278-
292.

Brown, M. B. and Forsythe, A. B. (1974), Journal of the American
Statistical Association, 69, 364-367

shapiro(x, a=None, reta=0)
Shapiro and Wilk test for normality.

Given random variates x, compute the W statistic and its p-value for a normality test.

If p-value is high, one cannot reject the null hypothesis of normality with this test. P-value is probability that
the W statistic is as low as it is if the samples are actually from a normal distribution.

Output: W statistic and its p-value

if reta is nonzero then also return the computed “a” values
as the third output. If these are known for a given size they can be given as input instead of
computed internally.

anderson(x, dist=’norm’)
Anderson and Darling test for normal, exponential, or Gumbel (Extreme Value Type I) distribution.

Given samples x, return A2, the Anderson-Darling statistic, the significance levels in percentages, and the
corresponding critical values.

Critical values provided are for the following significance levels norm/expon: 15%, 10%, 5%, 2.5%, 1% Gum-
bel: 25%, 10%, 5%, 2.5%, 1% logistic: 25%, 10%, 5%, 2.5%, 1%, 0.5%

If A2 is larger than these critical values then for that significance level, the hypothesis that the data come from
a normal (exponential) can be rejected.

binom_test(x, n=None, p=0.5)
An exact (two-sided) test of the null hypothesis that the probability of success in a Bernoulli experiment is p.

Inputs:

x – Number of successes (or a vector of length 2 giving the
number of successes and number of failures respectively)

n – Number of trials (ignored if x has length 2) p – Hypothesized probability of success

3.18. Statistical functions (scipy.stats) 525

http://www.itl.nist.gov/div898/handbook/eda/section3/eda35a.htm

SciPy Reference Guide, Release 0.7

Returns pval – Probability that null test is rejected for this set
of x and n even though it is true.

fligner(*args, **kwds)
Perform Levene test with the null hypothesis that all input samples have equal variances.

Inputs are sample vectors: bartlett(x,y,z,...)

One keyword input, center, can be used with values
center = ‘mean’, center=’median’ (default), center=’trimmed’

Outputs: (Xsq, pval)

Xsq – the Test statistic pval – significance level if null is rejected with this value of X

(prob. that null is true but rejected with this p-value.)

References:

http://www.stat.psu.edu/~bgl/center/tr/TR993.ps

Fligner, M.A. and Killeen, T.J. (1976). Distribution-free two-sample tests for scale. ‘Journal of the
American Statistical Association.’ 71(353), 210-213.

mood(x, y)
Determine if the scale parameter for two distributions with equal medians is the same using a Mood test.

Specifically, compute the z statistic and the probability of error that the null hypothesis is true but rejected with
the computed statistic as the critical value.

One can reject the null hypothesis that the ratio of scale parameters is 1 if the returned probability of error is
small (say < 0.05)

oneway(*args, **kwds)
Test for equal means in two or more samples from the normal distribution.

If the keyword parameter <equal_var> is true then the variances are assumed to be equal, otherwise they are not
assumed to be equal (default).

Return test statistic and the p-value giving the probability of error if the null hypothesis (equal means) is rejected
at this value.

glm (data, para) Calculates a linear model fit ... anova/ancova/lin-regress/t-test/etc. Taken from:

anova

glm(data, para)
Calculates a linear model fit ... anova/ancova/lin-regress/t-test/etc. Taken from:

Peterson et al. Statistical limitations in functional neuroimaging I. Non-inferential methods and statistical mod-
els. Phil Trans Royal Soc Lond B 354: 1239-1260.

Returns: statistic, p-value ???

526 Chapter 3. Reference

http://www.stat.psu.edu/~{}bgl/center/tr/TR993.ps

SciPy Reference Guide, Release 0.7

3.18.5 Plot-tests

probplot (x[, sparams=(), dist, ...])Return (osm, osr){,(scale,loc,r)} where (osm, osr) are order statistic medians and ordered
response data respectively so that plot(osm, osr) is a probability plot. If fit==1, then do a
regression fit and compute the slope (scale), intercept (loc), and correlation coefficient (r),
of the best straight line through the points. If fit==0, only (osm, osr) is returned.

ppcc_max (x[, brack, 1.0), dist])Returns the shape parameter that maximizes the probability plot correlation coefficient for
the given data to a one-parameter family of distributions.

ppcc_plot (x, a, b[, dist, plot, N])Returns (shape, ppcc), and optionally plots shape vs. ppcc (probability plot correlation
coefficient) as a function of shape parameter for a one-parameter family of distributions
from shape value a to b.

probplot(x, sparams=(), dist=’norm’, fit=1, plot=None)
Return (osm, osr){,(scale,loc,r)} where (osm, osr) are order statistic medians and ordered response data re-
spectively so that plot(osm, osr) is a probability plot. If fit==1, then do a regression fit and compute the slope
(scale), intercept (loc), and correlation coefficient (r), of the best straight line through the points. If fit==0, only
(osm, osr) is returned.

sparams is a tuple of shape parameter arguments for the distribution.

ppcc_max(x, brack=(0.0, 1.0), dist=’tukeylambda’)
Returns the shape parameter that maximizes the probability plot correlation coefficient for the given data to a
one-parameter family of distributions.

See also ppcc_plot

ppcc_plot(x, a, b, dist=’tukeylambda’, plot=None, N=80)
Returns (shape, ppcc), and optionally plots shape vs. ppcc (probability plot correlation coefficient) as a function
of shape parameter for a one-parameter family of distributions from shape value a to b.

See also ppcc_max

3.18.6 Univariate and multivariate kernel density estimation (scipy.stats.kde)

gaussian_kde Representation of a kernel-density estimate using Gaussian kernels.

class gaussian_kde(dataset)
Representation of a kernel-density estimate using Gaussian kernels.

Parameters
dataset : (# of dims, # of data)-array

datapoints to estimate from

Methods
kde.evaluate(points) : array

evaluate the estimated pdf on a provided set of points
kde(points)

[array] same as kde.evaluate(points)
kde.integrate_gaussian(mean, cov)

[float] multiply pdf with a specified Gaussian and integrate over the whole do-
main

kde.integrate_box_1d(low, high)
[float] integrate pdf (1D only) between two bounds

3.18. Statistical functions (scipy.stats) 527

SciPy Reference Guide, Release 0.7

kde.integrate_box(low_bounds, high_bounds)
[float] integrate pdf over a rectangular space between low_bounds and
high_bounds

kde.integrate_kde(other_kde)
[float] integrate two kernel density estimates multiplied together

For many more stat related functions install the software R and the interface package rpy.

3.19 Image Array Manipulation and Convolution (scipy.stsci)

3.19.1 Image Array manipulation Functions (scipy.stsci.image)

average (arrays[, out-
put, outtype, ...])

average() nominally computes the average pixel value for a stack of identically shaped
images.

combine

median (arrays[, out-
put, outtype, ...])

median() nominally computes the median pixels for a stack of identically shaped
images.

minimum (arrays[, out-
put, outtype, ...])

minimum() nominally computes the minimum pixel value for a stack of identically
shaped images.

threshhold (ar-
rays[, low, high, out-
puts])

threshhold() computes a boolean array ‘outputs’ with corresponding elements for each
element of arrays. The boolean value is true where each of the arrays values is < the
low or >= the high threshholds.

translate (a, sdx, sdy[, out-
put, mode, cval])

translate performs a translation of ‘a’ by (sdx, sdy) storing the result in ‘output’.

average(arrays, output=None, outtype=None, nlow=0, nhigh=0, badmasks=None)
average() nominally computes the average pixel value for a stack of identically shaped images.

arrays specifies a sequence of inputs arrays, which are nominally a
stack of identically shaped images.

output may be used to specify the output array. If none is specified,
either arrays[0] is copied or a new array of type ‘outtype’ is created.

outtype specifies the type of the output array when no ‘output’ is
specified.

nlow specifies the number of pixels to be excluded from average
on the low end of the pixel stack.

nhigh specifies the number of pixels to be excluded from average
on the high end of the pixel stack.

badmasks specifies boolean arrays corresponding to ‘arrays’, where true
indicates that a particular pixel is not to be included in the average calculation.

528 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

>>> a = np.arange(4)
>>> a = a.reshape((2,2))
>>> arrays = [a*16, a*4, a*2, a*8]
>>> average(arrays)
array([[0, 7],

[15, 22]])
>>> average(arrays, nhigh=1)
array([[0, 4],

[9, 14]])
>>> average(arrays, nlow=1)
array([[0, 9],

[18, 28]])
>>> average(arrays, outtype=np.float32)
array([[0. , 7.5],

[15. , 22.5]], dtype=float32)
>>> bm = np.zeros((4,2,2), dtype=np.bool8)
>>> bm[2,...] = 1
>>> average(arrays, badmasks=bm)
array([[0, 9],

[18, 28]])
>>> average(arrays, badmasks=threshhold(arrays, high=25))
array([[0, 7],

[9, 14]])

median(arrays, output=None, outtype=None, nlow=0, nhigh=0, badmasks=None)
median() nominally computes the median pixels for a stack of identically shaped images.

arrays specifies a sequence of inputs arrays, which are nominally a
stack of identically shaped images.

output may be used to specify the output array. If none is specified,
either arrays[0] is copied or a new array of type ‘outtype’ is created.

outtype specifies the type of the output array when no ‘output’ is
specified.

nlow specifies the number of pixels to be excluded from median
on the low end of the pixel stack.

nhigh specifies the number of pixels to be excluded from median
on the high end of the pixel stack.

badmasks specifies boolean arrays corresponding to ‘arrays’, where true
indicates that a particular pixel is not to be included in the median calculation.

>>> a = np.arange(4)
>>> a = a.reshape((2,2))
>>> arrays = [a*16, a*4, a*2, a*8]
>>> median(arrays)
array([[0, 6],

[12, 18]])
>>> median(arrays, nhigh=1)
array([[0, 4],

[8, 12]])
>>> median(arrays, nlow=1)
array([[0, 8],

[16, 24]])
>>> median(arrays, outtype=np.float32)

3.19. Image Array Manipulation and Convolution (scipy.stsci) 529

SciPy Reference Guide, Release 0.7

array([[0., 6.],
[12., 18.]], dtype=float32)

>>> bm = np.zeros((4,2,2), dtype=np.bool8)
>>> bm[2,...] = 1
>>> median(arrays, badmasks=bm)
array([[0, 8],

[16, 24]])
>>> median(arrays, badmasks=threshhold(arrays, high=25))
array([[0, 6],

[8, 12]])

minimum(arrays, output=None, outtype=None, nlow=0, nhigh=0, badmasks=None)
minimum() nominally computes the minimum pixel value for a stack of identically shaped images.

arrays specifies a sequence of inputs arrays, which are nominally a
stack of identically shaped images.

output may be used to specify the output array. If none is specified,
either arrays[0] is copied or a new array of type ‘outtype’ is created.

outtype specifies the type of the output array when no ‘output’ is
specified.

nlow specifies the number of pixels to be excluded from minimum
on the low end of the pixel stack.

nhigh specifies the number of pixels to be excluded from minimum
on the high end of the pixel stack.

badmasks specifies boolean arrays corresponding to ‘arrays’, where true
indicates that a particular pixel is not to be included in the minimum calculation.

>>> a = np.arange(4)
>>> a = a.reshape((2,2))
>>> arrays = [a*16, a*4, a*2, a*8]
>>> minimum(arrays)
array([[0, 2],

[4, 6]])
>>> minimum(arrays, nhigh=1)
array([[0, 2],

[4, 6]])
>>> minimum(arrays, nlow=1)
array([[0, 4],

[8, 12]])
>>> minimum(arrays, outtype=np.float32)
array([[0., 2.],

[4., 6.]], dtype=float32)
>>> bm = np.zeros((4,2,2), dtype=np.bool8)
>>> bm[2,...] = 1
>>> minimum(arrays, badmasks=bm)
array([[0, 4],

[8, 12]])
>>> minimum(arrays, badmasks=threshhold(arrays, low=10))
array([[0, 16],

[16, 12]])

threshhold(arrays, low=None, high=None, outputs=None)
threshhold() computes a boolean array ‘outputs’ with corresponding elements for each element of arrays. The
boolean value is true where each of the arrays values is < the low or >= the high threshholds.

530 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

>>> a=np.arange(100)
>>> a=a.reshape((10,10))
>>> (threshhold(a, 1, 50)).astype(np.int8)
array([[1, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], dtype=int8)

>>> (threshhold([range(10)]*10, 3, 7)).astype(np.int8)
array([[1, 1, 1, 0, 0, 0, 0, 1, 1, 1],

[1, 1, 1, 0, 0, 0, 0, 1, 1, 1],
[1, 1, 1, 0, 0, 0, 0, 1, 1, 1],
[1, 1, 1, 0, 0, 0, 0, 1, 1, 1],
[1, 1, 1, 0, 0, 0, 0, 1, 1, 1],
[1, 1, 1, 0, 0, 0, 0, 1, 1, 1],
[1, 1, 1, 0, 0, 0, 0, 1, 1, 1],
[1, 1, 1, 0, 0, 0, 0, 1, 1, 1],
[1, 1, 1, 0, 0, 0, 0, 1, 1, 1],
[1, 1, 1, 0, 0, 0, 0, 1, 1, 1]], dtype=int8)

>>> (threshhold(a, high=50)).astype(np.int8)
array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], dtype=int8)

>>> (threshhold(a, low=50)).astype(np.int8)
array([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

[1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=int8)

translate(a, sdx, sdy, output=None, mode=’nearest’, cval=0.0)
translate performs a translation of ‘a’ by (sdx, sdy) storing the result in ‘output’.

sdx, sdy are float values.

supported ‘mode’s include:
‘nearest’ elements beyond boundary come from nearest edge pixel. ‘wrap’ elements beyond boundary
come from the opposite array edge. ‘reflect’ elements beyond boundary come from reflection on same
array edge. ‘constant’ elements beyond boundary are set to ‘cval’

3.19. Image Array Manipulation and Convolution (scipy.stsci) 531

SciPy Reference Guide, Release 0.7

3.19.2 Image Array Convolution Functions (scipy.stsci.convolve)

boxcar (data, boxshape[, output, mode, cval]) boxcar computes a 1D or 2D boxcar filter on every 1D
or 2D subarray of data.

convolution_modes () -> new empty dic-
tionary. dict(mapping) -> new dictio-
nary initialized from a mapping ob-
ject’s (key, value) pairs. dict(seq) -> new dictionary ini-
tialized as if via: d , v in seq: d[k] = v dict(**kwargs) -
> new dictionary initialized with the name, ...])

convolve (data, kernel[, mode]) convolve(data, kernel, mode=FULL) Returns the dis-
crete, linear convolution of 1-D sequences a and v; mode
can be 0 (VALID), 1 (SAME), or 2 (FULL) to specify
size of the resulting sequence.

convolve2d (data, kernel[, output, mode, cval, ...]) convolve2d does 2d convolution of ‘data’ with ‘kernel’,
storing the result in ‘output’.

correlate (data, kernel[, mode])

>>> correlate(np.arange(8), [1, 2], mode=VALID) array([2, 5, 8, 11, 14, 17, 20]) >>> correlate(np.arange(8), [1, 2], mode=SAME) array([0, 2, 5, 8, 11, 14, 17, 20]) >>> correlate(np.arange(8), [1, 2], mode=FULL) array([0, 2, 5, 8, 11, 14, 17, 20, 7]) >>> correlate(np.arange(8), [1, 2, 3], mode=VALID) array([8, 14, 20, 26, 32, 38]) >>> correlate(np.arange(8), [1, 2, 3], mode=SAME) array([3, 8, 14, 20, 26, 32, 38, 20]) >>> correlate(np.arange(8), [1, 2, 3], mode=FULL) array([0, 3, 8, 14, 20, 26, 32, 38, 20, 7]) >>> correlate(np.arange(8), [1, 2, 3, 4, 5, 6], mode=VALID) array([70, 91, 112]) >>> correlate(np.arange(8), [1, 2, 3, 4, 5, 6], mode=SAME) array([17, 32, 50, 70, 91, 112, 85, 60]) >>> correlate(np.arange(8), [1, 2, 3, 4, 5, 6], mode=FULL) array([0, 6, 17, 32, 50, 70, 91, 112, 85, 60, 38, 20, 7]) >>> correlate(np.arange(8), 1+1j) Traceback (most recent call last): ... TypeError: array cannot be safely cast to required type

correlate2d (data, kernel[, output, mode, cval, ...]) correlate2d does 2d correlation of ‘data’ with ‘kernel’,
storing the result in ‘output’.

cross_correlate (data, kernel[, mode])

>>> correlate(np.arange(8), [1, 2], mode=VALID) array([2, 5, 8, 11, 14, 17, 20]) >>> correlate(np.arange(8), [1, 2], mode=SAME) array([0, 2, 5, 8, 11, 14, 17, 20]) >>> correlate(np.arange(8), [1, 2], mode=FULL) array([0, 2, 5, 8, 11, 14, 17, 20, 7]) >>> correlate(np.arange(8), [1, 2, 3], mode=VALID) array([8, 14, 20, 26, 32, 38]) >>> correlate(np.arange(8), [1, 2, 3], mode=SAME) array([3, 8, 14, 20, 26, 32, 38, 20]) >>> correlate(np.arange(8), [1, 2, 3], mode=FULL) array([0, 3, 8, 14, 20, 26, 32, 38, 20, 7]) >>> correlate(np.arange(8), [1, 2, 3, 4, 5, 6], mode=VALID) array([70, 91, 112]) >>> correlate(np.arange(8), [1, 2, 3, 4, 5, 6], mode=SAME) array([17, 32, 50, 70, 91, 112, 85, 60]) >>> correlate(np.arange(8), [1, 2, 3, 4, 5, 6], mode=FULL) array([0, 6, 17, 32, 50, 70, 91, 112, 85, 60, 38, 20, 7]) >>> correlate(np.arange(8), 1+1j) Traceback (most recent call last): ... TypeError: array cannot be safely cast to required type

dft

iraf_frame

pix_modes () -> new empty dic-
tionary. dict(mapping) -> new dictio-
nary initialized from a mapping ob-
ject’s (key, value) pairs. dict(seq) -> new dictionary ini-
tialized as if via: d , v in seq: d[k] = v dict(**kwargs) -
> new dictionary initialized with the name, ...])

boxcar(data, boxshape, output=None, mode=’nearest’, cval=0.0)
boxcar computes a 1D or 2D boxcar filter on every 1D or 2D subarray of data.

‘boxshape’ is a tuple of integers specifying the dimensions of the filter: e.g. (3,3)

if ‘output’ is specified, it should be the same shape as ‘data’ and None will be returned.

supported ‘mode’s include:
‘nearest’ elements beyond boundary come from nearest edge pixel. ‘wrap’ elements beyond
boundary come from the opposite array edge. ‘reflect’ elements beyond boundary come from
reflection on same array edge. ‘constant’ elements beyond boundary are set to ‘cval’

>>> boxcar(np.array([10, 0, 0, 0, 0, 0, 1000]), (3,), mode="nearest").astype(np.longlong)
array([6, 3, 0, 0, 0, 333, 666], dtype=int64)

532 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

>>> boxcar(np.array([10, 0, 0, 0, 0, 0, 1000]), (3,), mode="wrap").astype(np.longlong)
array([336, 3, 0, 0, 0, 333, 336], dtype=int64)
>>> boxcar(np.array([10, 0, 0, 0, 0, 0, 1000]), (3,), mode="reflect").astype(np.longlong)
array([6, 3, 0, 0, 0, 333, 666], dtype=int64)
>>> boxcar(np.array([10, 0, 0, 0, 0, 0, 1000]), (3,), mode="constant").astype(np.longlong)
array([3, 3, 0, 0, 0, 333, 333], dtype=int64)
>>> a = np.zeros((10,10))
>>> a[0,0] = 100
>>> a[5,5] = 1000
>>> a[9,9] = 10000
>>> boxcar(a, (3,3)).astype(np.longlong)
array([[44, 22, 0, 0, 0, 0, 0, 0, 0, 0],

[22, 11, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 111, 111, 111, 0, 0, 0],
[0, 0, 0, 0, 111, 111, 111, 0, 0, 0],
[0, 0, 0, 0, 111, 111, 111, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 1111, 2222],
[0, 0, 0, 0, 0, 0, 0, 0, 2222, 4444]], dtype=int64)

>>> boxcar(a, (3,3), mode="wrap").astype(np.longlong)
array([[1122, 11, 0, 0, 0, 0, 0, 0, 1111, 1122],

[11, 11, 0, 0, 0, 0, 0, 0, 0, 11],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 111, 111, 111, 0, 0, 0],
[0, 0, 0, 0, 111, 111, 111, 0, 0, 0],
[0, 0, 0, 0, 111, 111, 111, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1111, 0, 0, 0, 0, 0, 0, 0, 1111, 1111],
[1122, 11, 0, 0, 0, 0, 0, 0, 1111, 1122]], dtype=int64)

>>> boxcar(a, (3,3), mode="reflect").astype(np.longlong)
array([[44, 22, 0, 0, 0, 0, 0, 0, 0, 0],

[22, 11, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 111, 111, 111, 0, 0, 0],
[0, 0, 0, 0, 111, 111, 111, 0, 0, 0],
[0, 0, 0, 0, 111, 111, 111, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 1111, 2222],
[0, 0, 0, 0, 0, 0, 0, 0, 2222, 4444]], dtype=int64)

>>> boxcar(a, (3,3), mode="constant").astype(np.longlong)
array([[11, 11, 0, 0, 0, 0, 0, 0, 0, 0],

[11, 11, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 111, 111, 111, 0, 0, 0],
[0, 0, 0, 0, 111, 111, 111, 0, 0, 0],
[0, 0, 0, 0, 111, 111, 111, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 1111, 1111],
[0, 0, 0, 0, 0, 0, 0, 0, 1111, 1111]], dtype=int64)

3.19. Image Array Manipulation and Convolution (scipy.stsci) 533

SciPy Reference Guide, Release 0.7

>>> a = np.zeros((10,10))
>>> a[3:6,3:6] = 111
>>> boxcar(a, (3,3)).astype(np.longlong)
array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 12, 24, 37, 24, 12, 0, 0, 0],
[0, 0, 24, 49, 74, 49, 24, 0, 0, 0],
[0, 0, 37, 74, 111, 74, 37, 0, 0, 0],
[0, 0, 24, 49, 74, 49, 24, 0, 0, 0],
[0, 0, 12, 24, 37, 24, 12, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=int64)

convolution_modes()

convolve(data, kernel, mode=2)
convolve(data, kernel, mode=FULL) Returns the discrete, linear convolution of 1-D sequences a and v; mode
can be 0 (VALID), 1 (SAME), or 2 (FULL) to specify size of the resulting sequence.

>>> convolve(np.arange(8), [1, 2], mode=VALID)
array([1, 4, 7, 10, 13, 16, 19])
>>> convolve(np.arange(8), [1, 2], mode=SAME)
array([0, 1, 4, 7, 10, 13, 16, 19])
>>> convolve(np.arange(8), [1, 2], mode=FULL)
array([0, 1, 4, 7, 10, 13, 16, 19, 14])
>>> convolve(np.arange(8), [1, 2, 3], mode=VALID)
array([4, 10, 16, 22, 28, 34])
>>> convolve(np.arange(8), [1, 2, 3], mode=SAME)
array([1, 4, 10, 16, 22, 28, 34, 32])
>>> convolve(np.arange(8), [1, 2, 3], mode=FULL)
array([0, 1, 4, 10, 16, 22, 28, 34, 32, 21])
>>> convolve(np.arange(8), [1, 2, 3, 4, 5, 6], mode=VALID)
array([35, 56, 77])
>>> convolve(np.arange(8), [1, 2, 3, 4, 5, 6], mode=SAME)
array([4, 10, 20, 35, 56, 77, 90, 94])
>>> convolve(np.arange(8), [1, 2, 3, 4, 5, 6], mode=FULL)
array([0, 1, 4, 10, 20, 35, 56, 77, 90, 94, 88, 71, 42])
>>> convolve([1.,2.], np.arange(10.))
array([0., 1., 4., 7., 10., 13., 16., 19., 22., 25., 18.])

convolve2d(data, kernel, output=None, mode=’nearest’, cval=0.0, fft=0)
convolve2d does 2d convolution of ‘data’ with ‘kernel’, storing the result in ‘output’.

supported ‘mode’s include:
‘nearest’ elements beyond boundary come from nearest edge pixel. ‘wrap’ elements beyond boundary
come from the opposite array edge. ‘reflect’ elements beyond boundary come from reflection on same
array edge. ‘constant’ elements beyond boundary are set to ‘cval’

>>> a = np.arange(20*20)
>>> a = a.reshape((20,20))
>>> b = np.ones((5,5), dtype=np.float64)
>>> rn = convolve2d(a, b, fft=0)
>>> rf = convolve2d(a, b, fft=1)
>>> np.alltrue(np.ravel(rn-rf<1e-10))
True

534 Chapter 3. Reference

SciPy Reference Guide, Release 0.7

correlate(data, kernel, mode=FULL)

>>> correlate(np.arange(8), [1, 2], mode=VALID)
array([2, 5, 8, 11, 14, 17, 20])
>>> correlate(np.arange(8), [1, 2], mode=SAME)
array([0, 2, 5, 8, 11, 14, 17, 20])
>>> correlate(np.arange(8), [1, 2], mode=FULL)
array([0, 2, 5, 8, 11, 14, 17, 20, 7])
>>> correlate(np.arange(8), [1, 2, 3], mode=VALID)
array([8, 14, 20, 26, 32, 38])
>>> correlate(np.arange(8), [1, 2, 3], mode=SAME)
array([3, 8, 14, 20, 26, 32, 38, 20])
>>> correlate(np.arange(8), [1, 2, 3], mode=FULL)
array([0, 3, 8, 14, 20, 26, 32, 38, 20, 7])
>>> correlate(np.arange(8), [1, 2, 3, 4, 5, 6], mode=VALID)
array([70, 91, 112])
>>> correlate(np.arange(8), [1, 2, 3, 4, 5, 6], mode=SAME)
array([17, 32, 50, 70, 91, 112, 85, 60])
>>> correlate(np.arange(8), [1, 2, 3, 4, 5, 6], mode=FULL)
array([0, 6, 17, 32, 50, 70, 91, 112, 85, 60, 38, 20, 7])
>>> correlate(np.arange(8), 1+1j)
...
TypeError: array cannot be safely cast to required type

correlate2d(data, kernel, output=None, mode=’nearest’, cval=0.0, fft=0)
correlate2d does 2d correlation of ‘data’ with ‘kernel’, storing the result in ‘output’.

supported ‘mode’s include:
‘nearest’ elements beyond boundary come from nearest edge pixel. ‘wrap’ elements beyond boundary
come from the opposite array edge. ‘reflect’ elements beyond boundary come from reflection on same
array edge. ‘constant’ elements beyond boundary are set to ‘cval’

If fft is True, the correlation is performed using the FFT, else the correlation is performed using the naive
approach.

>>> a = np.arange(20*20)
>>> a = a.reshape((20,20))
>>> b = np.ones((5,5), dtype=np.float64)
>>> rn = correlate2d(a, b, fft=0)
>>> rf = correlate2d(a, b, fft=1)
>>> np.alltrue(np.ravel(rn-rf<1e-10))
True

cross_correlate(data, kernel, mode=FULL)

>>> correlate(np.arange(8), [1, 2], mode=VALID)
array([2, 5, 8, 11, 14, 17, 20])
>>> correlate(np.arange(8), [1, 2], mode=SAME)
array([0, 2, 5, 8, 11, 14, 17, 20])
>>> correlate(np.arange(8), [1, 2], mode=FULL)
array([0, 2, 5, 8, 11, 14, 17, 20, 7])
>>> correlate(np.arange(8), [1, 2, 3], mode=VALID)
array([8, 14, 20, 26, 32, 38])
>>> correlate(np.arange(8), [1, 2, 3], mode=SAME)
array([3, 8, 14, 20, 26, 32, 38, 20])

3.19. Image Array Manipulation and Convolution (scipy.stsci) 535

SciPy Reference Guide, Release 0.7

>>> correlate(np.arange(8), [1, 2, 3], mode=FULL)
array([0, 3, 8, 14, 20, 26, 32, 38, 20, 7])
>>> correlate(np.arange(8), [1, 2, 3, 4, 5, 6], mode=VALID)
array([70, 91, 112])
>>> correlate(np.arange(8), [1, 2, 3, 4, 5, 6], mode=SAME)
array([17, 32, 50, 70, 91, 112, 85, 60])
>>> correlate(np.arange(8), [1, 2, 3, 4, 5, 6], mode=FULL)
array([0, 6, 17, 32, 50, 70, 91, 112, 85, 60, 38, 20, 7])
>>> correlate(np.arange(8), 1+1j)
...
TypeError: array cannot be safely cast to required type

pix_modes()

3.20 C/C++ integration (scipy.weave)

Warning: This documentation is work-in-progress and unorganized.

3.20.1 C/C++ integration

inline – a function for including C/C++ code within Python blitz – a function for compiling Numeric
expressions to C++ ext_tools – a module that helps construct C/C++ extension modules. accelerate – a
module that inline accelerates Python functions

536 Chapter 3. Reference

BIBLIOGRAPHY

[Sta07] “Statistics toolbox.” API Reference Documentation. The MathWorks.
http://www.mathworks.com/access/helpdesk/help/toolbox/stats/. Accessed October 1, 2007.

[Mti07] “Hierarchical clustering.” API Reference Documentation. The Wolfram Research, Inc.
http://reference.wolfram.com/mathematica/HierarchicalClustering/tutorial/HierarchicalClustering.html. Ac-
cessed October 1, 2007.

[Gow69] Gower, JC and Ross, GJS. “Minimum Spanning Trees and Single Linkage Cluster Analysis.” Applied
Statistics. 18(1): pp. 54–64. 1969.

[War63] Ward Jr, JH. “Hierarchical grouping to optimize an objective function.” Journal of the American Statistical
Association. 58(301): pp. 236–44. 1963.

[Joh66] Johnson, SC. “Hierarchical clustering schemes.” Psychometrika. 32(2): pp. 241–54. 1966.

[Sne62] Sneath, PH and Sokal, RR. “Numerical taxonomy.” Nature. 193: pp. 855–60. 1962.

[Bat95] Batagelj, V. “Comparing resemblance measures.” Journal of Classification. 12: pp. 73–90. 1995.

[Sok58] Sokal, RR and Michener, CD. “A statistical method for evaluating systematic relationships.” Scientific Bul-
letins. 38(22): pp. 1409–38. 1958.

[Ede79] Edelbrock, C. “Mixture model tests of hierarchical clustering algorithms: the problem of classifying every-
body.” Multivariate Behavioral Research. 14: pp. 367–84. 1979.

[Jai88] Jain, A., and Dubes, R., “Algorithms for Clustering Data.” Prentice-Hall. Englewood Cliffs, NJ. 1988.

[Fis36] Fisher, RA “The use of multiple measurements in taxonomic problems.” Annals of Eugenics, 7(2): 179-188.
1936

[Brent1973] Brent, R. P., Algorithms for Minimization Without Derivatives. Englewood Cliffs, NJ: Prentice-Hall,
1973. Ch. 3-4.

[PressEtal1992] Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetterling, W. T. Numerical Recipes in FOR-
TRAN: The Art of Scientific Computing, 2nd ed. Cambridge, England: Cambridge University Press, pp. 352-355,
1992. Section 9.3: “Van Wijngaarden-Dekker-Brent Method.”

[Ridders1979] Ridders, C. F. J. “A New Algorithm for Computing a Single Root of a Real Continuous Function.”
IEEE Trans. Circuits Systems 26, 979-980, 1979.

[Sta07] “Statistics toolbox.” API Reference Documentation. The MathWorks.
http://www.mathworks.com/access/helpdesk/help/toolbox/stats/. Accessed October 1, 2007.

537

http://www.mathworks.com/access/helpdesk/help/toolbox/stats/
http://reference.wolfram.com/mathematica/HierarchicalClustering/tutorial/HierarchicalClustering.html
http://www.mathworks.com/access/helpdesk/help/toolbox/stats/

SciPy Reference Guide, Release 0.7

[Mti07] “Hierarchical clustering.” API Reference Documentation. The Wolfram Research, Inc.
http://reference.wolfram.com/mathematica/HierarchicalClustering/tutorial/HierarchicalClustering.html. Ac-
cessed October 1, 2007.

[Gow69] Gower, JC and Ross, GJS. “Minimum Spanning Trees and Single Linkage Cluster Analysis.” Applied
Statistics. 18(1): pp. 54–64. 1969.

[War63] Ward Jr, JH. “Hierarchical grouping to optimize an objective function.” Journal of the American Statistical
Association. 58(301): pp. 236–44. 1963.

[Joh66] Johnson, SC. “Hierarchical clustering schemes.” Psychometrika. 32(2): pp. 241–54. 1966.

[Sne62] Sneath, PH and Sokal, RR. “Numerical taxonomy.” Nature. 193: pp. 855–60. 1962.

[Bat95] Batagelj, V. “Comparing resemblance measures.” Journal of Classification. 12: pp. 73–90. 1995.

[Sok58] Sokal, RR and Michener, CD. “A statistical method for evaluating systematic relationships.” Scientific Bul-
letins. 38(22): pp. 1409–38. 1958.

[Ede79] Edelbrock, C. “Mixture model tests of hierarchical clustering algorithms: the problem of classifying every-
body.” Multivariate Behavioral Research. 14: pp. 367–84. 1979.

[Jai88] Jain, A., and Dubes, R., “Algorithms for Clustering Data.” Prentice-Hall. Englewood Cliffs, NJ. 1988.

[Fis36] Fisher, RA “The use of multiple measurements in taxonomic problems.” Annals of Eugenics, 7(2): 179-188.
1936

538 Bibliography

http://reference.wolfram.com/mathematica/HierarchicalClustering/tutorial/HierarchicalClustering.html

INDEX

Symbols
__call__() (scipy.interpolate.UnivariateSpline method),

130

A
affine_transform() (in module

scipy.ndimage.interpolation), 207
ai_zeros() (in module scipy.special), 313
airy() (in module scipy.special), 312
airye() (in module scipy.special), 312
alpha() (in module scipy.stats), 372
anderson() (in module scipy.optimize), 245
anderson() (in module scipy.stats), 525
anderson2() (in module scipy.optimize), 245
anglit() (in module scipy.stats), 373
anneal() (in module scipy.optimize), 234
ansari() (in module scipy.stats), 524
approximate_taylor_polynomial() (in module

scipy.interpolate), 142
arcsine() (in module scipy.stats), 375
argstoarray() (in module scipy.stats.mstats), 348
arrayexp() (in module scipy.maxentropy), 186
arrayexpcomplex() (in module scipy.maxentropy), 187
aslinearoperator() (in module scipy.sparse.linalg), 288
average() (in module scipy.cluster.hierarchy), 79
average() (in module scipy.stsci.image), 528

B
barthann() (in module scipy.signal), 269
bartlett() (in module scipy.signal), 269
bartlett() (in module scipy.stats), 524
barycentric_interpolate() (in module scipy.interpolate),

126
BarycentricInterpolator (class in scipy.interpolate), 125
bayes_mvs() (in module scipy.stats), 514
bdtr() (in module scipy.special), 322
bdtrc() (in module scipy.special), 323
bdtri() (in module scipy.special), 323
beginlogging() (scipy.maxentropy.model method), 175
bei() (in module scipy.special), 337
bei_zeros() (in module scipy.special), 337

beip() (in module scipy.special), 337
beip_zeros() (in module scipy.special), 337
bench() (scipy.sparse.linalg.Tester method), 287
ber() (in module scipy.special), 336
ber_zeros() (in module scipy.special), 337
bernoulli() (in module scipy.stats), 490
berp() (in module scipy.special), 337
berp_zeros() (in module scipy.special), 337
bessel() (in module scipy.signal), 263
besselpoly() (in module scipy.special), 318
beta() (in module scipy.special), 325
beta() (in module scipy.stats), 376
betai() (in module scipy.stats.mstats), 349
betainc() (in module scipy.special), 326
betaincinv() (in module scipy.special), 326
betaln() (in module scipy.special), 326
betaprime() (in module scipy.stats), 378
bi_zeros() (in module scipy.special), 313
bicg() (in module scipy.linalg), 173
bicg() (in module scipy.sparse.linalg), 288
bicgstab() (in module scipy.linalg), 173
bicgstab() (in module scipy.sparse.linalg), 289
bigmodel (class in scipy.maxentropy), 178
binary_closing() (in module scipy.ndimage.morphology),

213
binary_dilation() (in module scipy.ndimage.morphology),

214
binary_erosion() (in module scipy.ndimage.morphology),

214
binary_fill_holes() (in module

scipy.ndimage.morphology), 214
binary_hit_or_miss() (in module

scipy.ndimage.morphology), 214
binary_opening() (in module

scipy.ndimage.morphology), 214
binary_propagation() (in module

scipy.ndimage.morphology), 214
binom() (in module scipy.stats), 489
binom_test() (in module scipy.stats), 525
bisect() (in module scipy.optimize), 243
bisplev() (in module scipy.interpolate), 138, 141
bisplrep() (in module scipy.interpolate), 137, 139

539

SciPy Reference Guide, Release 0.7

BivariateSpline (class in scipy.interpolate), 139
black_tophat() (in module scipy.ndimage.morphology),

214
blackman() (in module scipy.signal), 269
blackmanharris() (in module scipy.signal), 269
bmat() (in module scipy.sparse), 283
bohman() (in module scipy.signal), 269
boltzmann() (in module scipy.stats), 499
boxcar() (in module scipy.signal), 268
boxcar() (in module scipy.stsci.convolve), 532
bracket() (in module scipy.optimize), 237
bradford() (in module scipy.stats), 379
braycurtis() (in module scipy.spatial.distance), 292
brent() (in module scipy.optimize), 237
brenth() (in module scipy.optimize), 241
brentq() (in module scipy.optimize), 240
broyden1() (in module scipy.optimize), 245
broyden2() (in module scipy.optimize), 245
broyden3() (in module scipy.optimize), 245
broyden_generalized() (in module scipy.optimize), 245
brute() (in module scipy.optimize), 235
bspline() (in module scipy.signal), 249
bsr_matrix (class in scipy.sparse), 274
btdtr() (in module scipy.special), 323
btdtri() (in module scipy.special), 323
burr() (in module scipy.stats), 381
butter() (in module scipy.signal), 261
buttord() (in module scipy.signal), 261

C
C2F() (in module scipy.constants), 104
C2K() (in module scipy.constants), 104
canberra() (in module scipy.spatial.distance), 292
cascade() (in module scipy.signal), 269
cauchy() (in module scipy.stats), 384
cbrt() (in module scipy.special), 339
cc_diff() (in module scipy.fftpack), 112
cdf() (scipy.stats.rv_continuous method), 342
cdf() (scipy.stats.rv_discrete method), 346
cdist() (in module scipy.spatial.distance), 293
center_of_mass() (in module

scipy.ndimage.measurements), 210
central_diff_weights() (in module scipy.misc), 191
centroid() (in module scipy.cluster.hierarchy), 80
cg() (in module scipy.linalg), 172
cg() (in module scipy.sparse.linalg), 289
cgs() (in module scipy.linalg), 172
cgs() (in module scipy.sparse.linalg), 289
chdtr() (in module scipy.special), 324
chdtrc() (in module scipy.special), 324
chdtri() (in module scipy.special), 324
cheb1ord() (in module scipy.signal), 262
cheb2ord() (in module scipy.signal), 262
cheby1() (in module scipy.signal), 261

cheby2() (in module scipy.signal), 262
chebyc() (in module scipy.special), 330
chebys() (in module scipy.special), 330
chebyshev() (in module scipy.spatial.distance), 296
chebyt() (in module scipy.special), 329
chebyu() (in module scipy.special), 329
check_grad() (in module scipy.optimize), 246
chi() (in module scipy.stats), 385
chi2() (in module scipy.stats), 387
chirp() (in module scipy.signal), 267
chisquare() (in module scipy.stats), 522
chisquare() (in module scipy.stats.mstats), 349
cho_factor() (in module scipy.linalg), 165
cho_solve() (in module scipy.linalg), 165
cholesky() (in module scipy.linalg), 163
cholesky_banded() (in module scipy.linalg), 164
cityblock() (in module scipy.spatial.distance), 296
cKDTree (class in scipy.spatial), 310
clearcache() (scipy.maxentropy.model method), 176
ClusterNode (class in scipy.cluster.hierarchy), 78
cmedian() (in module scipy.stats), 506
columnmeans() (in module scipy.maxentropy), 187
columnvariances() (in module scipy.maxentropy), 187
comb() (in module scipy.misc), 191
complete() (in module scipy.cluster.hierarchy), 80
conditionalmodel (class in scipy.maxentropy), 182
convolution_modes() (in module scipy.stsci.convolve),

534
convolve() (in module scipy.fftpack.convolve), 114
convolve() (in module scipy.ndimage.filters), 194
convolve() (in module scipy.signal), 247
convolve() (in module scipy.stsci.convolve), 534
convolve1d() (in module scipy.ndimage.filters), 195
convolve2d() (in module scipy.signal), 248
convolve2d() (in module scipy.stsci.convolve), 534
convolve_z() (in module scipy.fftpack.convolve), 114
coo_matrix (class in scipy.sparse), 277
cophenet() (in module scipy.cluster.hierarchy), 80
corrcoef() (in module scipy.stats), 515
correlate() (in module scipy.ndimage.filters), 195
correlate() (in module scipy.signal), 247
correlate() (in module scipy.stsci.convolve), 534
correlate1d() (in module scipy.ndimage.filters), 196
correlate2d() (in module scipy.signal), 248
correlate2d() (in module scipy.stsci.convolve), 535
correlation() (in module scipy.spatial.distance), 297
correspond() (in module scipy.cluster.hierarchy), 81
cosdg() (in module scipy.special), 339
coshm() (in module scipy.linalg), 170
cosine() (in module scipy.spatial.distance), 297
cosine() (in module scipy.stats), 388
cosm() (in module scipy.linalg), 169
cosm1() (in module scipy.special), 340
cotdg() (in module scipy.special), 339

540 Index

SciPy Reference Guide, Release 0.7

count_neighbors() (scipy.spatial.KDTree method), 308
count_tied_groups() (in module scipy.stats.mstats), 349
cov() (in module scipy.stats), 515
cross_correlate() (in module scipy.stsci.convolve), 535
crossentropy() (scipy.maxentropy.model method), 176
cs_diff() (in module scipy.fftpack), 111
csc_matrix (class in scipy.sparse), 272
cspline1d() (in module scipy.signal), 249
cspline2d() (in module scipy.signal), 250
csr_matrix (class in scipy.sparse), 273
cumfreq() (in module scipy.stats), 512
cumtrapz() (in module scipy.integrate), 121

D
Data (class in scipy.odr), 217
daub() (in module scipy.signal), 269
dawsn() (in module scipy.special), 338
dblquad() (in module scipy.integrate), 118
deconvolve() (in module scipy.signal), 254
dendrogram() (in module scipy.cluster.hierarchy), 81
densefeaturematrix() (in module scipy.maxentropy), 187
densefeatures() (in module scipy.maxentropy), 187
derivative() (in module scipy.misc), 191
derivatives() (scipy.interpolate.UnivariateSpline method),

130
describe() (in module scipy.stats), 509
describe() (in module scipy.stats.mstats), 349
destroy_convolve_cache() (in module

scipy.fftpack.convolve), 115
destroy_drfft_cache() (in module scipy.fftpack._fftpack),

116
destroy_zfft_cache() (in module scipy.fftpack._fftpack),

117
destroy_zfftnd_cache() (in module

scipy.fftpack._fftpack), 117
det() (in module scipy.linalg), 150
detrend() (in module scipy.signal), 255
dgamma() (in module scipy.stats), 390
dia_matrix (class in scipy.sparse), 278
diagsvd() (in module scipy.linalg), 163
dice() (in module scipy.spatial.distance), 297
diff() (in module scipy.fftpack), 109
distance_matrix() (in module scipy.spatial), 310
distance_transform_bf() (in module

scipy.ndimage.morphology), 215
distance_transform_cdt() (in module

scipy.ndimage.morphology), 215
distance_transform_edt() (in module

scipy.ndimage.morphology), 215
dlaplace() (in module scipy.stats), 503
dok_matrix (class in scipy.sparse), 276
dotprod() (in module scipy.maxentropy), 187
drfft() (in module scipy.fftpack._fftpack), 115
dual() (scipy.maxentropy.conditionalmodel method), 183

dual() (scipy.maxentropy.model method), 176
dweibull() (in module scipy.stats), 391

E
eig() (in module scipy.linalg), 153
eig_banded() (in module scipy.linalg), 157
eigh() (in module scipy.linalg), 155
eigvals() (in module scipy.linalg), 154
eigvals_banded() (in module scipy.linalg), 158
eigvalsh() (in module scipy.linalg), 156
ellip() (in module scipy.signal), 263
ellipe() (in module scipy.special), 313
ellipeinc() (in module scipy.special), 313
ellipj() (in module scipy.special), 313
ellipk() (in module scipy.special), 313
ellipkinc() (in module scipy.special), 313
ellipord() (in module scipy.signal), 263
endlogging() (scipy.maxentropy.model method), 176
erf() (in module scipy.special), 326
erf_zeros() (in module scipy.special), 327
erfc() (in module scipy.special), 326
erfcinv() (in module scipy.special), 326
erfinv() (in module scipy.special), 326
erlang() (in module scipy.stats), 393
errprint() (in module scipy.special), 311
errstate (class in scipy.special), 312
estimate() (scipy.maxentropy.bigmodel method), 179
euclidean() (in module scipy.spatial.distance), 298
exp1() (in module scipy.special), 338
exp10() (in module scipy.special), 339
exp2() (in module scipy.special), 339
expectations() (scipy.maxentropy.conditionalmodel

method), 183
expectations() (scipy.maxentropy.model method), 178
expi() (in module scipy.special), 338
expm() (in module scipy.linalg), 168
expm1() (in module scipy.special), 340
expm2() (in module scipy.linalg), 169
expm3() (in module scipy.linalg), 169
expn() (in module scipy.special), 338
expon() (in module scipy.stats), 394
exponpow() (in module scipy.stats), 397
exponweib() (in module scipy.stats), 396
extrema() (in module scipy.ndimage.measurements), 210
eye() (in module scipy.sparse), 279

F
f() (in module scipy.stats), 402
F2C() (in module scipy.constants), 104
F2K() (in module scipy.constants), 104
f_oneway() (in module scipy.stats), 515
f_oneway() (in module scipy.stats.mstats), 349
f_value_wilks_lambda() (in module scipy.stats.mstats),

350

Index 541

SciPy Reference Guide, Release 0.7

factorial() (in module scipy.misc), 191
factorial2() (in module scipy.misc), 191
factorialk() (in module scipy.misc), 191
factorized() (in module scipy.sparse.linalg), 289
fatiguelife() (in module scipy.stats), 399
fcluster() (in module scipy.cluster.hierarchy), 84
fclusterdata() (in module scipy.cluster.hierarchy), 85
fdtr() (in module scipy.special), 323
fdtrc() (in module scipy.special), 323
fdtri() (in module scipy.special), 323
fft() (in module scipy.fftpack), 106
fft2() (in module scipy.fftpack), 108
fftconvolve() (in module scipy.signal), 248
fftn() (in module scipy.fftpack), 107
fftshift() (in module scipy.fftpack), 113
find() (in module scipy.constants), 100
find_objects() (in module scipy.ndimage.measurements),

211
find_repeats() (in module scipy.stats.mstats), 350
firwin() (in module scipy.signal), 256
fisk() (in module scipy.stats), 382
fit() (scipy.maxentropy.conditionalmodel method), 183
fit() (scipy.maxentropy.model method), 176
fixed_point() (in module scipy.optimize), 244
fixed_quad() (in module scipy.integrate), 119
flatten() (in module scipy.maxentropy), 187
flattop() (in module scipy.signal), 269
fligner() (in module scipy.stats), 526
fmin() (in module scipy.optimize), 222
fmin_bfgs() (in module scipy.optimize), 226
fmin_cg() (in module scipy.optimize), 224
fmin_cobyla() (in module scipy.optimize), 233
fmin_l_bfgs_b() (in module scipy.optimize), 230
fmin_ncg() (in module scipy.optimize), 227
fmin_powell() (in module scipy.optimize), 223
fmin_tnc() (in module scipy.optimize), 231
fminbound() (in module scipy.optimize), 236
foldcauchy() (in module scipy.stats), 400
foldnorm() (in module scipy.stats), 404
fourier_ellipsoid() (in module scipy.ndimage.fourier),

206
fourier_gaussian() (in module scipy.ndimage.fourier),

207
fourier_shift() (in module scipy.ndimage.fourier), 207
fourier_uniform() (in module scipy.ndimage.fourier), 207
freqs() (in module scipy.signal), 258
freqz() (in module scipy.signal), 258
fresnel() (in module scipy.special), 327
fresnel_zeros() (in module scipy.special), 327
fresnelc_zeros() (in module scipy.special), 327
fresnels_zeros() (in module scipy.special), 327
friedmanchisquare() (in module scipy.stats), 523
friedmanchisquare() (in module scipy.stats.mstats), 350

from_mlab_linkage() (in module scipy.cluster.hierarchy),
85

fromimage() (in module scipy.misc), 189
fsolve() (in module scipy.optimize), 238
funm() (in module scipy.linalg), 172

G
gamma() (in module scipy.special), 325
gamma() (in module scipy.stats), 412
gammainc() (in module scipy.special), 325
gammaincc() (in module scipy.special), 325
gammainccinv() (in module scipy.special), 325
gammaincinv() (in module scipy.special), 325
gammaln() (in module scipy.special), 325
gauss_spline() (in module scipy.signal), 249
gausshyper() (in module scipy.stats), 411
gaussian() (in module scipy.signal), 269
gaussian_filter() (in module scipy.ndimage.filters), 196
gaussian_filter1d() (in module scipy.ndimage.filters), 197
gaussian_gradient_magnitude() (in module

scipy.ndimage.filters), 197
gaussian_kde (class in scipy.stats), 527
gaussian_laplace() (in module scipy.ndimage.filters), 198
gausspulse() (in module scipy.signal), 267
gdtr() (in module scipy.special), 323
gdtrc() (in module scipy.special), 323
gdtria() (in module scipy.special), 323
gdtrib() (in module scipy.special), 323
gdtrix() (in module scipy.special), 323
gegenbauer() (in module scipy.special), 330
general_gaussian() (in module scipy.signal), 269
generate_binary_structure() (in module

scipy.ndimage.morphology), 215
generic_filter() (in module scipy.ndimage.filters), 198
generic_filter1d() (in module scipy.ndimage.filters), 199
generic_gradient_magnitude() (in module

scipy.ndimage.filters), 199
generic_laplace() (in module scipy.ndimage.filters), 200
genexpon() (in module scipy.stats), 408
genextreme() (in module scipy.stats), 409
gengamma() (in module scipy.stats), 414
genhalflogistic() (in module scipy.stats), 415
genlaguerre() (in module scipy.special), 330
genlogistic() (in module scipy.stats), 405
genpareto() (in module scipy.stats), 406
geom() (in module scipy.stats), 493
geometric_transform() (in module

scipy.ndimage.interpolation), 208
get_coeffs() (scipy.interpolate.UnivariateSpline method),

130
get_count() (scipy.cluster.hierarchy.ClusterNode

method), 78
get_id() (scipy.cluster.hierarchy.ClusterNode method), 78

542 Index

SciPy Reference Guide, Release 0.7

get_knots() (scipy.interpolate.UnivariateSpline method),
130

get_left() (scipy.cluster.hierarchy.ClusterNode method),
78

get_residual() (scipy.interpolate.UnivariateSpline
method), 130

get_right() (scipy.cluster.hierarchy.ClusterNode method),
79

get_window() (in module scipy.signal), 255
gilbrat() (in module scipy.stats), 443
glm() (in module scipy.stats), 526
gmean() (in module scipy.stats), 505
gmean() (in module scipy.stats.mstats), 350
gmres() (in module scipy.linalg), 173
gmres() (in module scipy.sparse.linalg), 289
golden() (in module scipy.optimize), 237
gompertz() (in module scipy.stats), 417
grad() (scipy.maxentropy.model method), 177
grey_closing() (in module scipy.ndimage.morphology),

215
grey_dilation() (in module scipy.ndimage.morphology),

216
grey_erosion() (in module scipy.ndimage.morphology),

216
grey_opening() (in module scipy.ndimage.morphology),

216
gumbel_l() (in module scipy.stats), 420
gumbel_r() (in module scipy.stats), 418

H
h1vp() (in module scipy.special), 319
h2vp() (in module scipy.special), 319
halfcauchy() (in module scipy.stats), 421
halflogistic() (in module scipy.stats), 423
halfnorm() (in module scipy.stats), 424
hamming() (in module scipy.signal), 269
hamming() (in module scipy.spatial.distance), 298
hankel1() (in module scipy.special), 315
hankel1e() (in module scipy.special), 315
hankel2() (in module scipy.special), 315
hankel2e() (in module scipy.special), 315
hann() (in module scipy.signal), 269
heappop() (in module scipy.spatial), 311
heappush() (in module scipy.spatial), 311
hermite() (in module scipy.special), 330
hermitenorm() (in module scipy.special), 330
hessenberg() (in module scipy.linalg), 167
hilbert() (in module scipy.fftpack), 110
hilbert() (in module scipy.signal), 254
histogram() (in module scipy.ndimage.measurements),

211
histogram() (in module scipy.stats), 512
histogram2() (in module scipy.stats), 512
hmean() (in module scipy.stats), 506

hmean() (in module scipy.stats.mstats), 350
hstack() (in module scipy.sparse), 284
hyp0f1() (in module scipy.special), 331
hyp1f1() (in module scipy.special), 331
hyp1f2() (in module scipy.special), 331
hyp2f0() (in module scipy.special), 331
hyp2f1() (in module scipy.special), 331
hyp3f0() (in module scipy.special), 331
hypergeom() (in module scipy.stats), 494
hyperu() (in module scipy.special), 331
hypsecant() (in module scipy.stats), 426

I
i0() (in module scipy.special), 317
i0e() (in module scipy.special), 317
i1() (in module scipy.special), 317
i1e() (in module scipy.special), 318
identity() (in module scipy.sparse), 279
ifft() (in module scipy.fftpack), 107
ifft2() (in module scipy.fftpack), 108
ifftn() (in module scipy.fftpack), 107
ifftshift() (in module scipy.fftpack), 113
ihilbert() (in module scipy.fftpack), 111
iirdesign() (in module scipy.signal), 257
iirfilter() (in module scipy.signal), 257
imfilter() (in module scipy.misc), 190
impulse() (in module scipy.signal), 264
imread() (in module scipy.misc), 190
imresize() (in module scipy.misc), 190
imrotate() (in module scipy.misc), 190
imsave() (in module scipy.misc), 190
imshow() (in module scipy.misc), 190
inconsistent() (in module scipy.cluster.hierarchy), 86
info() (in module scipy.misc), 189
init_convolution_kernel() (in module

scipy.fftpack.convolve), 114
innerprod() (in module scipy.maxentropy), 187
innerprodtranspose() (in module scipy.maxentropy), 187
integral() (scipy.interpolate.UnivariateSpline method),

130
interp1d (class in scipy.interpolate), 125
interp2d (class in scipy.interpolate), 127
InterpolatedUnivariateSpline (class in scipy.interpolate),

129
inv() (in module scipy.linalg), 148
invgamma() (in module scipy.stats), 427
invnorm() (in module scipy.stats), 429
invres() (in module scipy.signal), 260
invweibull() (in module scipy.stats), 430
irfft() (in module scipy.fftpack), 108
is_isomorphic() (in module scipy.cluster.hierarchy), 86
is_leaf() (scipy.cluster.hierarchy.ClusterNode method),

79
is_monotonic() (in module scipy.cluster.hierarchy), 86

Index 543

SciPy Reference Guide, Release 0.7

is_valid_dm() (in module scipy.spatial.distance), 298
is_valid_im() (in module scipy.cluster.hierarchy), 86
is_valid_linkage() (in module scipy.cluster.hierarchy), 87
is_valid_y() (in module scipy.spatial.distance), 299
isf() (scipy.stats.rv_continuous method), 343
isf() (scipy.stats.rv_discrete method), 347
issparse() (in module scipy.sparse), 284
isspmatrix() (in module scipy.sparse), 285
isspmatrix_bsr() (in module scipy.sparse), 285
isspmatrix_coo() (in module scipy.sparse), 285
isspmatrix_csc() (in module scipy.sparse), 285
isspmatrix_csr() (in module scipy.sparse), 285
isspmatrix_dia() (in module scipy.sparse), 285
isspmatrix_dok() (in module scipy.sparse), 285
isspmatrix_lil() (in module scipy.sparse), 285
it2i0k0() (in module scipy.special), 318
it2j0y0() (in module scipy.special), 318
it2struve0() (in module scipy.special), 321
itemfreq() (in module scipy.stats), 510
iterate_structure() (in module

scipy.ndimage.morphology), 216
iti0k0() (in module scipy.special), 318
itilbert() (in module scipy.fftpack), 110
itj0y0() (in module scipy.special), 318
itmodstruve0() (in module scipy.special), 321
itstruve0() (in module scipy.special), 320
iv() (in module scipy.special), 315
ive() (in module scipy.special), 315
ivp() (in module scipy.special), 319

J
j0() (in module scipy.special), 317
j1() (in module scipy.special), 317
jaccard() (in module scipy.spatial.distance), 299
jacobi() (in module scipy.special), 330
jn() (in module scipy.special), 314
jn_zeros() (in module scipy.special), 316
jnjnp_zeros() (in module scipy.special), 316
jnp_zeros() (in module scipy.special), 316
jnyn_zeros() (in module scipy.special), 316
johnsonsb() (in module scipy.stats), 432
johnsonsu() (in module scipy.stats), 433
jv() (in module scipy.special), 314
jve() (in module scipy.special), 314
jvp() (in module scipy.special), 319

K
k0() (in module scipy.special), 318
k0e() (in module scipy.special), 318
k1() (in module scipy.special), 318
k1e() (in module scipy.special), 318
K2C() (in module scipy.constants), 104
K2F() (in module scipy.constants), 104
kaiser() (in module scipy.signal), 269

KDTree (class in scipy.spatial), 308
kei() (in module scipy.special), 337
kei_zeros() (in module scipy.special), 337
keip() (in module scipy.special), 337
keip_zeros() (in module scipy.special), 338
kelvin() (in module scipy.special), 336
kelvin_zeros() (in module scipy.special), 336
kendalltau() (in module scipy.stats), 517
kendalltau() (in module scipy.stats.mstats), 351
kendalltau_seasonal() (in module scipy.stats.mstats), 351
ker() (in module scipy.special), 337
ker_zeros() (in module scipy.special), 337
kerp() (in module scipy.special), 337
kerp_zeros() (in module scipy.special), 337
kmeans() (in module scipy.cluster.vq), 96
kmeans2() (in module scipy.cluster.vq), 97
kn() (in module scipy.special), 315
kolmogi() (in module scipy.special), 324
kolmogorov() (in module scipy.special), 324
krogh_interpolate() (in module scipy.interpolate), 126
KroghInterpolator (class in scipy.interpolate), 125
kron() (in module scipy.sparse), 280
kronsum() (in module scipy.sparse), 280
kruskal() (in module scipy.stats), 523
kruskalwallis() (in module scipy.stats.mstats), 351
ks_2samp() (in module scipy.stats), 523
ks_twosamp() (in module scipy.stats.mstats), 351, 352
ksone() (in module scipy.stats), 485
kstest() (in module scipy.stats), 521
kstwobign() (in module scipy.stats), 487
kulsinski() (in module scipy.spatial.distance), 300
kurtosis() (in module scipy.stats), 508
kurtosis() (in module scipy.stats.mstats), 352
kurtosistest() (in module scipy.stats), 509
kurtosistest() (in module scipy.stats.mstats), 353
kv() (in module scipy.special), 315
kve() (in module scipy.special), 315
kvp() (in module scipy.special), 319

L
label() (in module scipy.ndimage.measurements), 211
lagrange() (in module scipy.interpolate), 142
laguerre() (in module scipy.special), 330
lambda2nu() (in module scipy.constants), 105
laplace() (in module scipy.ndimage.filters), 201
laplace() (in module scipy.stats), 435
leaders() (in module scipy.cluster.hierarchy), 87
leastsq() (in module scipy.optimize), 228
leaves_list() (in module scipy.cluster.hierarchy), 88
legendre() (in module scipy.special), 329
levene() (in module scipy.stats), 524
lfilter() (in module scipy.signal), 253
lil_diags() (in module scipy.sparse), 281
lil_eye() (in module scipy.sparse), 281

544 Index

SciPy Reference Guide, Release 0.7

lil_matrix (class in scipy.sparse), 275
line_search() (in module scipy.optimize), 246
LinearOperator (class in scipy.sparse.linalg), 285
linkage() (in module scipy.cluster.hierarchy), 88
linregress() (in module scipy.stats), 517
linregress() (in module scipy.stats.mstats), 353
lmbda() (in module scipy.special), 315
loadarff() (in module scipy.io.arff), 146
loadmat() (in module scipy.io), 143
lobpcg() (in module scipy.sparse.linalg), 289
log() (scipy.maxentropy.model method), 177
log1p() (in module scipy.special), 340
loggamma() (in module scipy.stats), 438
logistic() (in module scipy.stats), 436
loglaplace() (in module scipy.stats), 439
logm() (in module scipy.linalg), 169
lognorm() (in module scipy.stats), 441
lognormconst() (scipy.maxentropy.conditionalmodel

method), 183
lognormconst() (scipy.maxentropy.model method), 178
logparams() (scipy.maxentropy.model method), 177
logpdf() (scipy.maxentropy.bigmodel method), 180
logpmf() (scipy.maxentropy.conditionalmodel method),

184
logpmf() (scipy.maxentropy.model method), 178
logser() (in module scipy.stats), 495
logsumexp() (in module scipy.maxentropy), 188
logsumexp_naive() (in module scipy.maxentropy), 188
lomax() (in module scipy.stats), 444
lpmn() (in module scipy.special), 328
lpmv() (in module scipy.special), 327
lpn() (in module scipy.special), 328
lqmn() (in module scipy.special), 328
lqn() (in module scipy.special), 328
lsim() (in module scipy.signal), 264
LSQBivariateSpline (class in scipy.interpolate), 139
LSQUnivariateSpline (class in scipy.interpolate), 129
lstsq() (in module scipy.linalg), 151
lti (class in scipy.signal), 263
lu() (in module scipy.linalg), 160
lu_factor() (in module scipy.linalg), 160
lu_solve() (in module scipy.linalg), 161

M
mahalanobis() (in module scipy.spatial.distance), 300
mannwhitneyu() (in module scipy.stats.mstats), 353
map_coordinates() (in module

scipy.ndimage.interpolation), 208
matching() (in module scipy.spatial.distance), 300
mathieu_a() (in module scipy.special), 332
mathieu_b() (in module scipy.special), 332
mathieu_cem() (in module scipy.special), 333
mathieu_even_coef() (in module scipy.special), 332
mathieu_modcem1() (in module scipy.special), 333

mathieu_modcem2() (in module scipy.special), 333
mathieu_modsem1() (in module scipy.special), 333
mathieu_modsem2() (in module scipy.special), 333
mathieu_odd_coef() (in module scipy.special), 332
mathieu_sem() (in module scipy.special), 333
matmat() (scipy.sparse.linalg.LinearOperator method),

286
matvec() (scipy.sparse.linalg.LinearOperator method),

286
max_distance_point() (scipy.spatial.Rectangle method),

310
max_distance_rectangle() (scipy.spatial.Rectangle

method), 310
maxdists() (in module scipy.cluster.hierarchy), 90
maximum() (in module scipy.ndimage.measurements),

211
maximum_filter() (in module scipy.ndimage.filters), 201
maximum_filter1d() (in module scipy.ndimage.filters),

201
maximum_position() (in module

scipy.ndimage.measurements), 211
maxinconsts() (in module scipy.cluster.hierarchy), 91
maxRstat() (in module scipy.cluster.hierarchy), 90
maxwell() (in module scipy.stats), 446
mean() (in module scipy.ndimage.measurements), 211
mean() (in module scipy.stats), 506
medfilt() (in module scipy.signal), 251
median() (in module scipy.cluster.hierarchy), 91
median() (in module scipy.stats), 507
median() (in module scipy.stsci.image), 529
median_filter() (in module scipy.ndimage.filters), 202
mielke() (in module scipy.stats), 447
min_distance_point() (scipy.spatial.Rectangle method),

310
min_distance_rectangle() (scipy.spatial.Rectangle

method), 310
minimum() (in module scipy.ndimage.measurements),

211
minimum() (in module scipy.stsci.image), 530
minimum_filter() (in module scipy.ndimage.filters), 202
minimum_filter1d() (in module scipy.ndimage.filters),

203
minimum_position() (in module

scipy.ndimage.measurements), 211
minkowski() (in module scipy.spatial.distance), 301
minkowski_distance() (in module scipy.spatial), 311
minkowski_distance_p() (in module scipy.spatial), 311
minres() (in module scipy.sparse.linalg), 290
mminfo() (in module scipy.io), 144
mmread() (in module scipy.io), 145
mmwrite() (in module scipy.io), 145
mode() (in module scipy.stats), 507
mode() (in module scipy.stats.mstats), 354
model (class in scipy.maxentropy), 174

Index 545

SciPy Reference Guide, Release 0.7

Model (class in scipy.odr), 218
modfresnelm() (in module scipy.special), 327
modfresnelp() (in module scipy.special), 327
modstruve() (in module scipy.special), 320
moment() (in module scipy.stats), 508
moment() (in module scipy.stats.mstats), 354
mood() (in module scipy.stats), 526
morphological_gradient() (in module

scipy.ndimage.morphology), 216
morphological_laplace() (in module

scipy.ndimage.morphology), 216
mquantiles() (in module scipy.stats.mstats), 354
msign() (in module scipy.stats.mstats), 355

N
nakagami() (in module scipy.stats), 449
nbdtr() (in module scipy.special), 323
nbdtrc() (in module scipy.special), 323
nbdtri() (in module scipy.special), 323
nbinom() (in module scipy.stats), 492
ncf() (in module scipy.stats), 452
nct() (in module scipy.stats), 455
ncx2() (in module scipy.stats), 450
ndtr() (in module scipy.special), 324
ndtri() (in module scipy.special), 324
netcdf_file (class in scipy.io.netcdf), 147
netcdf_variable (class in scipy.io.netcdf), 147
newton() (in module scipy.optimize), 244
nnls() (in module scipy.optimize), 233
norm() (in module scipy.linalg), 150
norm() (in module scipy.stats), 370
normaltest() (in module scipy.stats), 510
normaltest() (in module scipy.stats.mstats), 355
normconst() (scipy.maxentropy.model method), 177
npfile() (in module scipy.io), 145
nu2lambda() (in module scipy.constants), 105
num_obs_dm() (in module scipy.spatial.distance), 301
num_obs_linkage() (in module scipy.cluster.hierarchy),

91
num_obs_y() (in module scipy.spatial.distance), 301
nuttall() (in module scipy.signal), 269

O
obl_ang1() (in module scipy.special), 334
obl_ang1_cv() (in module scipy.special), 336
obl_cv() (in module scipy.special), 335
obl_cv_seq() (in module scipy.special), 335
obl_rad1() (in module scipy.special), 334
obl_rad1_cv() (in module scipy.special), 336
obl_rad2() (in module scipy.special), 335
obl_rad2_cv() (in module scipy.special), 336
obrientransform() (in module scipy.stats), 513
obrientransform() (in module scipy.stats.mstats), 355
ode (class in scipy.integrate), 124

odeint() (in module scipy.integrate), 122
ODR (class in scipy.odr), 219
odr() (in module scipy.odr), 222
odr_error, 222
odr_stop, 222
oneway() (in module scipy.stats), 526
order_filter() (in module scipy.signal), 251
orth() (in module scipy.linalg), 163
Output (class in scipy.odr), 222

P
pade() (in module scipy.misc), 191
pareto() (in module scipy.stats), 457
parzen() (in module scipy.signal), 268
pbdn_seq() (in module scipy.special), 332
pbdv() (in module scipy.special), 331
pbdv_seq() (in module scipy.special), 332
pbvv() (in module scipy.special), 332
pbvv_seq() (in module scipy.special), 332
pbwa() (in module scipy.special), 332
pdf() (scipy.maxentropy.bigmodel method), 181
pdf() (scipy.stats.rv_continuous method), 342
pdf_function() (scipy.maxentropy.bigmodel method), 181
pdist() (in module scipy.spatial.distance), 301
pdtr() (in module scipy.special), 323
pdtrc() (in module scipy.special), 323
pdtri() (in module scipy.special), 324
pearsonr() (in module scipy.stats), 516
pearsonr() (in module scipy.stats.mstats), 356
percentile_filter() (in module scipy.ndimage.filters), 203
percentileofscore() (in module scipy.stats), 511
physical_constants (in module scipy.constants), 100
piecewise_polynomial_interpolate() (in module

scipy.interpolate), 127
PiecewisePolynomial (class in scipy.interpolate), 125
pinv() (in module scipy.linalg), 151
pinv2() (in module scipy.linalg), 152
pix_modes() (in module scipy.stsci.convolve), 536
planck() (in module scipy.stats), 498
plotting_positions() (in module scipy.stats.mstats), 353,

356
pmf() (scipy.stats.rv_discrete method), 345
pmf_function() (scipy.maxentropy.model method), 178
pointbiserialr() (in module scipy.stats), 517
pointbiserialr() (in module scipy.stats.mstats), 357
poisson() (in module scipy.stats), 497
polygamma() (in module scipy.special), 326
powerlaw() (in module scipy.stats), 458
powerlognorm() (in module scipy.stats), 460
powernorm() (in module scipy.stats), 461
ppcc_max() (in module scipy.stats), 527
ppcc_plot() (in module scipy.stats), 527
ppf() (scipy.stats.rv_continuous method), 343
ppf() (scipy.stats.rv_discrete method), 346

546 Index

SciPy Reference Guide, Release 0.7

pprint() (scipy.odr.Output method), 222
pre_order() (scipy.cluster.hierarchy.ClusterNode

method), 79
precision() (in module scipy.constants), 100
prepare_test_args() (scipy.sparse.linalg.Tester method),

287
prewitt() (in module scipy.ndimage.filters), 204
pro_ang1() (in module scipy.special), 334
pro_ang1_cv() (in module scipy.special), 335
pro_cv() (in module scipy.special), 335
pro_cv_seq() (in module scipy.special), 335
pro_rad1() (in module scipy.special), 334
pro_rad1_cv() (in module scipy.special), 335
pro_rad2() (in module scipy.special), 334
pro_rad2_cv() (in module scipy.special), 336
probplot() (in module scipy.stats), 527
psi() (in module scipy.special), 326

Q
qmf() (in module scipy.signal), 269
qmr() (in module scipy.linalg), 173
qmr() (in module scipy.sparse.linalg), 290
qr() (in module scipy.linalg), 165
qspline1d() (in module scipy.signal), 250
qspline2d() (in module scipy.signal), 250
quad() (in module scipy.integrate), 117
quadrature() (in module scipy.integrate), 120
query() (scipy.spatial.cKDTree method), 310
query() (scipy.spatial.KDTree method), 309
query_ball_point() (scipy.spatial.KDTree method), 309
query_ball_tree() (scipy.spatial.KDTree method), 309

R
radian() (in module scipy.special), 339
randint() (in module scipy.stats), 501
rank_filter() (in module scipy.ndimage.filters), 204
rankdata() (in module scipy.stats.mstats), 357
ranksums() (in module scipy.stats), 523
rayleigh() (in module scipy.stats), 466
Rbf (class in scipy.interpolate), 128
rdist() (in module scipy.stats), 463
read() (in module scipy.io.wavfile), 146
recipinvgauss() (in module scipy.stats), 469
reciprocal() (in module scipy.stats), 464
Rectangle (class in scipy.spatial), 310
relfreq() (in module scipy.stats), 512
remez() (in module scipy.signal), 256
resample() (in module scipy.signal), 255
resample() (scipy.maxentropy.bigmodel method), 181
reset() (scipy.maxentropy.model method), 177
residue() (in module scipy.signal), 259
residuez() (in module scipy.signal), 260
restart() (scipy.odr.ODR method), 221
rfft() (in module scipy.fftpack), 108

rfftfreq() (in module scipy.fftpack), 113
rgamma() (in module scipy.special), 326
riccati_jn() (in module scipy.special), 320
riccati_yn() (in module scipy.special), 320
rice() (in module scipy.stats), 467
ridder() (in module scipy.optimize), 242
robustlog() (in module scipy.maxentropy), 188
rogerstanimoto() (in module scipy.spatial.distance), 305
romb() (in module scipy.integrate), 122
romberg() (in module scipy.integrate), 120
roots() (scipy.interpolate.UnivariateSpline method), 130
rotate() (in module scipy.ndimage.interpolation), 209
round() (in module scipy.special), 340
rowmeans() (in module scipy.maxentropy), 188
rsf2csf() (in module scipy.linalg), 167
run() (scipy.odr.ODR method), 221
russellrao() (in module scipy.spatial.distance), 305
rv_continuous (class in scipy.stats), 340
rv_discrete (class in scipy.stats), 344

S
sample_wr() (in module scipy.maxentropy), 188
samplestd() (in module scipy.stats), 513
samplestd() (in module scipy.stats.mstats), 357
samplevar() (in module scipy.stats), 513
samplevar() (in module scipy.stats.mstats), 358
save_as_module() (in module scipy.io), 145
savemat() (in module scipy.io), 144
sawtooth() (in module scipy.signal), 267
sc_diff() (in module scipy.fftpack), 111
schur() (in module scipy.linalg), 166
scipy.cluster (module), 98
scipy.cluster.hierarchy (module), 77
scipy.cluster.vq (module), 94
scipy.constants (module), 99
scipy.fftpack (module), 106
scipy.fftpack._fftpack (module), 115
scipy.fftpack.convolve (module), 114
scipy.integrate (module), 117
scipy.interpolate (module), 125
scipy.io (module), 143
scipy.io.arff (module), 146
scipy.io.netcdf (module), 147
scipy.io.wavfile (module), 146
scipy.linalg (module), 148
scipy.maxentropy (module), 174
scipy.misc (module), 188
scipy.ndimage (module), 192
scipy.ndimage.filters (module), 194
scipy.ndimage.fourier (module), 206
scipy.ndimage.interpolation (module), 207
scipy.ndimage.measurements (module), 210
scipy.ndimage.morphology (module), 213
scipy.odr (module), 216

Index 547

SciPy Reference Guide, Release 0.7

scipy.optimize (module), 222
scipy.signal (module), 247
scipy.sparse (module), 270
scipy.sparse.linalg (module), 285
scipy.spatial (module), 308
scipy.spatial.distance (module), 291
scipy.special (module), 311
scipy.stats (module), 340
scipy.stats.mstats (module), 347
scipy.stsci (module), 528
scipy.stsci.convolve (module), 532
scipy.stsci.image (module), 528
scipy.weave (module), 536
scoreatpercentile() (in module scipy.stats), 511
scoreatpercentile() (in module scipy.stats.mstats), 358
sem() (in module scipy.stats), 514
sem() (in module scipy.stats.mstats), 358
semicircular() (in module scipy.stats), 470
sepfir2d() (in module scipy.signal), 249
set_iprint() (scipy.odr.ODR method), 221
set_job() (scipy.odr.ODR method), 221
set_link_color_palette() (in module

scipy.cluster.hierarchy), 92
set_meta() (scipy.odr.Data method), 218
set_meta() (scipy.odr.Model method), 219
set_smoothing_factor() (scipy.interpolate.UnivariateSpline

method), 130
setcallback() (scipy.maxentropy.model method), 177
setfeaturesandsamplespace() (scipy.maxentropy.model

method), 178
setparams() (scipy.maxentropy.model method), 177
setsampleFgen() (scipy.maxentropy.bigmodel method),

181
setsmooth() (scipy.maxentropy.model method), 177
settestsamples() (scipy.maxentropy.bigmodel method),

181
seuclidean() (in module scipy.spatial.distance), 305
sf() (scipy.stats.rv_continuous method), 342
sf() (scipy.stats.rv_discrete method), 346
sh_chebyt() (in module scipy.special), 330
sh_chebyu() (in module scipy.special), 330
sh_jacobi() (in module scipy.special), 330
sh_legendre() (in module scipy.special), 330
shapiro() (in module scipy.stats), 525
shichi() (in module scipy.special), 338
shift() (in module scipy.fftpack), 112
shift() (in module scipy.ndimage.interpolation), 209
sici() (in module scipy.special), 338
signaltonoise() (in module scipy.stats), 513
signaltonoise() (in module scipy.stats.mstats), 358
signm() (in module scipy.linalg), 171
simps() (in module scipy.integrate), 121
sindg() (in module scipy.special), 339
single() (in module scipy.cluster.hierarchy), 92

sinhm() (in module scipy.linalg), 170
sinm() (in module scipy.linalg), 170
skew() (in module scipy.stats), 508
skew() (in module scipy.stats.mstats), 358
skewtest() (in module scipy.stats), 509
skewtest() (in module scipy.stats.mstats), 358
slepian() (in module scipy.signal), 269
smirnov() (in module scipy.special), 324
smirnovi() (in module scipy.special), 324
SmoothBivariateSpline (class in scipy.interpolate), 139
sobel() (in module scipy.ndimage.filters), 205
sokalmichener() (in module scipy.spatial.distance), 306
sokalsneath() (in module scipy.spatial.distance), 306
solve() (in module scipy.linalg), 148
solve_banded() (in module scipy.linalg), 149
solveh_banded() (in module scipy.linalg), 149
source() (in module scipy.misc), 189
spalde() (in module scipy.interpolate), 136
sparse_distance_matrix() (scipy.spatial.KDTree method),

310
SparseEfficiencyWarning, 285
sparsefeaturematrix() (in module scipy.maxentropy), 188
sparsefeatures() (in module scipy.maxentropy), 188
SparseWarning, 285
spdiags() (in module scipy.sparse), 281
spearmanr() (in module scipy.stats), 516
spearmanr() (in module scipy.stats.mstats), 359
spence() (in module scipy.special), 338
sph_harm() (in module scipy.special), 327
sph_in() (in module scipy.special), 320
sph_inkn() (in module scipy.special), 320
sph_jn() (in module scipy.special), 319
sph_jnyn() (in module scipy.special), 320
sph_kn() (in module scipy.special), 320
sph_yn() (in module scipy.special), 319
splev() (in module scipy.interpolate), 134
spline_filter() (in module scipy.ndimage.interpolation),

209
spline_filter() (in module scipy.signal), 250
spline_filter1d() (in module scipy.ndimage.interpolation),

209
splint() (in module scipy.interpolate), 135
split() (scipy.spatial.Rectangle method), 310
splprep() (in module scipy.interpolate), 133
splrep() (in module scipy.interpolate), 131
splu() (in module scipy.sparse.linalg), 291
sproot() (in module scipy.interpolate), 135
spsolve() (in module scipy.sparse.linalg), 291
sqeuclidean() (in module scipy.spatial.distance), 306
sqrtm() (in module scipy.linalg), 171
square() (in module scipy.signal), 267
squareform() (in module scipy.spatial.distance), 307
ss2tf() (in module scipy.signal), 266
ss2zpk() (in module scipy.signal), 266

548 Index

SciPy Reference Guide, Release 0.7

ss_diff() (in module scipy.fftpack), 111
standard_deviation() (in module

scipy.ndimage.measurements), 211
stats() (scipy.stats.rv_continuous method), 343
stats() (scipy.stats.rv_discrete method), 347
std() (in module scipy.stats), 514
std() (in module scipy.stats.mstats), 359
stderr() (in module scipy.stats), 514
stderr() (in module scipy.stats.mstats), 359
stdtr() (in module scipy.special), 324
stdtridf() (in module scipy.special), 324
stdtrit() (in module scipy.special), 324
step() (in module scipy.signal), 264
stochapprox() (scipy.maxentropy.bigmodel method), 182
struve() (in module scipy.special), 320
sum() (in module scipy.ndimage.measurements), 212
svd() (in module scipy.linalg), 161
svdvals() (in module scipy.linalg), 162
symiirorder1() (in module scipy.signal), 252
symiirorder2() (in module scipy.signal), 253

T
t() (in module scipy.stats), 453
tandg() (in module scipy.special), 339
tanhm() (in module scipy.linalg), 170
tanm() (in module scipy.linalg), 170
test() (scipy.maxentropy.bigmodel method), 182
test() (scipy.sparse.linalg.Tester method), 287
Tester (class in scipy.sparse.linalg), 287
tf2ss() (in module scipy.signal), 266
tf2zpk() (in module scipy.signal), 265
theilslopes() (in module scipy.stats.mstats), 359
threshhold() (in module scipy.stsci.image), 530
threshold() (in module scipy.stats), 514
threshold() (in module scipy.stats.mstats), 360
tiecorrect() (in module scipy.stats), 523
tilbert() (in module scipy.fftpack), 110
tklmbda() (in module scipy.special), 324
tmax() (in module scipy.stats), 507
tmax() (in module scipy.stats.mstats), 360
tmean() (in module scipy.stats), 507
tmean() (in module scipy.stats.mstats), 360
tmin() (in module scipy.stats), 507
tmin() (in module scipy.stats.mstats), 360
to_mlab_linkage() (in module scipy.cluster.hierarchy), 92
to_tree() (in module scipy.cluster.hierarchy), 93
toimage() (in module scipy.misc), 190
tplquad() (in module scipy.integrate), 119
translate() (in module scipy.stsci.image), 531
trapz() (in module scipy.integrate), 121
triang() (in module scipy.signal), 268
triang() (in module scipy.stats), 472
tril() (in module scipy.sparse), 281
trim() (in module scipy.stats.mstats), 360

trim1() (in module scipy.stats), 515
trima() (in module scipy.stats.mstats), 361
trimboth() (in module scipy.stats), 515
trimboth() (in module scipy.stats.mstats), 361
trimmed_stde() (in module scipy.stats.mstats), 362
trimr() (in module scipy.stats.mstats), 362
trimtail() (in module scipy.stats.mstats), 363
triu() (in module scipy.sparse), 282
truncexpon() (in module scipy.stats), 473
truncnorm() (in module scipy.stats), 475
tsem() (in module scipy.stats), 508
tsem() (in module scipy.stats.mstats), 363
tstd() (in module scipy.stats), 507
ttest_1samp() (in module scipy.stats), 518
ttest_ind() (in module scipy.stats), 519
ttest_ind() (in module scipy.stats.mstats), 364
ttest_onesamp() (in module scipy.stats.mstats), 363, 365
ttest_rel() (in module scipy.stats), 520
ttest_rel() (in module scipy.stats.mstats), 366
tukeylambda() (in module scipy.stats), 476
tvar() (in module scipy.stats), 507
tvar() (in module scipy.stats.mstats), 367

U
uniform() (in module scipy.stats), 478
uniform_filter() (in module scipy.ndimage.filters), 205
uniform_filter1d() (in module scipy.ndimage.filters), 206
unique_roots() (in module scipy.signal), 259
unit() (in module scipy.constants), 100
UnivariateSpline (class in scipy.interpolate), 129
use_solver() (in module scipy.sparse.linalg), 291

V
value() (in module scipy.constants), 99
var() (in module scipy.stats), 514
var() (in module scipy.stats.mstats), 367
variance() (in module scipy.ndimage.measurements), 212
variation() (in module scipy.stats), 508
variation() (in module scipy.stats.mstats), 367
volume() (scipy.spatial.Rectangle method), 310
vq() (in module scipy.cluster.vq), 95
vstack() (in module scipy.sparse), 284

W
wald() (in module scipy.stats), 479
ward() (in module scipy.cluster.hierarchy), 93
watershed_ift() (in module

scipy.ndimage.measurements), 212
weibull_max() (in module scipy.stats), 482
weibull_min() (in module scipy.stats), 481
weighted() (in module scipy.cluster.hierarchy), 94
white_tophat() (in module scipy.ndimage.morphology),

216
whiten() (in module scipy.cluster.vq), 95

Index 549

SciPy Reference Guide, Release 0.7

who() (in module scipy.misc), 188
wiener() (in module scipy.signal), 252
wilcoxon() (in module scipy.stats), 523
winsorize() (in module scipy.stats.mstats), 367
wminkowski() (in module scipy.spatial.distance), 307
wofz() (in module scipy.special), 338
wrapcauchy() (in module scipy.stats), 484
write() (in module scipy.io.wavfile), 146

Y
y0() (in module scipy.special), 317
y0_zeros() (in module scipy.special), 316
y1() (in module scipy.special), 317
y1_zeros() (in module scipy.special), 316
y1p_zeros() (in module scipy.special), 317
yn() (in module scipy.special), 314
yn_zeros() (in module scipy.special), 316
ynp_zeros() (in module scipy.special), 316
yule() (in module scipy.spatial.distance), 308
yv() (in module scipy.special), 314
yve() (in module scipy.special), 315
yvp() (in module scipy.special), 319

Z
z() (in module scipy.stats), 514
z() (in module scipy.stats.mstats), 367
zeta() (in module scipy.special), 339
zetac() (in module scipy.special), 339
zfft() (in module scipy.fftpack._fftpack), 116
zfftnd() (in module scipy.fftpack._fftpack), 116
zipf() (in module scipy.stats), 502
zmap() (in module scipy.stats), 514
zmap() (in module scipy.stats.mstats), 368
zoom() (in module scipy.ndimage.interpolation), 210
zpk2ss() (in module scipy.signal), 266
zpk2tf() (in module scipy.signal), 265
zrfft() (in module scipy.fftpack._fftpack), 116
zs() (in module scipy.stats), 514
zs() (in module scipy.stats.mstats), 368

550 Index

	SciPy Tutorial
	Introduction
	Basic functions in Numpy (and top-level scipy)
	Special functions (scipy.special)
	Integration (scipy.integrate)
	Optimization (optimize)
	Interpolation (scipy.interpolate)
	Signal Processing (signal)
	Linear Algebra
	Statistics
	Multi-dimensional image processing (ndimage)

	Release Notes
	SciPy 0.7.0 Release Notes

	Reference
	Clustering package (scipy.cluster)
	Constants (scipy.constants)
	Fourier transforms (scipy.fftpack)
	Integration and ODEs (scipy.integrate)
	Interpolation (scipy.interpolate)
	Input and output (scipy.io)
	Linear algebra (scipy.linalg)
	Maximum entropy models (scipy.maxentropy)
	Miscellaneous routines (scipy.misc)
	Multi-dimensional image processing (scipy.ndimage)
	Orthogonal distance regression (scipy.odr)
	Optimization and root finding (scipy.optimize)
	Signal processing (scipy.signal)
	Sparse matrices (scipy.sparse)
	Sparse linear algebra (scipy.sparse.linalg)
	Spatial algorithms and data structures (scipy.spatial)
	Special functions (scipy.special)
	Statistical functions (scipy.stats)
	Image Array Manipulation and Convolution (scipy.stsci)
	C/C++ integration (scipy.weave)

	Bibliography
	Index

