boxcar (data, boxshape[, output, mode, cval]) |
boxcar computes a 1D or 2D boxcar filter on every 1D or 2D subarray of data. |
convolution_modes () -> new empty dictionary. dict(mapping) -> new dictionary initialized from a mapping object’s (key, value) pairs. dict(seq) -> new dictionary initialized as if via: d , v in seq: d[k] = v dict(**kwargs) -> new dictionary initialized with the name, ...]) |
|
convolve (data, kernel[, mode]) |
convolve(data, kernel, mode=FULL) Returns the discrete, linear convolution of 1-D sequences a and v; mode can be 0 (VALID), 1 (SAME), or 2 (FULL) to specify size of the resulting sequence. |
convolve2d (data, kernel[, output, mode, cval, ...]) |
convolve2d does 2d convolution of ‘data’ with ‘kernel’, storing the result in ‘output’. |
correlate (data, kernel[, mode]) |
>>> correlate(np.arange(8), [1, 2], mode=VALID) array([ 2, 5, 8, 11, 14, 17, 20]) >>> correlate(np.arange(8), [1, 2], mode=SAME) array([ 0, 2, 5, 8, 11, 14, 17, 20]) >>> correlate(np.arange(8), [1, 2], mode=FULL) array([ 0, 2, 5, 8, 11, 14, 17, 20, 7]) >>> correlate(np.arange(8), [1, 2, 3], mode=VALID) array([ 8, 14, 20, 26, 32, 38]) >>> correlate(np.arange(8), [1, 2, 3], mode=SAME) array([ 3, 8, 14, 20, 26, 32, 38, 20]) >>> correlate(np.arange(8), [1, 2, 3], mode=FULL) array([ 0, 3, 8, 14, 20, 26, 32, 38, 20, 7]) >>> correlate(np.arange(8), [1, 2, 3, 4, 5, 6], mode=VALID) array([ 70, 91, 112]) >>> correlate(np.arange(8), [1, 2, 3, 4, 5, 6], mode=SAME) array([ 17, 32, 50, 70, 91, 112, 85, 60]) >>> correlate(np.arange(8), [1, 2, 3, 4, 5, 6], mode=FULL) array([ 0, 6, 17, 32, 50, 70, 91, 112, 85, 60, 38, 20, 7]) >>> correlate(np.arange(8), 1+1j) Traceback (most recent call last): ... TypeError: array cannot be safely cast to required type
|
correlate2d (data, kernel[, output, mode, cval, ...]) |
correlate2d does 2d correlation of ‘data’ with ‘kernel’, storing the result in ‘output’. |
cross_correlate (data, kernel[, mode]) |
>>> correlate(np.arange(8), [1, 2], mode=VALID) array([ 2, 5, 8, 11, 14, 17, 20]) >>> correlate(np.arange(8), [1, 2], mode=SAME) array([ 0, 2, 5, 8, 11, 14, 17, 20]) >>> correlate(np.arange(8), [1, 2], mode=FULL) array([ 0, 2, 5, 8, 11, 14, 17, 20, 7]) >>> correlate(np.arange(8), [1, 2, 3], mode=VALID) array([ 8, 14, 20, 26, 32, 38]) >>> correlate(np.arange(8), [1, 2, 3], mode=SAME) array([ 3, 8, 14, 20, 26, 32, 38, 20]) >>> correlate(np.arange(8), [1, 2, 3], mode=FULL) array([ 0, 3, 8, 14, 20, 26, 32, 38, 20, 7]) >>> correlate(np.arange(8), [1, 2, 3, 4, 5, 6], mode=VALID) array([ 70, 91, 112]) >>> correlate(np.arange(8), [1, 2, 3, 4, 5, 6], mode=SAME) array([ 17, 32, 50, 70, 91, 112, 85, 60]) >>> correlate(np.arange(8), [1, 2, 3, 4, 5, 6], mode=FULL) array([ 0, 6, 17, 32, 50, 70, 91, 112, 85, 60, 38, 20, 7]) >>> correlate(np.arange(8), 1+1j) Traceback (most recent call last): ... TypeError: array cannot be safely cast to required type
|
dft |
|
iraf_frame |
|
pix_modes () -> new empty dictionary. dict(mapping) -> new dictionary initialized from a mapping object’s (key, value) pairs. dict(seq) -> new dictionary initialized as if via: d , v in seq: d[k] = v dict(**kwargs) -> new dictionary initialized with the name, ...]) |
|