This is documentation for an old release of SciPy (version 0.7.). Read this page in the documentation of the latest stable release (version 1.15.1).

Image Array Manipulation and Convolution (scipy.stsci)

Image Array manipulation Functions (scipy.stsci.image)

average (arrays[, output, outtype, ...]) average() nominally computes the average pixel value for a stack of identically shaped images.
combine
median (arrays[, output, outtype, ...]) median() nominally computes the median pixels for a stack of identically shaped images.
minimum (arrays[, output, outtype, ...]) minimum() nominally computes the minimum pixel value for a stack of identically shaped images.
threshhold (arrays[, low, high, outputs]) threshhold() computes a boolean array ‘outputs’ with corresponding elements for each element of arrays. The boolean value is true where each of the arrays values is < the low or >= the high threshholds.
translate (a, sdx, sdy[, output, mode, cval]) translate performs a translation of ‘a’ by (sdx, sdy) storing the result in ‘output’.

Image Array Convolution Functions (scipy.stsci.convolve)

boxcar (data, boxshape[, output, mode, cval]) boxcar computes a 1D or 2D boxcar filter on every 1D or 2D subarray of data.
convolution_modes () -> new empty dictionary. dict(mapping) -> new dictionary initialized from a mapping object’s (key, value) pairs. dict(seq) -> new dictionary initialized as if via: d , v in seq: d[k] = v dict(**kwargs) -> new dictionary initialized with the name, ...])
convolve (data, kernel[, mode]) convolve(data, kernel, mode=FULL) Returns the discrete, linear convolution of 1-D sequences a and v; mode can be 0 (VALID), 1 (SAME), or 2 (FULL) to specify size of the resulting sequence.
convolve2d (data, kernel[, output, mode, cval, ...]) convolve2d does 2d convolution of ‘data’ with ‘kernel’, storing the result in ‘output’.
correlate (data, kernel[, mode])
>>> correlate(np.arange(8), [1, 2], mode=VALID) array([ 2,  5,  8, 11, 14, 17, 20]) >>> correlate(np.arange(8), [1, 2], mode=SAME) array([ 0,  2,  5,  8, 11, 14, 17, 20]) >>> correlate(np.arange(8), [1, 2], mode=FULL) array([ 0,  2,  5,  8, 11, 14, 17, 20,  7]) >>> correlate(np.arange(8), [1, 2, 3], mode=VALID) array([ 8, 14, 20, 26, 32, 38]) >>> correlate(np.arange(8), [1, 2, 3], mode=SAME) array([ 3,  8, 14, 20, 26, 32, 38, 20]) >>> correlate(np.arange(8), [1, 2, 3], mode=FULL) array([ 0,  3,  8, 14, 20, 26, 32, 38, 20,  7]) >>> correlate(np.arange(8), [1, 2, 3, 4, 5, 6], mode=VALID) array([ 70,  91, 112]) >>> correlate(np.arange(8), [1, 2, 3, 4, 5, 6], mode=SAME) array([ 17,  32,  50,  70,  91, 112,  85,  60]) >>> correlate(np.arange(8), [1, 2, 3, 4, 5, 6], mode=FULL) array([  0,   6,  17,  32,  50,  70,  91, 112,  85,  60,  38,  20,   7]) >>> correlate(np.arange(8), 1+1j) Traceback (most recent call last): ... TypeError: array cannot be safely cast to required type
correlate2d (data, kernel[, output, mode, cval, ...]) correlate2d does 2d correlation of ‘data’ with ‘kernel’, storing the result in ‘output’.
cross_correlate (data, kernel[, mode])
>>> correlate(np.arange(8), [1, 2], mode=VALID) array([ 2,  5,  8, 11, 14, 17, 20]) >>> correlate(np.arange(8), [1, 2], mode=SAME) array([ 0,  2,  5,  8, 11, 14, 17, 20]) >>> correlate(np.arange(8), [1, 2], mode=FULL) array([ 0,  2,  5,  8, 11, 14, 17, 20,  7]) >>> correlate(np.arange(8), [1, 2, 3], mode=VALID) array([ 8, 14, 20, 26, 32, 38]) >>> correlate(np.arange(8), [1, 2, 3], mode=SAME) array([ 3,  8, 14, 20, 26, 32, 38, 20]) >>> correlate(np.arange(8), [1, 2, 3], mode=FULL) array([ 0,  3,  8, 14, 20, 26, 32, 38, 20,  7]) >>> correlate(np.arange(8), [1, 2, 3, 4, 5, 6], mode=VALID) array([ 70,  91, 112]) >>> correlate(np.arange(8), [1, 2, 3, 4, 5, 6], mode=SAME) array([ 17,  32,  50,  70,  91, 112,  85,  60]) >>> correlate(np.arange(8), [1, 2, 3, 4, 5, 6], mode=FULL) array([  0,   6,  17,  32,  50,  70,  91, 112,  85,  60,  38,  20,   7]) >>> correlate(np.arange(8), 1+1j) Traceback (most recent call last): ... TypeError: array cannot be safely cast to required type
dft
iraf_frame
pix_modes () -> new empty dictionary. dict(mapping) -> new dictionary initialized from a mapping object’s (key, value) pairs. dict(seq) -> new dictionary initialized as if via: d , v in seq: d[k] = v dict(**kwargs) -> new dictionary initialized with the name, ...])