A Rice continuous random variable.
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:
Parameters: | x : array-like
q : array-like
b : array-like
loc : array-like, optional
scale : array-like, optional
size : int or tuple of ints, optional
moments : string, optional
|
---|---|
Methods: | rice.rvs(b,loc=0,scale=1,size=1) :
rice.pdf(x,b,loc=0,scale=1) :
rice.cdf(x,b,loc=0,scale=1) :
rice.sf(x,b,loc=0,scale=1) :
rice.ppf(q,b,loc=0,scale=1) :
rice.isf(q,b,loc=0,scale=1) :
rice.stats(b,loc=0,scale=1,moments=’mv’) :
rice.entropy(b,loc=0,scale=1) :
rice.fit(data,b,loc=0,scale=1) :
Alternatively, the object may be called (as a function) to fix the shape, : location, and scale parameters returning a “frozen” continuous RV object: : rv = rice(b,loc=0,scale=1) :
|
Examples
>>> import matplotlib.pyplot as plt
>>> numargs = rice.numargs
>>> [ b ] = [0.9,]*numargs
>>> rv = rice(b)
Display frozen pdf
>>> x = np.linspace(0,np.minimum(rv.dist.b,3))
>>> h=plt.plot(x,rv.pdf(x))
Check accuracy of cdf and ppf
>>> prb = rice.cdf(x,b)
>>> h=plt.semilogy(np.abs(x-rice.ppf(prb,c))+1e-20)
Random number generation
>>> R = rice.rvs(b,size=100)
Rician distribution
rice.pdf(x,b) = x * exp(-(x**2+b**2)/2) * I[0](x*b) for x > 0, b > 0.