scipy.stats.powerlognorm

scipy.stats.powerlognorm()

A power log-normal continuous random variable.

Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:

Parameters:

x : array-like

quantiles

q : array-like

lower or upper tail probability

c,s : array-like

shape parameters

loc : array-like, optional

location parameter (default=0)

scale : array-like, optional

scale parameter (default=1)

size : int or tuple of ints, optional

shape of random variates (default computed from input arguments )

moments : string, optional

composed of letters [‘mvsk’] specifying which moments to compute where ‘m’ = mean, ‘v’ = variance, ‘s’ = (Fisher’s) skew and ‘k’ = (Fisher’s) kurtosis. (default=’mv’)

Methods:

powerlognorm.rvs(c,s,loc=0,scale=1,size=1) :

  • random variates

powerlognorm.pdf(x,c,s,loc=0,scale=1) :

  • probability density function

powerlognorm.cdf(x,c,s,loc=0,scale=1) :

  • cumulative density function

powerlognorm.sf(x,c,s,loc=0,scale=1) :

  • survival function (1-cdf — sometimes more accurate)

powerlognorm.ppf(q,c,s,loc=0,scale=1) :

  • percent point function (inverse of cdf — percentiles)

powerlognorm.isf(q,c,s,loc=0,scale=1) :

  • inverse survival function (inverse of sf)

powerlognorm.stats(c,s,loc=0,scale=1,moments=’mv’) :

  • mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’)

powerlognorm.entropy(c,s,loc=0,scale=1) :

  • (differential) entropy of the RV.

powerlognorm.fit(data,c,s,loc=0,scale=1) :

  • Parameter estimates for powerlognorm data

Alternatively, the object may be called (as a function) to fix the shape, :

location, and scale parameters returning a “frozen” continuous RV object: :

rv = powerlognorm(c,s,loc=0,scale=1) :

  • frozen RV object with the same methods but holding the given shape, location, and scale fixed

Examples

>>> import matplotlib.pyplot as plt
>>> numargs = powerlognorm.numargs
>>> [ c,s ] = [0.9,]*numargs
>>> rv = powerlognorm(c,s)

Display frozen pdf

>>> x = np.linspace(0,np.minimum(rv.dist.b,3))
>>> h=plt.plot(x,rv.pdf(x))

Check accuracy of cdf and ppf

>>> prb = powerlognorm.cdf(x,c,s)
>>> h=plt.semilogy(np.abs(x-powerlognorm.ppf(prb,c))+1e-20)

Random number generation

>>> R = powerlognorm.rvs(c,s,size=100)

Power log-normal distribution

powerlognorm.pdf(x,c,s) = c/(x*s) * phi(log(x)/s) * (Phi(-log(x)/s))**(c-1) where phi is the normal pdf, and Phi is the normal cdf, and x > 0, s,c > 0.

Previous topic

scipy.stats.powerlaw

Next topic

scipy.stats.powernorm

This Page

Quick search