A power log-normal continuous random variable.
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:
Parameters: | x : array-like
q : array-like
c,s : array-like
loc : array-like, optional
scale : array-like, optional
size : int or tuple of ints, optional
moments : string, optional
|
---|---|
Methods: | powerlognorm.rvs(c,s,loc=0,scale=1,size=1) :
powerlognorm.pdf(x,c,s,loc=0,scale=1) :
powerlognorm.cdf(x,c,s,loc=0,scale=1) :
powerlognorm.sf(x,c,s,loc=0,scale=1) :
powerlognorm.ppf(q,c,s,loc=0,scale=1) :
powerlognorm.isf(q,c,s,loc=0,scale=1) :
powerlognorm.stats(c,s,loc=0,scale=1,moments=’mv’) :
powerlognorm.entropy(c,s,loc=0,scale=1) :
powerlognorm.fit(data,c,s,loc=0,scale=1) :
Alternatively, the object may be called (as a function) to fix the shape, : location, and scale parameters returning a “frozen” continuous RV object: : rv = powerlognorm(c,s,loc=0,scale=1) :
|
Examples
>>> import matplotlib.pyplot as plt
>>> numargs = powerlognorm.numargs
>>> [ c,s ] = [0.9,]*numargs
>>> rv = powerlognorm(c,s)
Display frozen pdf
>>> x = np.linspace(0,np.minimum(rv.dist.b,3))
>>> h=plt.plot(x,rv.pdf(x))
Check accuracy of cdf and ppf
>>> prb = powerlognorm.cdf(x,c,s)
>>> h=plt.semilogy(np.abs(x-powerlognorm.ppf(prb,c))+1e-20)
Random number generation
>>> R = powerlognorm.rvs(c,s,size=100)
Power log-normal distribution
powerlognorm.pdf(x,c,s) = c/(x*s) * phi(log(x)/s) * (Phi(-log(x)/s))**(c-1) where phi is the normal pdf, and Phi is the normal cdf, and x > 0, s,c > 0.