A non-central F distribution continuous random variable.
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:
Parameters: | x : array-like
q : array-like
dfn,dfd,nc : array-like
loc : array-like, optional
scale : array-like, optional
size : int or tuple of ints, optional
moments : string, optional
|
---|---|
Methods: | ncf.rvs(dfn,dfd,nc,loc=0,scale=1,size=1) :
ncf.pdf(x,dfn,dfd,nc,loc=0,scale=1) :
ncf.cdf(x,dfn,dfd,nc,loc=0,scale=1) :
ncf.sf(x,dfn,dfd,nc,loc=0,scale=1) :
ncf.ppf(q,dfn,dfd,nc,loc=0,scale=1) :
ncf.isf(q,dfn,dfd,nc,loc=0,scale=1) :
ncf.stats(dfn,dfd,nc,loc=0,scale=1,moments=’mv’) :
ncf.entropy(dfn,dfd,nc,loc=0,scale=1) :
ncf.fit(data,dfn,dfd,nc,loc=0,scale=1) :
Alternatively, the object may be called (as a function) to fix the shape, : location, and scale parameters returning a “frozen” continuous RV object: : rv = ncf(dfn,dfd,nc,loc=0,scale=1) :
|
Examples
>>> import matplotlib.pyplot as plt
>>> numargs = ncf.numargs
>>> [ dfn,dfd,nc ] = [0.9,]*numargs
>>> rv = ncf(dfn,dfd,nc)
Display frozen pdf
>>> x = np.linspace(0,np.minimum(rv.dist.b,3))
>>> h=plt.plot(x,rv.pdf(x))
Check accuracy of cdf and ppf
>>> prb = ncf.cdf(x,dfn,dfd,nc)
>>> h=plt.semilogy(np.abs(x-ncf.ppf(prb,c))+1e-20)
Random number generation
>>> R = ncf.rvs(dfn,dfd,nc,size=100)
Non-central F distribution
/ (B(v1/2, v2/2) * gamma((v1+v2)/2))
for df1, df2, nc > 0.