A Nakagami continuous random variable.
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:
Parameters: | x : array-like
q : array-like
nu : array-like
loc : array-like, optional
scale : array-like, optional
size : int or tuple of ints, optional
moments : string, optional
|
---|---|
Methods: | nakagami.rvs(nu,loc=0,scale=1,size=1) :
nakagami.pdf(x,nu,loc=0,scale=1) :
nakagami.cdf(x,nu,loc=0,scale=1) :
nakagami.sf(x,nu,loc=0,scale=1) :
nakagami.ppf(q,nu,loc=0,scale=1) :
nakagami.isf(q,nu,loc=0,scale=1) :
nakagami.stats(nu,loc=0,scale=1,moments=’mv’) :
nakagami.entropy(nu,loc=0,scale=1) :
nakagami.fit(data,nu,loc=0,scale=1) :
Alternatively, the object may be called (as a function) to fix the shape, : location, and scale parameters returning a “frozen” continuous RV object: : rv = nakagami(nu,loc=0,scale=1) :
|
Examples
>>> import matplotlib.pyplot as plt
>>> numargs = nakagami.numargs
>>> [ nu ] = [0.9,]*numargs
>>> rv = nakagami(nu)
Display frozen pdf
>>> x = np.linspace(0,np.minimum(rv.dist.b,3))
>>> h=plt.plot(x,rv.pdf(x))
Check accuracy of cdf and ppf
>>> prb = nakagami.cdf(x,nu)
>>> h=plt.semilogy(np.abs(x-nakagami.ppf(prb,c))+1e-20)
Random number generation
>>> R = nakagami.rvs(nu,size=100)
Nakagami distribution
nakagami.pdf(x,nu) = 2*nu**nu/gamma(nu) * x**(2*nu-1) * exp(-nu*x**2) for x > 0, nu > 0.