A lognormal continuous random variable.
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:
Parameters: | x : array-like
q : array-like
s : array-like
loc : array-like, optional
scale : array-like, optional
size : int or tuple of ints, optional
moments : string, optional
|
---|---|
Methods: | lognorm.rvs(s,loc=0,scale=1,size=1) :
lognorm.pdf(x,s,loc=0,scale=1) :
lognorm.cdf(x,s,loc=0,scale=1) :
lognorm.sf(x,s,loc=0,scale=1) :
lognorm.ppf(q,s,loc=0,scale=1) :
lognorm.isf(q,s,loc=0,scale=1) :
lognorm.stats(s,loc=0,scale=1,moments=’mv’) :
lognorm.entropy(s,loc=0,scale=1) :
lognorm.fit(data,s,loc=0,scale=1) :
Alternatively, the object may be called (as a function) to fix the shape, : location, and scale parameters returning a “frozen” continuous RV object: : rv = lognorm(s,loc=0,scale=1) :
|
Examples
>>> import matplotlib.pyplot as plt
>>> numargs = lognorm.numargs
>>> [ s ] = [0.9,]*numargs
>>> rv = lognorm(s)
Display frozen pdf
>>> x = np.linspace(0,np.minimum(rv.dist.b,3))
>>> h=plt.plot(x,rv.pdf(x))
Check accuracy of cdf and ppf
>>> prb = lognorm.cdf(x,s)
>>> h=plt.semilogy(np.abs(x-lognorm.ppf(prb,c))+1e-20)
Random number generation
>>> R = lognorm.rvs(s,size=100)
Lognormal distribution
lognorm.pdf(x,s) = 1/(s*x*sqrt(2*pi)) * exp(-1/2*(log(x)/s)**2) for x > 0, s > 0.
If log x is normally distributed with mean mu and variance sigma**2, then x is log-normally distributed with shape paramter sigma and scale parameter exp(mu).