# scipy.stats.lognorm¶

scipy.stats.lognorm()

A lognormal continuous random variable.

Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:

Parameters: x : array-like quantiles q : array-like lower or upper tail probability s : array-like shape parameters loc : array-like, optional location parameter (default=0) scale : array-like, optional scale parameter (default=1) size : int or tuple of ints, optional shape of random variates (default computed from input arguments ) moments : string, optional composed of letters [‘mvsk’] specifying which moments to compute where ‘m’ = mean, ‘v’ = variance, ‘s’ = (Fisher’s) skew and ‘k’ = (Fisher’s) kurtosis. (default=’mv’) lognorm.rvs(s,loc=0,scale=1,size=1) : random variates lognorm.pdf(x,s,loc=0,scale=1) : probability density function lognorm.cdf(x,s,loc=0,scale=1) : cumulative density function lognorm.sf(x,s,loc=0,scale=1) : survival function (1-cdf — sometimes more accurate) lognorm.ppf(q,s,loc=0,scale=1) : percent point function (inverse of cdf — percentiles) lognorm.isf(q,s,loc=0,scale=1) : inverse survival function (inverse of sf) lognorm.stats(s,loc=0,scale=1,moments=’mv’) : mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’) lognorm.entropy(s,loc=0,scale=1) : (differential) entropy of the RV. lognorm.fit(data,s,loc=0,scale=1) : Parameter estimates for lognorm data Alternatively, the object may be called (as a function) to fix the shape, : location, and scale parameters returning a “frozen” continuous RV object: : rv = lognorm(s,loc=0,scale=1) : frozen RV object with the same methods but holding the given shape, location, and scale fixed

Examples

```>>> import matplotlib.pyplot as plt
>>> numargs = lognorm.numargs
>>> [ s ] = [0.9,]*numargs
>>> rv = lognorm(s)
```

Display frozen pdf

```>>> x = np.linspace(0,np.minimum(rv.dist.b,3))
>>> h=plt.plot(x,rv.pdf(x))
```

Check accuracy of cdf and ppf

```>>> prb = lognorm.cdf(x,s)
>>> h=plt.semilogy(np.abs(x-lognorm.ppf(prb,c))+1e-20)
```

Random number generation

```>>> R = lognorm.rvs(s,size=100)
```

Lognormal distribution

lognorm.pdf(x,s) = 1/(s*x*sqrt(2*pi)) * exp(-1/2*(log(x)/s)**2) for x > 0, s > 0.

If log x is normally distributed with mean mu and variance sigma**2, then x is log-normally distributed with shape paramter sigma and scale parameter exp(mu).

#### Previous topic

scipy.stats.loglaplace

#### Next topic

scipy.stats.gilbrat