An inverse normal continuous random variable.
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:
Parameters: | x : array-like
q : array-like
mu : array-like
loc : array-like, optional
scale : array-like, optional
size : int or tuple of ints, optional
moments : string, optional
|
---|---|
Methods: | invnorm.rvs(mu,loc=0,scale=1,size=1) :
invnorm.pdf(x,mu,loc=0,scale=1) :
invnorm.cdf(x,mu,loc=0,scale=1) :
invnorm.sf(x,mu,loc=0,scale=1) :
invnorm.ppf(q,mu,loc=0,scale=1) :
invnorm.isf(q,mu,loc=0,scale=1) :
invnorm.stats(mu,loc=0,scale=1,moments=’mv’) :
invnorm.entropy(mu,loc=0,scale=1) :
invnorm.fit(data,mu,loc=0,scale=1) :
Alternatively, the object may be called (as a function) to fix the shape, : location, and scale parameters returning a “frozen” continuous RV object: : rv = invnorm(mu,loc=0,scale=1) :
|
Examples
>>> import matplotlib.pyplot as plt
>>> numargs = invnorm.numargs
>>> [ mu ] = [0.9,]*numargs
>>> rv = invnorm(mu)
Display frozen pdf
>>> x = np.linspace(0,np.minimum(rv.dist.b,3))
>>> h=plt.plot(x,rv.pdf(x))
Check accuracy of cdf and ppf
>>> prb = invnorm.cdf(x,mu)
>>> h=plt.semilogy(np.abs(x-invnorm.ppf(prb,c))+1e-20)
Random number generation
>>> R = invnorm.rvs(mu,size=100)
Inverse normal distribution
invnorm.pdf(x,mu) = 1/sqrt(2*pi*x**3) * exp(-(x-mu)**2/(2*x*mu**2)) for x > 0.