A Gauss hypergeometric continuous random variable.
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:
Parameters: | x : array-like
q : array-like
a,b,c,z : array-like
loc : array-like, optional
scale : array-like, optional
size : int or tuple of ints, optional
moments : string, optional
|
---|---|
Methods: | gausshyper.rvs(a,b,c,z,loc=0,scale=1,size=1) :
gausshyper.pdf(x,a,b,c,z,loc=0,scale=1) :
gausshyper.cdf(x,a,b,c,z,loc=0,scale=1) :
gausshyper.sf(x,a,b,c,z,loc=0,scale=1) :
gausshyper.ppf(q,a,b,c,z,loc=0,scale=1) :
gausshyper.isf(q,a,b,c,z,loc=0,scale=1) :
gausshyper.stats(a,b,c,z,loc=0,scale=1,moments=’mv’) :
gausshyper.entropy(a,b,c,z,loc=0,scale=1) :
gausshyper.fit(data,a,b,c,z,loc=0,scale=1) :
Alternatively, the object may be called (as a function) to fix the shape, : location, and scale parameters returning a “frozen” continuous RV object: : rv = gausshyper(a,b,c,z,loc=0,scale=1) :
|
Examples
>>> import matplotlib.pyplot as plt
>>> numargs = gausshyper.numargs
>>> [ a,b,c,z ] = [0.9,]*numargs
>>> rv = gausshyper(a,b,c,z)
Display frozen pdf
>>> x = np.linspace(0,np.minimum(rv.dist.b,3))
>>> h=plt.plot(x,rv.pdf(x))
Check accuracy of cdf and ppf
>>> prb = gausshyper.cdf(x,a,b,c,z)
>>> h=plt.semilogy(np.abs(x-gausshyper.ppf(prb,c))+1e-20)
Random number generation
>>> R = gausshyper.rvs(a,b,c,z,size=100)
Gauss hypergeometric distribution
gausshyper.pdf(x,a,b,c,z) = C * x**(a-1) * (1-x)**(b-1) * (1+z*x)**(-c) for 0 <= x <= 1, a > 0, b > 0, and C = 1/(B(a,b)F[2,1](c,a;a+b;-z))