scipy.stats.exponpow

scipy.stats.exponpow()

An exponential power continuous random variable.

Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:

Parameters:

x : array-like

quantiles

q : array-like

lower or upper tail probability

b : array-like

shape parameters

loc : array-like, optional

location parameter (default=0)

scale : array-like, optional

scale parameter (default=1)

size : int or tuple of ints, optional

shape of random variates (default computed from input arguments )

moments : string, optional

composed of letters [‘mvsk’] specifying which moments to compute where ‘m’ = mean, ‘v’ = variance, ‘s’ = (Fisher’s) skew and ‘k’ = (Fisher’s) kurtosis. (default=’mv’)

Methods:

exponpow.rvs(b,loc=0,scale=1,size=1) :

  • random variates

exponpow.pdf(x,b,loc=0,scale=1) :

  • probability density function

exponpow.cdf(x,b,loc=0,scale=1) :

  • cumulative density function

exponpow.sf(x,b,loc=0,scale=1) :

  • survival function (1-cdf — sometimes more accurate)

exponpow.ppf(q,b,loc=0,scale=1) :

  • percent point function (inverse of cdf — percentiles)

exponpow.isf(q,b,loc=0,scale=1) :

  • inverse survival function (inverse of sf)

exponpow.stats(b,loc=0,scale=1,moments=’mv’) :

  • mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’)

exponpow.entropy(b,loc=0,scale=1) :

  • (differential) entropy of the RV.

exponpow.fit(data,b,loc=0,scale=1) :

  • Parameter estimates for exponpow data

Alternatively, the object may be called (as a function) to fix the shape, :

location, and scale parameters returning a “frozen” continuous RV object: :

rv = exponpow(b,loc=0,scale=1) :

  • frozen RV object with the same methods but holding the given shape, location, and scale fixed

Examples

>>> import matplotlib.pyplot as plt
>>> numargs = exponpow.numargs
>>> [ b ] = [0.9,]*numargs
>>> rv = exponpow(b)

Display frozen pdf

>>> x = np.linspace(0,np.minimum(rv.dist.b,3))
>>> h=plt.plot(x,rv.pdf(x))

Check accuracy of cdf and ppf

>>> prb = exponpow.cdf(x,b)
>>> h=plt.semilogy(np.abs(x-exponpow.ppf(prb,c))+1e-20)

Random number generation

>>> R = exponpow.rvs(b,size=100)

Exponential Power distribution

exponpow.pdf(x,b) = b*x**(b-1) * exp(1+x**b - exp(x**b)) for x >= 0, b > 0.

Previous topic

scipy.stats.exponweib

Next topic

scipy.stats.fatiguelife

This Page

Quick search