A discrete Laplacian discrete random variable.
Discrete random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:
Methods: | dlaplace.rvs(a,loc=0,size=1) :
dlaplace.pmf(x,a,loc=0) :
dlaplace.cdf(x,a,loc=0) :
dlaplace.sf(x,a,loc=0) :
dlaplace.ppf(q,a,loc=0) :
dlaplace.isf(q,a,loc=0) :
dlaplace.stats(a,loc=0,moments=’mv’) :
dlaplace.entropy(a,loc=0) :
Alternatively, the object may be called (as a function) to fix : the shape and location parameters returning a : “frozen” discrete RV object: : myrv = dlaplace(a,loc=0) :
You can construct an aribtrary discrete rv where P{X=xk} = pk : by passing to the rv_discrete initialization method (through the values= : keyword) a tuple of sequences (xk,pk) which describes only those values of : X (xk) that occur with nonzero probability (pk). : |
---|
Examples
>>> import matplotlib.pyplot as plt
>>> numargs = dlaplace.numargs
>>> [ a ] = ['Replace with resonable value',]*numargs
Display frozen pmf:
>>> rv = dlaplace(a)
>>> x = np.arange(0,np.min(rv.dist.b,3)+1)
>>> h = plt.plot(x,rv.pmf(x))
Check accuracy of cdf and ppf:
>>> prb = dlaplace.cdf(x,a)
>>> h = plt.semilogy(np.abs(x-dlaplace.ppf(prb,a))+1e-20)
Random number generation:
>>> R = dlaplace.rvs(a,size=100)
Custom made discrete distribution:
>>> vals = [arange(7),(0.1,0.2,0.3,0.1,0.1,0.1,0.1)]
>>> custm = rv_discrete(name='custm',values=vals)
>>> h = plt.plot(vals[0],custm.pmf(vals[0]))
Discrete Laplacian distribution.
dlapacle.pmf(k,a) = tanh(a/2) * exp(-a*abs(k)) for a > 0.