A chi-squared continuous random variable.
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:
Parameters: | x : array-like
q : array-like
df : array-like
loc : array-like, optional
scale : array-like, optional
size : int or tuple of ints, optional
moments : string, optional
|
---|---|
Methods: | chi2.rvs(df,loc=0,scale=1,size=1) :
chi2.pdf(x,df,loc=0,scale=1) :
chi2.cdf(x,df,loc=0,scale=1) :
chi2.sf(x,df,loc=0,scale=1) :
chi2.ppf(q,df,loc=0,scale=1) :
chi2.isf(q,df,loc=0,scale=1) :
chi2.stats(df,loc=0,scale=1,moments=’mv’) :
chi2.entropy(df,loc=0,scale=1) :
chi2.fit(data,df,loc=0,scale=1) :
Alternatively, the object may be called (as a function) to fix the shape, : location, and scale parameters returning a “frozen” continuous RV object: : rv = chi2(df,loc=0,scale=1) :
|
Examples
>>> import matplotlib.pyplot as plt
>>> numargs = chi2.numargs
>>> [ df ] = [0.9,]*numargs
>>> rv = chi2(df)
Display frozen pdf
>>> x = np.linspace(0,np.minimum(rv.dist.b,3))
>>> h=plt.plot(x,rv.pdf(x))
Check accuracy of cdf and ppf
>>> prb = chi2.cdf(x,df)
>>> h=plt.semilogy(np.abs(x-chi2.ppf(prb,c))+1e-20)
Random number generation
>>> R = chi2.rvs(df,size=100)
Chi-squared distribution
chi2.pdf(x,df) = 1/(2*gamma(df/2)) * (x/2)**(df/2-1) * exp(-x/2)