Burr continuous random variable.
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:
Parameters: | x : array-like
q : array-like
c,d : array-like
loc : array-like, optional
scale : array-like, optional
size : int or tuple of ints, optional
moments : string, optional
|
---|---|
Methods: | burr.rvs(c,d,loc=0,scale=1,size=1) :
burr.pdf(x,c,d,loc=0,scale=1) :
burr.cdf(x,c,d,loc=0,scale=1) :
burr.sf(x,c,d,loc=0,scale=1) :
burr.ppf(q,c,d,loc=0,scale=1) :
burr.isf(q,c,d,loc=0,scale=1) :
burr.stats(c,d,loc=0,scale=1,moments=’mv’) :
burr.entropy(c,d,loc=0,scale=1) :
burr.fit(data,c,d,loc=0,scale=1) :
Alternatively, the object may be called (as a function) to fix the shape, : location, and scale parameters returning a “frozen” continuous RV object: : rv = burr(c,d,loc=0,scale=1) :
|
Examples
>>> import matplotlib.pyplot as plt
>>> numargs = burr.numargs
>>> [ c,d ] = [0.9,]*numargs
>>> rv = burr(c,d)
Display frozen pdf
>>> x = np.linspace(0,np.minimum(rv.dist.b,3))
>>> h=plt.plot(x,rv.pdf(x))
Check accuracy of cdf and ppf
>>> prb = burr.cdf(x,c,d)
>>> h=plt.semilogy(np.abs(x-burr.ppf(prb,c))+1e-20)
Random number generation
>>> R = burr.rvs(c,d,size=100)
Burr distribution
burr.pdf(x,c,d) = c*d * x**(-c-1) * (1+x**(-c))**(-d-1) for x > 0.