A bernoulli discrete random variable.
Discrete random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:
Methods: | bernoulli.rvs(pr,loc=0,size=1) :
bernoulli.pmf(x,pr,loc=0) :
bernoulli.cdf(x,pr,loc=0) :
bernoulli.sf(x,pr,loc=0) :
bernoulli.ppf(q,pr,loc=0) :
bernoulli.isf(q,pr,loc=0) :
bernoulli.stats(pr,loc=0,moments=’mv’) :
bernoulli.entropy(pr,loc=0) :
Alternatively, the object may be called (as a function) to fix : the shape and location parameters returning a : “frozen” discrete RV object: : myrv = bernoulli(pr,loc=0) :
You can construct an aribtrary discrete rv where P{X=xk} = pk : by passing to the rv_discrete initialization method (through the values= : keyword) a tuple of sequences (xk,pk) which describes only those values of : X (xk) that occur with nonzero probability (pk). : |
---|
Examples
>>> import matplotlib.pyplot as plt
>>> numargs = bernoulli.numargs
>>> [ pr ] = ['Replace with resonable value',]*numargs
Display frozen pmf:
>>> rv = bernoulli(pr)
>>> x = np.arange(0,np.min(rv.dist.b,3)+1)
>>> h = plt.plot(x,rv.pmf(x))
Check accuracy of cdf and ppf:
>>> prb = bernoulli.cdf(x,pr)
>>> h = plt.semilogy(np.abs(x-bernoulli.ppf(prb,pr))+1e-20)
Random number generation:
>>> R = bernoulli.rvs(pr,size=100)
Custom made discrete distribution:
>>> vals = [arange(7),(0.1,0.2,0.3,0.1,0.1,0.1,0.1)]
>>> custm = rv_discrete(name='custm',values=vals)
>>> h = plt.plot(vals[0],custm.pmf(vals[0]))
Bernoulli distribution
1 if binary experiment succeeds, 0 otherwise. Experiment succeeds with probabilty pr.
- bernoulli.pmf(k,p) = 1-p if k = 0
- = p if k = 1
for k = 0,1