This is documentation for an old release of SciPy (version 0.7.). Read this page Search for this page in the documentation of the latest stable release (version 1.15.1).
scipy.optimize.brent
-
scipy.optimize.brent(func, args=(), brack=None, tol=1.48e-08, full_output=0, maxiter=500)
Given a function of one-variable and a possible bracketing interval,
return the minimum of the function isolated to a fractional precision of
tol.
Parameters: |
- func : callable f(x,*args)
Objective function.
- args
Additional arguments (if present).
- brack : tuple
Triple (a,b,c) where (a<b<c) and func(b) <
func(a),func(c). If bracket consists of two numbers (a,c)
then they are assumed to be a starting interval for a
downhill bracket search (see bracket); it doesn’t always
mean that the obtained solution will satisfy a<=x<=c.
- full_output : bool
If True, return all output args (xmin, fval, iter,
funcalls).
|
Returns: |
- xmin : ndarray
Optimum point.
- fval : float
Optimum value.
- iter : int
Number of iterations.
- funcalls : int
Number of objective function evaluations made.
|
Notes
Uses inverse parabolic interpolation when possible to speed up convergence
of golden section method.