Compute QR decomposition of a matrix.
Calculate the decomposition :lm:`A = Q R` where Q is unitary/orthogonal and R upper triangular.
Parameters: | a : array, shape (M, N)
overwrite_a : boolean
lwork : integer
econ : boolean
mode : {‘qr’, ‘r’}
|
---|---|
Returns: | (if mode == ‘qr’) : Q : double or complex array, shape (M, M) or (M, K) for econ==True (for any mode) : R : double or complex array, shape (M, N) or (K, N) for econ==True
Raises LinAlgError if decomposition fails : |
Notes
This is an interface to the LAPACK routines dgeqrf, zgeqrf, dorgqr, and zungqr.
Examples
>>> from scipy import random, linalg, dot
>>> a = random.randn(9, 6)
>>> q, r = linalg.qr(a)
>>> allclose(a, dot(q, r))
True
>>> q.shape, r.shape
((9, 9), (9, 6))
>>> r2 = linalg.qr(a, mode='r')
>>> allclose(r, r2)
>>> q3, r3 = linalg.qr(a, econ=True)
>>> q3.shape, r3.shape
((9, 6), (6, 6))