Compute the (Moore-Penrose) pseudo-inverse of a matrix.
Calculate a generalized inverse of a matrix using its singular-value decomposition and including all ‘large’ singular values.
Parameters: | a : array, shape (M, N)
cond, rcond : float or None
|
---|---|
Returns: | B : array, shape (N, M) Raises LinAlgError if SVD computation does not converge : |
Examples
>>> from numpy import *
>>> a = random.randn(9, 6)
>>> B = linalg.pinv2(a)
>>> allclose(a, dot(a, dot(B, a)))
True
>>> allclose(B, dot(B, dot(a, B)))
True