SciPy

scipy.special.bdtrc

scipy.special.bdtrc(k, n, p) = <ufunc 'bdtrc'>

Binomial distribution survival function.

Sum of the terms k + 1 through n of the binomial probability density,

\[\mathrm{bdtrc}(k, n, p) = \sum_{j=k+1}^n {{n}\choose{j}} p^j (1-p)^{n-j}\]
Parameters:

k : array_like

Number of successes (int).

n : array_like

Number of events (int)

p : array_like

Probability of success in a single event.

Returns:

y : ndarray

Probability of k + 1 or more successes in n independent events with success probabilities of p.

See also

bdtr, betainc

Notes

The terms are not summed directly; instead the regularized incomplete beta function is employed, according to the formula,

\[\mathrm{bdtrc}(k, n, p) = I_{p}(k + 1, n - k).\]

Wrapper for the Cephes [R372] routine bdtrc.

References

[R372](1, 2) Cephes Mathematical Functions Library, http://www.netlib.org/cephes/index.html

Previous topic

scipy.special.bdtr

Next topic

scipy.special.bdtri