scipy.signal.dlti¶
-
class
scipy.signal.
dlti
(*system, **kwargs)[source]¶ Discrete-time linear time invariant system base class.
Parameters: *system: arguments
The
dlti
class can be instantiated with either 2, 3 or 4 arguments. The following gives the number of arguments and the corresponding discrete-time subclass that is created:- 2:
TransferFunction
: (numerator, denominator) - 3:
ZerosPolesGain
: (zeros, poles, gain) - 4:
StateSpace
: (A, B, C, D)
Each argument can be an array or a sequence.
dt: float, optional
Sampling time [s] of the discrete-time systems. Defaults to
True
(unspecified sampling time). Must be specified as a keyword argument, for example,dt=0.1
.See also
Notes
dlti
instances do not exist directly. Instead,dlti
creates an instance of one of its subclasses:StateSpace
,TransferFunction
orZerosPolesGain
.Changing the value of properties that are not directly part of the current system representation (such as the
zeros
of aStateSpace
system) is very inefficient and may lead to numerical inaccuracies. It is better to convert to the specific system representation first. For example, callsys = sys.to_zpk()
before accessing/changing the zeros, poles or gain.If (numerator, denominator) is passed in for
*system
, coefficients for both the numerator and denominator should be specified in descending exponent order (e.g.,z^2 + 3z + 5
would be represented as[1, 3, 5]
).New in version 0.18.0.
Examples
>>> from scipy import signal
>>> signal.dlti(1, 2, 3, 4) StateSpaceDiscrete( array([[1]]), array([[2]]), array([[3]]), array([[4]]), dt: True )
>>> signal.dlti(1, 2, 3, 4, dt=0.1) StateSpaceDiscrete( array([[1]]), array([[2]]), array([[3]]), array([[4]]), dt: 0.1 )
>>> signal.dlti([1, 2], [3, 4], 5, dt=0.1) ZerosPolesGainDiscrete( array([1, 2]), array([3, 4]), 5, dt: 0.1 )
>>> signal.dlti([3, 4], [1, 2], dt=0.1) TransferFunctionDiscrete( array([ 3., 4.]), array([ 1., 2.]), dt: 0.1 )
Attributes
A
State matrix of the StateSpace
system.B
Input matrix of the StateSpace
system.C
Output matrix of the StateSpace
system.D
Feedthrough matrix of the StateSpace
system.den
Denominator of the TransferFunction
system.dt
Return the sampling time of the system. gain
Gain of the ZerosPolesGain
system.num
Numerator of the TransferFunction
system.poles
Poles of the system. zeros
Zeros of the system. Methods
bode
([w, n])Calculate Bode magnitude and phase data of a discrete-time system. freqresp
([w, n, whole])Calculate the frequency response of a discrete-time system. impulse
([x0, t, n])Return the impulse response of the discrete-time dlti
system.output
(u, t[, x0])Return the response of the discrete-time system to input u. step
([x0, t, n])Return the step response of the discrete-time dlti
system.- 2: