scipy.linalg.eig¶
-
scipy.linalg.
eig
(a, b=None, left=False, right=True, overwrite_a=False, overwrite_b=False, check_finite=True, homogeneous_eigvals=False)[source]¶ Solve an ordinary or generalized eigenvalue problem of a square matrix.
Find eigenvalues w and right or left eigenvectors of a general matrix:
a vr[:,i] = w[i] b vr[:,i] a.H vl[:,i] = w[i].conj() b.H vl[:,i]
where
.H
is the Hermitian conjugation.Parameters: a : (M, M) array_like
A complex or real matrix whose eigenvalues and eigenvectors will be computed.
b : (M, M) array_like, optional
Right-hand side matrix in a generalized eigenvalue problem. Default is None, identity matrix is assumed.
left : bool, optional
Whether to calculate and return left eigenvectors. Default is False.
right : bool, optional
Whether to calculate and return right eigenvectors. Default is True.
overwrite_a : bool, optional
Whether to overwrite a; may improve performance. Default is False.
overwrite_b : bool, optional
Whether to overwrite b; may improve performance. Default is False.
check_finite : bool, optional
Whether to check that the input matrices contain only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs.
homogeneous_eigvals : bool, optional
If True, return the eigenvalues in homogeneous coordinates. In this case
w
is a (2, M) array so that:w[1,i] a vr[:,i] = w[0,i] b vr[:,i]
Default is False.
Returns: w : (M,) or (2, M) double or complex ndarray
The eigenvalues, each repeated according to its multiplicity. The shape is (M,) unless
homogeneous_eigvals=True
.vl : (M, M) double or complex ndarray
The normalized left eigenvector corresponding to the eigenvalue
w[i]
is the column vl[:,i]. Only returned ifleft=True
.vr : (M, M) double or complex ndarray
The normalized right eigenvector corresponding to the eigenvalue
w[i]
is the columnvr[:,i]
. Only returned ifright=True
.Raises: LinAlgError
If eigenvalue computation does not converge.
See also
eigh
- Eigenvalues and right eigenvectors for symmetric/Hermitian arrays.