Loading [MathJax]/jax/output/HTML-CSS/jax.js
SciPy

This is documentation for an old release of SciPy (version 0.19.0). Search for this page in the documentation of the latest stable release (version 1.15.1).

Gilbrat Distribution

Special case of the log-normal with σ=1 and S=1.0 (typically also L=0.0 )

f(x;σ)=1x2πexp[12(logx)2]F(x;σ)=Φ(logx)=12[1+erf(logx2)]G(q;σ)=exp{Φ1(q)}
μ=eμ2=e[e1]γ1=e1(2+e)γ2=e4+2e3+3e26
h[X]=log(2πe)1.4189385332046727418

Implementation: scipy.stats.gilbrat