Loading [MathJax]/jax/output/HTML-CSS/jax.js
SciPy

This is documentation for an old release of SciPy (version 0.19.0). Search for this page in the documentation of the latest stable release (version 1.15.1).

Generalized Logistic Distribution

Has been used in the analysis of extreme values. Has one shape parameter c>0. And x>0

f(x;c)=cexp(x)[1+exp(x)]c+1F(x;c)=1[1+exp(x)]cG(q;c)=log(q1/c1)
M(t)=c1t2F1(1+c,1t;2t;1)
μ=γ+ψ0(c)μ2=π26+ψ1(c)γ1=ψ2(c)+2ζ(3)μ3/22γ2=(π415+ψ3(c))μ22md=logcmn=log(21/c1)

Note that the polygamma function is

ψn(z)=dn+1dzn+1logΓ(z)=(1)n+1n!k=01(z+k)n+1=(1)n+1n!ζ(n+1,z)

where ζ(k,x) is a generalization of the Riemann zeta function called the Hurwitz zeta function Note that ζ(n)ζ(n,1)

Implementation: scipy.stats.genlogistic