minimize(method=’CG’)¶
- scipy.optimize.minimize(fun, x0, args=(), method='CG', jac=None, tol=None, callback=None, options={'disp': False, 'gtol': 1e-05, 'eps': 1.4901161193847656e-08, 'return_all': False, 'maxiter': None, 'norm': inf})
Minimization of scalar function of one or more variables using the conjugate gradient algorithm.
See also
For documentation for the rest of the parameters, see scipy.optimize.minimize
Options: disp : bool
Set to True to print convergence messages.
maxiter : int
Maximum number of iterations to perform.
gtol : float
Gradient norm must be less than gtol before successful termination.
norm : float
Order of norm (Inf is max, -Inf is min).
eps : float or ndarray
If jac is approximated, use this value for the step size.