scipy.stats.trapz¶
- scipy.stats.trapz = <scipy.stats._continuous_distns.trapz_gen object at 0x2b2318ed2050>[source]¶
- A trapezoidal continuous random variable. - As an instance of the rv_continuous class, trapz object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution. - Notes - The trapezoidal distribution can be represented with an up-sloping line from loc to (loc + c*scale), then constant to (loc + d*scale) and then downsloping from (loc + d*scale) to (loc+scale). - trapz takes c and d as shape parameters. - The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the loc and scale parameters. Specifically, trapz.pdf(x, c, d, loc, scale) is identically equivalent to trapz.pdf(y, c, d) / scale with y = (x - loc) / scale. - The standard form is in the range [0, 1] with c the mode. The location parameter shifts the start to loc. The scale parameter changes the width from 1 to scale. - Examples - >>> from scipy.stats import trapz >>> import matplotlib.pyplot as plt >>> fig, ax = plt.subplots(1, 1) - Calculate a few first moments: - >>> c, d = 0.2, 0.8 >>> mean, var, skew, kurt = trapz.stats(c, d, moments='mvsk') - Display the probability density function (pdf): - >>> x = np.linspace(trapz.ppf(0.01, c, d), ... trapz.ppf(0.99, c, d), 100) >>> ax.plot(x, trapz.pdf(x, c, d), ... 'r-', lw=5, alpha=0.6, label='trapz pdf') - Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed. - Freeze the distribution and display the frozen pdf: - >>> rv = trapz(c, d) >>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf') - Check accuracy of cdf and ppf: - >>> vals = trapz.ppf([0.001, 0.5, 0.999], c, d) >>> np.allclose([0.001, 0.5, 0.999], trapz.cdf(vals, c, d)) True - Generate random numbers: - >>> r = trapz.rvs(c, d, size=1000) - And compare the histogram: - >>> ax.hist(r, normed=True, histtype='stepfilled', alpha=0.2) >>> ax.legend(loc='best', frameon=False) >>> plt.show()   - Methods - rvs(c, d, loc=0, scale=1, size=1, random_state=None) - Random variates. - pdf(x, c, d, loc=0, scale=1) - Probability density function. - logpdf(x, c, d, loc=0, scale=1) - Log of the probability density function. - cdf(x, c, d, loc=0, scale=1) - Cumulative distribution function. - logcdf(x, c, d, loc=0, scale=1) - Log of the cumulative distribution function. - sf(x, c, d, loc=0, scale=1) - Survival function (also defined as 1 - cdf, but sf is sometimes more accurate). - logsf(x, c, d, loc=0, scale=1) - Log of the survival function. - ppf(q, c, d, loc=0, scale=1) - Percent point function (inverse of cdf — percentiles). - isf(q, c, d, loc=0, scale=1) - Inverse survival function (inverse of sf). - moment(n, c, d, loc=0, scale=1) - Non-central moment of order n - stats(c, d, loc=0, scale=1, moments='mv') - Mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’). - entropy(c, d, loc=0, scale=1) - (Differential) entropy of the RV. - fit(data, c, d, loc=0, scale=1) - Parameter estimates for generic data. - expect(func, args=(c, d), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds) - Expected value of a function (of one argument) with respect to the distribution. - median(c, d, loc=0, scale=1) - Median of the distribution. - mean(c, d, loc=0, scale=1) - Mean of the distribution. - var(c, d, loc=0, scale=1) - Variance of the distribution. - std(c, d, loc=0, scale=1) - Standard deviation of the distribution. - interval(alpha, c, d, loc=0, scale=1) - Endpoints of the range that contains alpha percent of the distribution 
