scipy.stats.burr12¶
- scipy.stats.burr12 = <scipy.stats._continuous_distns.burr12_gen object at 0x2b2318bf60d0>[source]¶
A Burr (Type XII) continuous random variable.
As an instance of the rv_continuous class, burr12 object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.
Notes
The probability density function for burr is:
burr12.pdf(x, c, d) = c * d * x**(c-1) * (1+x**(c))**(-d-1)
for x > 0.
burr12 takes c and d as shape parameters.
This is the PDF corresponding to the twelfth CDF given in Burr’s list; specifically, it is equation (20) in Burr’s paper [R562].
The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the loc and scale parameters. Specifically, burr12.pdf(x, c, d, loc, scale) is identically equivalent to burr12.pdf(y, c, d) / scale with y = (x - loc) / scale.
The Burr type 12 distribution is also sometimes referred to as the Singh-Maddala distribution from NIST [R563].
References
[R562] (1, 2) Burr, I. W. “Cumulative frequency functions”, Annals of Mathematical Statistics, 13(2), pp 215-232 (1942). [R563] (1, 2) http://www.itl.nist.gov/div898/software/dataplot/refman2/auxillar/b12pdf.htm Examples
>>> from scipy.stats import burr12 >>> import matplotlib.pyplot as plt >>> fig, ax = plt.subplots(1, 1)
Calculate a few first moments:
>>> c, d = 10, 4 >>> mean, var, skew, kurt = burr12.stats(c, d, moments='mvsk')
Display the probability density function (pdf):
>>> x = np.linspace(burr12.ppf(0.01, c, d), ... burr12.ppf(0.99, c, d), 100) >>> ax.plot(x, burr12.pdf(x, c, d), ... 'r-', lw=5, alpha=0.6, label='burr12 pdf')
Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pdf:
>>> rv = burr12(c, d) >>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
Check accuracy of cdf and ppf:
>>> vals = burr12.ppf([0.001, 0.5, 0.999], c, d) >>> np.allclose([0.001, 0.5, 0.999], burr12.cdf(vals, c, d)) True
Generate random numbers:
>>> r = burr12.rvs(c, d, size=1000)
And compare the histogram:
>>> ax.hist(r, normed=True, histtype='stepfilled', alpha=0.2) >>> ax.legend(loc='best', frameon=False) >>> plt.show()
Methods
rvs(c, d, loc=0, scale=1, size=1, random_state=None) Random variates. pdf(x, c, d, loc=0, scale=1) Probability density function. logpdf(x, c, d, loc=0, scale=1) Log of the probability density function. cdf(x, c, d, loc=0, scale=1) Cumulative distribution function. logcdf(x, c, d, loc=0, scale=1) Log of the cumulative distribution function. sf(x, c, d, loc=0, scale=1) Survival function (also defined as 1 - cdf, but sf is sometimes more accurate). logsf(x, c, d, loc=0, scale=1) Log of the survival function. ppf(q, c, d, loc=0, scale=1) Percent point function (inverse of cdf — percentiles). isf(q, c, d, loc=0, scale=1) Inverse survival function (inverse of sf). moment(n, c, d, loc=0, scale=1) Non-central moment of order n stats(c, d, loc=0, scale=1, moments='mv') Mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’). entropy(c, d, loc=0, scale=1) (Differential) entropy of the RV. fit(data, c, d, loc=0, scale=1) Parameter estimates for generic data. expect(func, args=(c, d), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds) Expected value of a function (of one argument) with respect to the distribution. median(c, d, loc=0, scale=1) Median of the distribution. mean(c, d, loc=0, scale=1) Mean of the distribution. var(c, d, loc=0, scale=1) Variance of the distribution. std(c, d, loc=0, scale=1) Standard deviation of the distribution. interval(alpha, c, d, loc=0, scale=1) Endpoints of the range that contains alpha percent of the distribution