scipy.stats.binom¶
- scipy.stats.binom = <scipy.stats._discrete_distns.binom_gen object at 0x2b2318c12ad0>[source]¶
- A binomial discrete random variable. - As an instance of the rv_discrete class, binom object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution. - Notes - The probability mass function for binom is: - binom.pmf(k) = choose(n, k) * p**k * (1-p)**(n-k) - for k in {0, 1,..., n}. - binom takes n and p as shape parameters. - The probability mass function above is defined in the “standardized” form. To shift distribution use the loc parameter. Specifically, binom.pmf(k, n, p, loc) is identically equivalent to binom.pmf(k - loc, n, p). - Examples - >>> from scipy.stats import binom >>> import matplotlib.pyplot as plt >>> fig, ax = plt.subplots(1, 1) - Calculate a few first moments: - >>> n, p = 5, 0.4 >>> mean, var, skew, kurt = binom.stats(n, p, moments='mvsk') - Display the probability mass function (pmf): - >>> x = np.arange(binom.ppf(0.01, n, p), ... binom.ppf(0.99, n, p)) >>> ax.plot(x, binom.pmf(x, n, p), 'bo', ms=8, label='binom pmf') >>> ax.vlines(x, 0, binom.pmf(x, n, p), colors='b', lw=5, alpha=0.5) - Alternatively, the distribution object can be called (as a function) to fix the shape and location. This returns a “frozen” RV object holding the given parameters fixed. - Freeze the distribution and display the frozen pmf: - >>> rv = binom(n, p) >>> ax.vlines(x, 0, rv.pmf(x), colors='k', linestyles='-', lw=1, ... label='frozen pmf') >>> ax.legend(loc='best', frameon=False) >>> plt.show()   - Check accuracy of cdf and ppf: - >>> prob = binom.cdf(x, n, p) >>> np.allclose(x, binom.ppf(prob, n, p)) True - Generate random numbers: - >>> r = binom.rvs(n, p, size=1000) - Methods - rvs(n, p, loc=0, size=1, random_state=None) - Random variates. - pmf(k, n, p, loc=0) - Probability mass function. - logpmf(k, n, p, loc=0) - Log of the probability mass function. - cdf(k, n, p, loc=0) - Cumulative distribution function. - logcdf(k, n, p, loc=0) - Log of the cumulative distribution function. - sf(k, n, p, loc=0) - Survival function (also defined as 1 - cdf, but sf is sometimes more accurate). - logsf(k, n, p, loc=0) - Log of the survival function. - ppf(q, n, p, loc=0) - Percent point function (inverse of cdf — percentiles). - isf(q, n, p, loc=0) - Inverse survival function (inverse of sf). - stats(n, p, loc=0, moments='mv') - Mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’). - entropy(n, p, loc=0) - (Differential) entropy of the RV. - expect(func, args=(n, p), loc=0, lb=None, ub=None, conditional=False) - Expected value of a function (of one argument) with respect to the distribution. - median(n, p, loc=0) - Median of the distribution. - mean(n, p, loc=0) - Mean of the distribution. - var(n, p, loc=0) - Variance of the distribution. - std(n, p, loc=0) - Standard deviation of the distribution. - interval(alpha, n, p, loc=0) - Endpoints of the range that contains alpha percent of the distribution 
