scipy.special.jv¶
- scipy.special.jv(v, z) = <ufunc 'jv'>¶
Bessel function of the first kind of real order and complex argument.
Parameters: v : array_like
Order (float).
z : array_like
Argument (float or complex).
Returns: J : ndarray
Value of the Bessel function, \(J_v(z)\).
See also
- jve
- \(J_v\) with leading exponential behavior stripped off.
- spherical_jn
- spherical Bessel functions.
Notes
For positive v values, the computation is carried out using the AMOS [R459] zbesj routine, which exploits the connection to the modified Bessel function \(I_v\),
\[\begin{split}J_v(z) = \exp(n\pi\imath/2) I_v(-\imath z)\qquad (\Im z > 0)\end{split}\]\[\begin{split}J_v(z) = \exp(-n\pi\imath/2) I_v(\imath z)\qquad (\Im z < 0)\end{split}\]For negative v values the formula,
\[J_{-v}(z) = J_v(z) \cos(\pi v) - Y_v(z) \sin(\pi v)\]is used, where \(Y_v(z)\) is the Bessel function of the second kind, computed using the AMOS routine zbesy. Note that the second term is exactly zero for integer v; to improve accuracy the second term is explicitly omitted for v values such that v = floor(v).
Not to be confused with the spherical Bessel functions (see spherical_jn).
References
[R459] (1, 2) Donald E. Amos, “AMOS, A Portable Package for Bessel Functions of a Complex Argument and Nonnegative Order”, http://netlib.org/amos/