scipy.special.eval_jacobi¶
- scipy.special.eval_jacobi(n, alpha, beta, x, out=None) = <ufunc 'eval_jacobi'>¶
Evaluate Jacobi polynomial at a point.
The Jacobi polynomials can be defined via the Gauss hypergeometric function \({}_2F_1\) as
\[P_n^{(\alpha, \beta)}(x) = \frac{(\alpha + 1)_n}{\Gamma(n + 1)} {}_2F_1(-n, 1 + \alpha + \beta + n; \alpha + 1; (1 - z)/2)\]where \((\cdot)_n\) is the Pochhammer symbol; see poch. When \(n\) is an integer the result is a polynomial of degree \(n\).
Parameters: n : array_like
Degree of the polynomial. If not an integer the result is determined via the relation to the Gauss hypergeometric function.
alpha : array_like
Parameter
beta : array_like
Parameter
x : array_like
Points at which to evaluate the polynomial
Returns: P : ndarray
Values of the Jacobi polynomial
See also
- roots_jacobi
- roots and quadrature weights of Jacobi polynomials
- jacobi
- Jacobi polynomial object
- hyp2f1
- Gauss hypergeometric function