scipy.special.eval_genlaguerre¶
- scipy.special.eval_genlaguerre(n, alpha, x, out=None) = <ufunc 'eval_genlaguerre'>¶
Evaluate generalized Laguerre polynomial at a point.
The generalized Laguerre polynomials can be defined via the confluent hypergeometric function \({}_1F_1\) as
\[L_n^{(\alpha)}(x) = \binom{n + \alpha}{n} {}_1F_1(-n, \alpha + 1, x).\]When \(n\) is an integer the result is a polynomial of degree \(n\). The Laguerre polynomials are the special case where \(\alpha = 0\).
Parameters: n : array_like
Degree of the polynomial. If not an integer the result is determined via the relation to the confluent hypergeometric function.
alpha : array_like
Parameter; must have alpha > -1
x : array_like
Points at which to evaluate the generalized Laguerre polynomial
Returns: L : ndarray
Values of the generalized Laguerre polynomial
See also
- roots_genlaguerre
- roots and quadrature weights of generalized Laguerre polynomials
- genlaguerre
- generalized Laguerre polynomial object
- hyp1f1
- confluent hypergeometric function
- eval_laguerre
- evaluate Laguerre polynomials