Loading [MathJax]/jax/output/HTML-CSS/jax.js
SciPy

This is documentation for an old release of SciPy (version 0.19.0). Read this page in the documentation of the latest stable release (version 1.15.1).

scipy.special.ellipe

scipy.special.ellipe(m) = <ufunc 'ellipe'>

Complete elliptic integral of the second kind

This function is defined as

E(m)=π/20[1msin(t)2]1/2dt
Parameters:

m : array_like

Defines the parameter of the elliptic integral.

Returns:

E : ndarray

Value of the elliptic integral.

See also

ellipkm1
Complete elliptic integral of the first kind, near m = 1
ellipk
Complete elliptic integral of the first kind
ellipkinc
Incomplete elliptic integral of the first kind
ellipeinc
Incomplete elliptic integral of the second kind

Notes

Wrapper for the Cephes [R402] routine ellpe.

For m > 0 the computation uses the approximation,

E(m)P(1m)(1m)log(1m)Q(1m),

where P and Q are tenth-order polynomials. For m < 0, the relation

E(m)=E(m/(m1))(1m)

is used.

References

[R402](1, 2) Cephes Mathematical Functions Library, http://www.netlib.org/cephes/index.html