scipy.special.btdtri¶
- scipy.special.btdtri(a, b, p) = <ufunc 'btdtri'>¶
The p-th quantile of the beta distribution.
This function is the inverse of the beta cumulative distribution function, btdtr, returning the value of x for which btdtr(a, b, x) = p, or
\[p = \int_0^x \frac{\Gamma(a + b)}{\Gamma(a)\Gamma(b)} t^{a-1} (1-t)^{b-1}\,dt\]Parameters: a : array_like
Shape parameter (a > 0).
b : array_like
Shape parameter (b > 0).
p : array_like
Cumulative probability, in [0, 1].
Returns: x : ndarray
The quantile corresponding to p.
See also
Notes
The value of x is found by interval halving or Newton iterations.
Wrapper for the Cephes [R385] routine incbi, which solves the equivalent problem of finding the inverse of the incomplete beta integral.
References
[R385] (1, 2) Cephes Mathematical Functions Library, http://www.netlib.org/cephes/index.html