scipy.special.bdtrc¶
- scipy.special.bdtrc(k, n, p) = <ufunc 'bdtrc'>¶
Binomial distribution survival function.
Sum of the terms k + 1 through n of the binomial probability density,
\[\mathrm{bdtrc}(k, n, p) = \sum_{j=k+1}^n {{n}\choose{j}} p^j (1-p)^{n-j}\]Parameters: k : array_like
Number of successes (int).
n : array_like
Number of events (int)
p : array_like
Probability of success in a single event.
Returns: y : ndarray
Probability of k + 1 or more successes in n independent events with success probabilities of p.
Notes
The terms are not summed directly; instead the regularized incomplete beta function is employed, according to the formula,
\[\mathrm{bdtrc}(k, n, p) = I_{p}(k + 1, n - k).\]Wrapper for the Cephes [R372] routine bdtrc.
References
[R372] (1, 2) Cephes Mathematical Functions Library, http://www.netlib.org/cephes/index.html