# scipy.linalg.eigvals¶

scipy.linalg.eigvals(a, b=None, overwrite_a=False, check_finite=True, homogeneous_eigvals=False)[source]

Compute eigenvalues from an ordinary or generalized eigenvalue problem.

Find eigenvalues of a general matrix:

a   vr[:,i] = w[i]        b   vr[:,i]

Parameters: a : (M, M) array_like A complex or real matrix whose eigenvalues and eigenvectors will be computed. b : (M, M) array_like, optional Right-hand side matrix in a generalized eigenvalue problem. If omitted, identity matrix is assumed. overwrite_a : bool, optional Whether to overwrite data in a (may improve performance) check_finite : bool, optional Whether to check that the input matrices contain only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs. homogeneous_eigvals : bool, optional If True, return the eigenvalues in homogeneous coordinates. In this case w is a (2, M) array so that: w[1,i] a vr[:,i] = w[0,i] b vr[:,i]  Default is False. w : (M,) or (2, M) double or complex ndarray The eigenvalues, each repeated according to its multiplicity but not in any specific order. The shape is (M,) unless homogeneous_eigvals=True. LinAlgError If eigenvalue computation does not converge

eigvalsh
eigenvalues of symmetric or Hermitian arrays,
eig
eigenvalues and right eigenvectors of general arrays.
eigh
eigenvalues and eigenvectors of symmetric/Hermitian arrays.

scipy.linalg.eig

#### Next topic

scipy.linalg.eigh