This is documentation for an old release of SciPy (version 0.18.1). Search for this page in the documentation of the latest stable release (version 1.15.1).
Generalized Extreme Value Distribution¶
Extreme value distributions with shape parameter c .
For c>0 defined on −∞<x≤1/c.
f(x;c)=exp[−(1−cx)1/c](1−cx)1/c−1F(x;c)=exp[−(1−cx)1/c]G(q;c)=1c[1−(−logq)c]
μ′n=1cnn∑k=0(nk)(−1)kΓ(ck+1)cn>−1
So,
μ′1=1c(1−Γ(1+c))c>−1μ′2=1c2(1−2Γ(1+c)+Γ(1+2c))c>−12μ′3=1c3(1−3Γ(1+c)+3Γ(1+2c)−Γ(1+3c))c>−13μ′4=1c4(1−4Γ(1+c)+6Γ(1+2c)−4Γ(1+3c)+Γ(1+4c))c>−14
For c<0 defined on 1c≤x<∞. For c=0 defined over all space
f(x;0)=exp[−e−x]e−xF(x;0)=exp[−e−x]G(q;0)=−log(−logq)
This is just the (left-skewed) Gumbel distribution for c=0.
μ=γ=−ψ0(1)μ2=π26γ1=12√6π3ζ(3)γ2=125
Implementation: scipy.stats.genextreme