scipy.stats.zscore¶
- scipy.stats.zscore(a, axis=0, ddof=0)[source]¶
- Calculates the z score of each value in the sample, relative to the sample mean and standard deviation. - Parameters: - a : array_like - An array like object containing the sample data. - axis : int or None, optional - Axis along which to operate. Default is 0. If None, compute over the whole array a. - ddof : int, optional - Degrees of freedom correction in the calculation of the standard deviation. Default is 0. - Returns: - zscore : array_like - The z-scores, standardized by mean and standard deviation of input array a. - Notes - This function preserves ndarray subclasses, and works also with matrices and masked arrays (it uses asanyarray instead of asarray for parameters). - Examples - >>> a = np.array([ 0.7972, 0.0767, 0.4383, 0.7866, 0.8091, ... 0.1954, 0.6307, 0.6599, 0.1065, 0.0508]) >>> from scipy import stats >>> stats.zscore(a) array([ 1.1273, -1.247 , -0.0552, 1.0923, 1.1664, -0.8559, 0.5786, 0.6748, -1.1488, -1.3324]) - Computing along a specified axis, using n-1 degrees of freedom (ddof=1) to calculate the standard deviation: - >>> b = np.array([[ 0.3148, 0.0478, 0.6243, 0.4608], ... [ 0.7149, 0.0775, 0.6072, 0.9656], ... [ 0.6341, 0.1403, 0.9759, 0.4064], ... [ 0.5918, 0.6948, 0.904 , 0.3721], ... [ 0.0921, 0.2481, 0.1188, 0.1366]]) >>> stats.zscore(b, axis=1, ddof=1) array([[-0.19264823, -1.28415119, 1.07259584, 0.40420358], [ 0.33048416, -1.37380874, 0.04251374, 1.00081084], [ 0.26796377, -1.12598418, 1.23283094, -0.37481053], [-0.22095197, 0.24468594, 1.19042819, -1.21416216], [-0.82780366, 1.4457416 , -0.43867764, -0.1792603 ]]) 
