scipy.signal.ss2tf¶
- scipy.signal.ss2tf(A, B, C, D, input=0)[source]¶
State-space to transfer function.
A, B, C, D defines a linear state-space system with p inputs, q outputs, and n state variables.
Parameters: A : array_like
State (or system) matrix of shape (n, n)
B : array_like
Input matrix of shape (n, p)
C : array_like
Output matrix of shape (q, n)
D : array_like
Feedthrough (or feedforward) matrix of shape (q, p)
input : int, optional
For multiple-input systems, the index of the input to use.
Returns: num : 2-D ndarray
Numerator(s) of the resulting transfer function(s). num has one row for each of the system’s outputs. Each row is a sequence representation of the numerator polynomial.
den : 1-D ndarray
Denominator of the resulting transfer function(s). den is a sequence representation of the denominator polynomial.
Examples
Convert the state-space representation:
\[\begin{split}\dot{\textbf{x}}(t) = \begin{bmatrix} -2 & -1 \\ 1 & 0 \end{bmatrix} \textbf{x}(t) + \begin{bmatrix} 1 \\ 0 \end{bmatrix} \textbf{u}(t) \\\end{split}\]\[\begin{split}\textbf{y}(t) = \begin{bmatrix} 1 & 2 \end{bmatrix} \textbf{x}(t) + \begin{bmatrix} 1 \end{bmatrix} \textbf{u}(t)\end{split}\]>>> A = [[-2, -1], [1, 0]] >>> B = [[1], [0]] # 2-dimensional column vector >>> C = [[1, 2]] # 2-dimensional row vector >>> D = 1
to the transfer function:
\[H(s) = \frac{s^2 + 3s + 3}{s^2 + 2s + 1}\]>>> from scipy.signal import ss2tf >>> ss2tf(A, B, C, D) (array([[1, 3, 3]]), array([ 1., 2., 1.]))