scipy.signal.residue¶
- scipy.signal.residue(b, a, tol=0.001, rtype='avg')[source]¶
Compute partial-fraction expansion of b(s) / a(s).
If M is the degree of numerator b and N the degree of denominator a:
b(s) b[0] s**(M) + b[1] s**(M-1) + ... + b[M] H(s) = ------ = ------------------------------------------ a(s) a[0] s**(N) + a[1] s**(N-1) + ... + a[N]
then the partial-fraction expansion H(s) is defined as:
r[0] r[1] r[-1] = -------- + -------- + ... + --------- + k(s) (s-p[0]) (s-p[1]) (s-p[-1])
If there are any repeated roots (closer together than tol), then H(s) has terms like:
r[i] r[i+1] r[i+n-1] -------- + ----------- + ... + ----------- (s-p[i]) (s-p[i])**2 (s-p[i])**n
This function is used for polynomials in positive powers of s or z, such as analog filters or digital filters in controls engineering. For negative powers of z (typical for digital filters in DSP), use residuez.
Parameters: b : array_like
Numerator polynomial coefficients.
a : array_like
Denominator polynomial coefficients.
Returns: r : ndarray
Residues.
p : ndarray
Poles.
k : ndarray
Coefficients of the direct polynomial term.
See also