scipy.ndimage.extrema¶
- scipy.ndimage.extrema(input, labels=None, index=None)[source]¶
Calculate the minimums and maximums of the values of an array at labels, along with their positions.
Parameters: input : ndarray
Nd-image data to process.
labels : ndarray, optional
Labels of features in input. If not None, must be same shape as input.
index : int or sequence of ints, optional
Labels to include in output. If None (default), all values where non-zero labels are used.
Returns: minimums, maximums : int or ndarray
Values of minimums and maximums in each feature.
min_positions, max_positions : tuple or list of tuples
Each tuple gives the n-D coordinates of the corresponding minimum or maximum.
See also
maximum, minimum, maximum_position, minimum_position, center_of_mass
Examples
>>> a = np.array([[1, 2, 0, 0], ... [5, 3, 0, 4], ... [0, 0, 0, 7], ... [9, 3, 0, 0]]) >>> from scipy import ndimage >>> ndimage.extrema(a) (0, 9, (0, 2), (3, 0))
Features to process can be specified using labels and index:
>>> lbl, nlbl = ndimage.label(a) >>> ndimage.extrema(a, lbl, index=np.arange(1, nlbl+1)) (array([1, 4, 3]), array([5, 7, 9]), [(0, 0), (1, 3), (3, 1)], [(1, 0), (2, 3), (3, 0)])
If no index is given, non-zero labels are processed:
>>> ndimage.extrema(a, lbl) (1, 9, (0, 0), (3, 0))