scipy.linalg.solve_banded¶
- scipy.linalg.solve_banded(l_and_u, ab, b, overwrite_ab=False, overwrite_b=False, debug=False, check_finite=True)[source]¶
Solve the equation a x = b for x, assuming a is banded matrix.
The matrix a is stored in ab using the matrix diagonal ordered form:
ab[u + i - j, j] == a[i,j]
Example of ab (shape of a is (6,6), u =1, l =2):
* a01 a12 a23 a34 a45 a00 a11 a22 a33 a44 a55 a10 a21 a32 a43 a54 * a20 a31 a42 a53 * *
Parameters: (l, u) : (integer, integer)
Number of non-zero lower and upper diagonals
ab : (l + u + 1, M) array_like
Banded matrix
b : (M,) or (M, K) array_like
Right-hand side
overwrite_ab : bool, optional
Discard data in ab (may enhance performance)
overwrite_b : bool, optional
Discard data in b (may enhance performance)
check_finite : bool, optional
Whether to check that the input matrices contain only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs.
Returns: x : (M,) or (M, K) ndarray
The solution to the system a x = b. Returned shape depends on the shape of b.