This is documentation for an old release of SciPy (version 0.18.1). Search for this page in the documentation of the latest stable release (version 1.15.0).
scipy.linalg.pinv2¶
- scipy.linalg.pinv2(a, cond=None, rcond=None, return_rank=False, check_finite=True)[source]¶
Compute the (Moore-Penrose) pseudo-inverse of a matrix.
Calculate a generalized inverse of a matrix using its singular-value decomposition and including all ‘large’ singular values.
Parameters: a : (M, N) array_like
Matrix to be pseudo-inverted.
cond, rcond : float or None
Cutoff for ‘small’ singular values. Singular values smaller than rcond*largest_singular_value are considered zero. If None or -1, suitable machine precision is used.
return_rank : bool, optional
if True, return the effective rank of the matrix
check_finite : bool, optional
Whether to check that the input matrix contains only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs.
Returns: B : (N, M) ndarray
The pseudo-inverse of matrix a.
rank : int
The effective rank of the matrix. Returned if return_rank == True
Raises: LinAlgError
If SVD computation does not converge.
Examples
>>> from scipy import linalg >>> a = np.random.randn(9, 6) >>> B = linalg.pinv2(a) >>> np.allclose(a, np.dot(a, np.dot(B, a))) True >>> np.allclose(B, np.dot(B, np.dot(a, B))) True