scipy.interpolate.RegularGridInterpolator¶
- class scipy.interpolate.RegularGridInterpolator(points, values, method='linear', bounds_error=True, fill_value=nan)[source]¶
Interpolation on a regular grid in arbitrary dimensions
The data must be defined on a regular grid; the grid spacing however may be uneven. Linear and nearest-neighbour interpolation are supported. After setting up the interpolator object, the interpolation method (linear or nearest) may be chosen at each evaluation.
Parameters: points : tuple of ndarray of float, with shapes (m1, ), ..., (mn, )
The points defining the regular grid in n dimensions.
values : array_like, shape (m1, ..., mn, ...)
The data on the regular grid in n dimensions.
method : str, optional
The method of interpolation to perform. Supported are “linear” and “nearest”. This parameter will become the default for the object’s __call__ method. Default is “linear”.
bounds_error : bool, optional
If True, when interpolated values are requested outside of the domain of the input data, a ValueError is raised. If False, then fill_value is used.
fill_value : number, optional
If provided, the value to use for points outside of the interpolation domain. If None, values outside the domain are extrapolated.
See also
- NearestNDInterpolator
- Nearest neighbour interpolation on unstructured data in N dimensions
- LinearNDInterpolator
- Piecewise linear interpolant on unstructured data in N dimensions
Notes
Contrary to LinearNDInterpolator and NearestNDInterpolator, this class avoids expensive triangulation of the input data by taking advantage of the regular grid structure.
New in version 0.14.
References
[R59] Python package regulargrid by Johannes Buchner, see https://pypi.python.org/pypi/regulargrid/ [R60] Trilinear interpolation. (2013, January 17). In Wikipedia, The Free Encyclopedia. Retrieved 27 Feb 2013 01:28. http://en.wikipedia.org/w/index.php?title=Trilinear_interpolation&oldid=533448871 [R61] Weiser, Alan, and Sergio E. Zarantonello. “A note on piecewise linear and multilinear table interpolation in many dimensions.” MATH. COMPUT. 50.181 (1988): 189-196. http://www.ams.org/journals/mcom/1988-50-181/S0025-5718-1988-0917826-0/S0025-5718-1988-0917826-0.pdf Examples
Evaluate a simple example function on the points of a 3D grid:
>>> from scipy.interpolate import RegularGridInterpolator >>> def f(x,y,z): ... return 2 * x**3 + 3 * y**2 - z >>> x = np.linspace(1, 4, 11) >>> y = np.linspace(4, 7, 22) >>> z = np.linspace(7, 9, 33) >>> data = f(*np.meshgrid(x, y, z, indexing='ij', sparse=True))
data is now a 3D array with data[i,j,k] = f(x[i], y[j], z[k]). Next, define an interpolating function from this data:
>>> my_interpolating_function = RegularGridInterpolator((x, y, z), data)
Evaluate the interpolating function at the two points (x,y,z) = (2.1, 6.2, 8.3) and (3.3, 5.2, 7.1):
>>> pts = np.array([[2.1, 6.2, 8.3], [3.3, 5.2, 7.1]]) >>> my_interpolating_function(pts) array([ 125.80469388, 146.30069388])
which is indeed a close approximation to [f(2.1, 6.2, 8.3), f(3.3, 5.2, 7.1)].
Methods
__call__(xi[, method]) Interpolation at coordinates