scipy.interpolate.LSQUnivariateSpline¶
- class scipy.interpolate.LSQUnivariateSpline(x, y, t, w=None, bbox=[None, None], k=3, ext=0, check_finite=False)[source]¶
One-dimensional spline with explicit internal knots.
Fits a spline y = spl(x) of degree k to the provided x, y data. t specifies the internal knots of the spline
Parameters: x : (N,) array_like
Input dimension of data points – must be increasing
y : (N,) array_like
Input dimension of data points
t : (M,) array_like
interior knots of the spline. Must be in ascending order and:
bbox[0] < t[0] < ... < t[-1] < bbox[-1]
w : (N,) array_like, optional
weights for spline fitting. Must be positive. If None (default), weights are all equal.
bbox : (2,) array_like, optional
2-sequence specifying the boundary of the approximation interval. If None (default), bbox = [x[0], x[-1]].
k : int, optional
Degree of the smoothing spline. Must be 1 <= k <= 5. Default is k=3, a cubic spline.
ext : int or str, optional
Controls the extrapolation mode for elements not in the interval defined by the knot sequence.
- if ext=0 or ‘extrapolate’, return the extrapolated value.
- if ext=1 or ‘zeros’, return 0
- if ext=2 or ‘raise’, raise a ValueError
- if ext=3 of ‘const’, return the boundary value.
The default value is 0.
check_finite : bool, optional
Whether to check that the input arrays contain only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination or non-sensical results) if the inputs do contain infinities or NaNs. Default is False.
Raises: ValueError
If the interior knots do not satisfy the Schoenberg-Whitney conditions
See also
- UnivariateSpline
- Superclass – knots are specified by setting a smoothing condition
- InterpolatedUnivariateSpline
- spline passing through all points
- splrep
- An older, non object-oriented wrapping of FITPACK
- BivariateSpline
- A similar class for two-dimensional spline interpolation
Notes
The number of data points must be larger than the spline degree k.
Knots t must satisfy the Schoenberg-Whitney conditions, i.e., there must be a subset of data points x[j] such that t[j] < x[j] < t[j+k+1], for j=0, 1,...,n-k-2.
Examples
>>> from scipy.interpolate import LSQUnivariateSpline, UnivariateSpline >>> import matplotlib.pyplot as plt >>> x = np.linspace(-3, 3, 50) >>> y = np.exp(-x**2) + 0.1 * np.random.randn(50)
Fit a smoothing spline with a pre-defined internal knots:
>>> t = [-1, 0, 1] >>> spl = LSQUnivariateSpline(x, y, t)
>>> xs = np.linspace(-3, 3, 1000) >>> plt.plot(x, y, 'ro', ms=5) >>> plt.plot(xs, spl(xs), 'g-', lw=3) >>> plt.show()
Check the knot vector:
>>> spl.get_knots() array([-3., -1., 0., 1., 3.])
Constructing lsq spline using the knots from another spline:
>>> x = np.arange(10) >>> s = UnivariateSpline(x, x, s=0) >>> s.get_knots() array([ 0., 2., 3., 4., 5., 6., 7., 9.]) >>> knt = s.get_knots() >>> s1 = LSQUnivariateSpline(x, x, knt[1:-1]) # Chop 1st and last knot >>> s1.get_knots() array([ 0., 2., 3., 4., 5., 6., 7., 9.])
Methods
__call__(x[, nu, ext]) Evaluate spline (or its nu-th derivative) at positions x. antiderivative([n]) Construct a new spline representing the antiderivative of this spline. derivative([n]) Construct a new spline representing the derivative of this spline. derivatives(x) Return all derivatives of the spline at the point x. get_coeffs() Return spline coefficients. get_knots() Return positions of interior knots of the spline. get_residual() Return weighted sum of squared residuals of the spline approximation. integral(a, b) Return definite integral of the spline between two given points. roots() Return the zeros of the spline. set_smoothing_factor(s) Continue spline computation with the given smoothing factor s and with the knots found at the last call.