scipy.stats.rice¶
- scipy.stats.rice = <scipy.stats._continuous_distns.rice_gen object at 0x2b909bd7b4d0>[source]¶
A Rice continuous random variable.
As an instance of the rv_continuous class, rice object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.
Notes
The probability density function for rice is:
rice.pdf(x, b) = x * exp(-(x**2+b**2)/2) * I[0](x*b)
for x > 0, b > 0.
rice takes b as a shape parameter.
The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the loc and scale parameters. Specifically, rice.pdf(x, b, loc, scale) is identically equivalent to rice.pdf(y, b) / scale with y = (x - loc) / scale.
The Rice distribution describes the length, r, of a 2-D vector with components (U+u, V+v), where U, V are constant, u, v are independent Gaussian random variables with standard deviation s. Let R = (U**2 + V**2)**0.5. Then the pdf of r is rice.pdf(x, R/s, scale=s).
Examples
>>> from scipy.stats import rice >>> import matplotlib.pyplot as plt >>> fig, ax = plt.subplots(1, 1)
Calculate a few first moments:
>>> b = 0.775 >>> mean, var, skew, kurt = rice.stats(b, moments='mvsk')
Display the probability density function (pdf):
>>> x = np.linspace(rice.ppf(0.01, b), ... rice.ppf(0.99, b), 100) >>> ax.plot(x, rice.pdf(x, b), ... 'r-', lw=5, alpha=0.6, label='rice pdf')
Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pdf:
>>> rv = rice(b) >>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
Check accuracy of cdf and ppf:
>>> vals = rice.ppf([0.001, 0.5, 0.999], b) >>> np.allclose([0.001, 0.5, 0.999], rice.cdf(vals, b)) True
Generate random numbers:
>>> r = rice.rvs(b, size=1000)
And compare the histogram:
>>> ax.hist(r, normed=True, histtype='stepfilled', alpha=0.2) >>> ax.legend(loc='best', frameon=False) >>> plt.show()
Methods
rvs(b, loc=0, scale=1, size=1, random_state=None) Random variates. pdf(x, b, loc=0, scale=1) Probability density function. logpdf(x, b, loc=0, scale=1) Log of the probability density function. cdf(x, b, loc=0, scale=1) Cumulative distribution function. logcdf(x, b, loc=0, scale=1) Log of the cumulative distribution function. sf(x, b, loc=0, scale=1) Survival function (also defined as 1 - cdf, but sf is sometimes more accurate). logsf(x, b, loc=0, scale=1) Log of the survival function. ppf(q, b, loc=0, scale=1) Percent point function (inverse of cdf — percentiles). isf(q, b, loc=0, scale=1) Inverse survival function (inverse of sf). moment(n, b, loc=0, scale=1) Non-central moment of order n stats(b, loc=0, scale=1, moments='mv') Mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’). entropy(b, loc=0, scale=1) (Differential) entropy of the RV. fit(data, b, loc=0, scale=1) Parameter estimates for generic data. expect(func, args=(b,), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds) Expected value of a function (of one argument) with respect to the distribution. median(b, loc=0, scale=1) Median of the distribution. mean(b, loc=0, scale=1) Mean of the distribution. var(b, loc=0, scale=1) Variance of the distribution. std(b, loc=0, scale=1) Standard deviation of the distribution. interval(alpha, b, loc=0, scale=1) Endpoints of the range that contains alpha percent of the distribution