scipy.stats.bernoulli¶
- scipy.stats.bernoulli = <scipy.stats._discrete_distns.bernoulli_gen object at 0x2b909bd3b810>[source]¶
A Bernoulli discrete random variable.
As an instance of the rv_discrete class, bernoulli object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.
Notes
The probability mass function for bernoulli is:
bernoulli.pmf(k) = 1-p if k = 0 = p if k = 1
for k in {0, 1}.
bernoulli takes p as shape parameter.
The probability mass function above is defined in the “standardized” form. To shift distribution use the loc parameter. Specifically, bernoulli.pmf(k, p, loc) is identically equivalent to bernoulli.pmf(k - loc, p).
Examples
>>> from scipy.stats import bernoulli >>> import matplotlib.pyplot as plt >>> fig, ax = plt.subplots(1, 1)
Calculate a few first moments:
>>> p = 0.3 >>> mean, var, skew, kurt = bernoulli.stats(p, moments='mvsk')
Display the probability mass function (pmf):
>>> x = np.arange(bernoulli.ppf(0.01, p), ... bernoulli.ppf(0.99, p)) >>> ax.plot(x, bernoulli.pmf(x, p), 'bo', ms=8, label='bernoulli pmf') >>> ax.vlines(x, 0, bernoulli.pmf(x, p), colors='b', lw=5, alpha=0.5)
Alternatively, the distribution object can be called (as a function) to fix the shape and location. This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pmf:
>>> rv = bernoulli(p) >>> ax.vlines(x, 0, rv.pmf(x), colors='k', linestyles='-', lw=1, ... label='frozen pmf') >>> ax.legend(loc='best', frameon=False) >>> plt.show()
Check accuracy of cdf and ppf:
>>> prob = bernoulli.cdf(x, p) >>> np.allclose(x, bernoulli.ppf(prob, p)) True
Generate random numbers:
>>> r = bernoulli.rvs(p, size=1000)
Methods
rvs(p, loc=0, size=1, random_state=None) Random variates. pmf(x, p, loc=0) Probability mass function. logpmf(x, p, loc=0) Log of the probability mass function. cdf(x, p, loc=0) Cumulative distribution function. logcdf(x, p, loc=0) Log of the cumulative distribution function. sf(x, p, loc=0) Survival function (also defined as 1 - cdf, but sf is sometimes more accurate). logsf(x, p, loc=0) Log of the survival function. ppf(q, p, loc=0) Percent point function (inverse of cdf — percentiles). isf(q, p, loc=0) Inverse survival function (inverse of sf). stats(p, loc=0, moments='mv') Mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’). entropy(p, loc=0) (Differential) entropy of the RV. expect(func, args=(p,), loc=0, lb=None, ub=None, conditional=False) Expected value of a function (of one argument) with respect to the distribution. median(p, loc=0) Median of the distribution. mean(p, loc=0) Mean of the distribution. var(p, loc=0) Variance of the distribution. std(p, loc=0) Standard deviation of the distribution. interval(alpha, p, loc=0) Endpoints of the range that contains alpha percent of the distribution