scipy.sparse.bsr_matrix¶
- class scipy.sparse.bsr_matrix(arg1, shape=None, dtype=None, copy=False, blocksize=None)[source]¶
Block Sparse Row matrix
- This can be instantiated in several ways:
- bsr_matrix(D, [blocksize=(R,C)])
- where D is a dense matrix or 2-D ndarray.
- bsr_matrix(S, [blocksize=(R,C)])
- with another sparse matrix S (equivalent to S.tobsr())
- bsr_matrix((M, N), [blocksize=(R,C), dtype])
- to construct an empty matrix with shape (M, N) dtype is optional, defaulting to dtype=’d’.
- bsr_matrix((data, ij), [blocksize=(R,C), shape=(M, N)])
- where data and ij satisfy a[ij[0, k], ij[1, k]] = data[k]
- bsr_matrix((data, indices, indptr), [shape=(M, N)])
- is the standard BSR representation where the block column indices for row i are stored in indices[indptr[i]:indptr[i+1]] and their corresponding block values are stored in data[ indptr[i]: indptr[i+1] ]. If the shape parameter is not supplied, the matrix dimensions are inferred from the index arrays.
Notes
Sparse matrices can be used in arithmetic operations: they support addition, subtraction, multiplication, division, and matrix power.
Summary of BSR format
The Block Compressed Row (BSR) format is very similar to the Compressed Sparse Row (CSR) format. BSR is appropriate for sparse matrices with dense sub matrices like the last example below. Block matrices often arise in vector-valued finite element discretizations. In such cases, BSR is considerably more efficient than CSR and CSC for many sparse arithmetic operations.
Blocksize
The blocksize (R,C) must evenly divide the shape of the matrix (M,N). That is, R and C must satisfy the relationship M % R = 0 and N % C = 0.
If no blocksize is specified, a simple heuristic is applied to determine an appropriate blocksize.
Examples
>>> from scipy.sparse import bsr_matrix >>> bsr_matrix((3, 4), dtype=np.int8).toarray() array([[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]], dtype=int8)
>>> row = np.array([0, 0, 1, 2, 2, 2]) >>> col = np.array([0, 2, 2, 0, 1, 2]) >>> data = np.array([1, 2, 3 ,4, 5, 6]) >>> bsr_matrix((data, (row, col)), shape=(3, 3)).toarray() array([[1, 0, 2], [0, 0, 3], [4, 5, 6]])
>>> indptr = np.array([0, 2, 3, 6]) >>> indices = np.array([0, 2, 2, 0, 1, 2]) >>> data = np.array([1, 2, 3, 4, 5, 6]).repeat(4).reshape(6, 2, 2) >>> bsr_matrix((data,indices,indptr), shape=(6, 6)).toarray() array([[1, 1, 0, 0, 2, 2], [1, 1, 0, 0, 2, 2], [0, 0, 0, 0, 3, 3], [0, 0, 0, 0, 3, 3], [4, 4, 5, 5, 6, 6], [4, 4, 5, 5, 6, 6]])
Attributes
nnz Number of stored values, including explicit zeros. has_sorted_indices Determine whether the matrix has sorted indices dtype (dtype) Data type of the matrix shape (2-tuple) Shape of the matrix ndim (int) Number of dimensions (this is always 2) data Data array of the matrix indices BSR format index array indptr BSR format index pointer array blocksize Block size of the matrix Methods
arcsin() Element-wise arcsin. arcsinh() Element-wise arcsinh. arctan() Element-wise arctan. arctanh() Element-wise arctanh. asformat(format) Return this matrix in a given sparse format asfptype() Upcast matrix to a floating point format (if necessary) astype(t) ceil() Element-wise ceil. check_format([full_check]) check whether the matrix format is valid conj() conjugate() copy() count_nonzero() Number of non-zero entries, equivalent to deg2rad() Element-wise deg2rad. diagonal() Returns the main diagonal of the matrix dot(other) Ordinary dot product eliminate_zeros() expm1() Element-wise expm1. floor() Element-wise floor. getH() get_shape() getcol(j) Returns a copy of column j of the matrix, as an (m x 1) sparse matrix (column vector). getdata(ind) getformat() getmaxprint() getnnz([axis]) Number of stored values, including explicit zeros. getrow(i) Returns a copy of row i of the matrix, as a (1 x n) sparse matrix (row vector). log1p() Element-wise log1p. matmat(other) matvec(other) max([axis, out]) Return the maximum of the matrix or maximum along an axis. maximum(other) mean([axis, dtype, out]) Compute the arithmetic mean along the specified axis. min([axis, out]) Return the minimum of the matrix or maximum along an axis. minimum(other) multiply(other) Point-wise multiplication by another matrix, vector, or scalar. nonzero() nonzero indices power(n[, dtype]) This function performs element-wise power. prune() Remove empty space after all non-zero elements. rad2deg() Element-wise rad2deg. reshape(shape[, order]) Gives a new shape to a sparse matrix without changing its data. rint() Element-wise rint. set_shape(shape) setdiag(values[, k]) Set diagonal or off-diagonal elements of the array. sign() Element-wise sign. sin() Element-wise sin. sinh() Element-wise sinh. sort_indices() Sort the indices of this matrix in place sorted_indices() Return a copy of this matrix with sorted indices sqrt() Element-wise sqrt. sum([axis, dtype, out]) Sum the matrix elements over a given axis. sum_duplicates() Eliminate duplicate matrix entries by adding them together tan() Element-wise tan. tanh() Element-wise tanh. toarray([order, out]) See the docstring for spmatrix.toarray. tobsr([blocksize, copy]) Convert this matrix into Block Sparse Row Format. tocoo([copy]) Convert this matrix to COOrdinate format. tocsc([copy]) Convert this matrix to Compressed Sparse Column format. tocsr([copy]) Convert this matrix to Compressed Sparse Row format. todense([order, out]) Return a dense matrix representation of this matrix. todia([copy]) Convert this matrix to sparse DIAgonal format. todok([copy]) Convert this matrix to Dictionary Of Keys format. tolil([copy]) Convert this matrix to LInked List format. transpose([axes, copy]) Reverses the dimensions of the sparse matrix. trunc() Element-wise trunc.