This is documentation for an old release of SciPy (version 0.17.1). Search for this page in the documentation of the latest stable release (version 1.15.1).
Hyperbolic Secant Distribution¶
Related to the logistic distribution and used in lifetime analysis. Standard form is (defined over all x )
f(x)=1πsech(x)F(x)=2πarctan(ex)G(q)=log(tan(π2q))
M(t)=sec(π2t)
μ′n=1+(−1)n2π22nn![ζ(n+1,14)−ζ(n+1,34)]={0noddCn/2πn2nneven
where Cm is an integer given by
Cm=(2m)![ζ(2m+1,14)−ζ(2m+1,34)]π2m+122m=4(−1)m−116m2m+1B2m+1(14)
where B2m+1(14) is the Bernoulli polynomial of order 2m+1 evaluated at 1/4. Thus
μ′n={0nodd4(−1)n/2−1(2π)nn+1Bn+1(14)neven
md=mn=μ=0μ2=π24γ1=0γ2=2
h[X]=log(2π).
Implementation: scipy.stats.hypsecant