This is documentation for an old release of SciPy (version 0.17.1). Search for this page in the documentation of the latest stable release (version 1.15.1).
scipy.sparse.linalg¶
Sparse linear algebra (scipy.sparse.linalg)¶
Abstract linear operators¶
LinearOperator(dtype, shape) | Common interface for performing matrix vector products |
aslinearoperator(A) | Return A as a LinearOperator. |
Matrix Operations¶
inv(A) | Compute the inverse of a sparse matrix |
expm(A) | Compute the matrix exponential using Pade approximation. |
expm_multiply(A, B[, start, stop, num, endpoint]) | Compute the action of the matrix exponential of A on B. |
Matrix norms¶
norm(x[, ord, axis]) | Norm of a sparse matrix |
onenormest(A[, t, itmax, compute_v, compute_w]) | Compute a lower bound of the 1-norm of a sparse matrix. |
Solving linear problems¶
Direct methods for linear equation systems:
spsolve(A, b[, permc_spec, use_umfpack]) | Solve the sparse linear system Ax=b, where b may be a vector or a matrix. |
factorized(A) | Return a fuction for solving a sparse linear system, with A pre-factorized. |
MatrixRankWarning | |
use_solver(**kwargs) | Select default sparse direct solver to be used. |
Iterative methods for linear equation systems:
bicg(A, b[, x0, tol, maxiter, xtype, M, ...]) | Use BIConjugate Gradient iteration to solve A x = b |
bicgstab(A, b[, x0, tol, maxiter, xtype, M, ...]) | Use BIConjugate Gradient STABilized iteration to solve A x = b |
cg(A, b[, x0, tol, maxiter, xtype, M, callback]) | Use Conjugate Gradient iteration to solve A x = b |
cgs(A, b[, x0, tol, maxiter, xtype, M, callback]) | Use Conjugate Gradient Squared iteration to solve A x = b |
gmres(A, b[, x0, tol, restart, maxiter, ...]) | Use Generalized Minimal RESidual iteration to solve A x = b. |
lgmres(A, b[, x0, tol, maxiter, M, ...]) | Solve a matrix equation using the LGMRES algorithm. |
minres(A, b[, x0, shift, tol, maxiter, ...]) | Use MINimum RESidual iteration to solve Ax=b |
qmr(A, b[, x0, tol, maxiter, xtype, M1, M2, ...]) | Use Quasi-Minimal Residual iteration to solve A x = b |
Iterative methods for least-squares problems:
lsqr(A, b[, damp, atol, btol, conlim, ...]) | Find the least-squares solution to a large, sparse, linear system of equations. |
lsmr(A, b[, damp, atol, btol, conlim, ...]) | Iterative solver for least-squares problems. |
Matrix factorizations¶
Eigenvalue problems:
eigs(A[, k, M, sigma, which, v0, ncv, ...]) | Find k eigenvalues and eigenvectors of the square matrix A. |
eigsh(A[, k, M, sigma, which, v0, ncv, ...]) | Find k eigenvalues and eigenvectors of the real symmetric square matrix or complex hermitian matrix A. |
lobpcg(A, X[, B, M, Y, tol, maxiter, ...]) | Locally Optimal Block Preconditioned Conjugate Gradient Method (LOBPCG) |
Singular values problems:
svds(A[, k, ncv, tol, which, v0, maxiter, ...]) | Compute the largest k singular values/vectors for a sparse matrix. |
Complete or incomplete LU factorizations
splu(A[, permc_spec, diag_pivot_thresh, ...]) | Compute the LU decomposition of a sparse, square matrix. |
spilu(A[, drop_tol, fill_factor, drop_rule, ...]) | Compute an incomplete LU decomposition for a sparse, square matrix. |
SuperLU | LU factorization of a sparse matrix. |
Exceptions¶
ArpackNoConvergence(msg, eigenvalues, ...) | ARPACK iteration did not converge |
ArpackError(info[, infodict]) | ARPACK error |
Functions
aslinearoperator(A) | Return A as a LinearOperator. |
bicg(A, b[, x0, tol, maxiter, xtype, M, ...]) | Use BIConjugate Gradient iteration to solve A x = b |
bicgstab(A, b[, x0, tol, maxiter, xtype, M, ...]) | Use BIConjugate Gradient STABilized iteration to solve A x = b |
cg(A, b[, x0, tol, maxiter, xtype, M, callback]) | Use Conjugate Gradient iteration to solve A x = b |
cgs(A, b[, x0, tol, maxiter, xtype, M, callback]) | Use Conjugate Gradient Squared iteration to solve A x = b |
eigs(A[, k, M, sigma, which, v0, ncv, ...]) | Find k eigenvalues and eigenvectors of the square matrix A. |
eigsh(A[, k, M, sigma, which, v0, ncv, ...]) | Find k eigenvalues and eigenvectors of the real symmetric square matrix or complex hermitian matrix A. |
expm(A) | Compute the matrix exponential using Pade approximation. |
expm_multiply(A, B[, start, stop, num, endpoint]) | Compute the action of the matrix exponential of A on B. |
factorized(A) | Return a fuction for solving a sparse linear system, with A pre-factorized. |
gmres(A, b[, x0, tol, restart, maxiter, ...]) | Use Generalized Minimal RESidual iteration to solve A x = b. |
inv(A) | Compute the inverse of a sparse matrix |
lgmres(A, b[, x0, tol, maxiter, M, ...]) | Solve a matrix equation using the LGMRES algorithm. |
lobpcg(A, X[, B, M, Y, tol, maxiter, ...]) | Locally Optimal Block Preconditioned Conjugate Gradient Method (LOBPCG) |
lsmr(A, b[, damp, atol, btol, conlim, ...]) | Iterative solver for least-squares problems. |
lsqr(A, b[, damp, atol, btol, conlim, ...]) | Find the least-squares solution to a large, sparse, linear system of equations. |
minres(A, b[, x0, shift, tol, maxiter, ...]) | Use MINimum RESidual iteration to solve Ax=b |
norm(x[, ord, axis]) | Norm of a sparse matrix |
onenormest(A[, t, itmax, compute_v, compute_w]) | Compute a lower bound of the 1-norm of a sparse matrix. |
qmr(A, b[, x0, tol, maxiter, xtype, M1, M2, ...]) | Use Quasi-Minimal Residual iteration to solve A x = b |
spilu(A[, drop_tol, fill_factor, drop_rule, ...]) | Compute an incomplete LU decomposition for a sparse, square matrix. |
splu(A[, permc_spec, diag_pivot_thresh, ...]) | Compute the LU decomposition of a sparse, square matrix. |
spsolve(A, b[, permc_spec, use_umfpack]) | Solve the sparse linear system Ax=b, where b may be a vector or a matrix. |
svds(A[, k, ncv, tol, which, v0, maxiter, ...]) | Compute the largest k singular values/vectors for a sparse matrix. |
use_solver(**kwargs) | Select default sparse direct solver to be used. |
Classes
LinearOperator(dtype, shape) | Common interface for performing matrix vector products |
SuperLU | LU factorization of a sparse matrix. |
Tester | alias of NoseTester |
Exceptions
ArpackError(info[, infodict]) | ARPACK error |
ArpackNoConvergence(msg, eigenvalues, ...) | ARPACK iteration did not converge |
MatrixRankWarning |