SciPy

This is documentation for an old release of SciPy (version 0.17.1). Read this page in the documentation of the latest stable release (version 1.15.1).

scipy.interpolate.LSQBivariateSpline

class scipy.interpolate.LSQBivariateSpline(x, y, z, tx, ty, w=None, bbox=[None, None, None, None], kx=3, ky=3, eps=None)[source]

Weighted least-squares bivariate spline approximation.

Parameters:

x, y, z : array_like

1-D sequences of data points (order is not important).

tx, ty : array_like

Strictly ordered 1-D sequences of knots coordinates.

w : array_like, optional

Positive 1-D array of weights, of the same length as x, y and z.

bbox : (4,) array_like, optional

Sequence of length 4 specifying the boundary of the rectangular approximation domain. By default, bbox=[min(x,tx),max(x,tx), min(y,ty),max(y,ty)].

kx, ky : ints, optional

Degrees of the bivariate spline. Default is 3.

eps : float, optional

A threshold for determining the effective rank of an over-determined linear system of equations. eps should have a value between 0 and 1, the default is 1e-16.

See also

bisplrep
an older wrapping of FITPACK
bisplev
an older wrapping of FITPACK
UnivariateSpline
a similar class for univariate spline interpolation
SmoothBivariateSpline
create a smoothing BivariateSpline

Notes

The length of x, y and z should be at least (kx+1) * (ky+1).

Methods

__call__(x, y[, mth, dx, dy, grid]) Evaluate the spline or its derivatives at given positions.
ev(xi, yi[, dx, dy]) Evaluate the spline at points
get_coeffs() Return spline coefficients.
get_knots() Return a tuple (tx,ty) where tx,ty contain knots positions of the spline with respect to x-, y-variable, respectively.
get_residual() Return weighted sum of squared residuals of the spline
integral(xa, xb, ya, yb) Evaluate the integral of the spline over area [xa,xb] x [ya,yb].