minimize(method=’COBYLA’)¶
- scipy.optimize.minimize(fun, x0, args=(), method='COBYLA', constraints=(), tol=None, callback=None, options={'iprint': 1, 'disp': False, 'maxiter': 1000, 'catol': 0.0002, 'rhobeg': 1.0})
Minimize a scalar function of one or more variables using the Constrained Optimization BY Linear Approximation (COBYLA) algorithm.
See also
For documentation for the rest of the parameters, see scipy.optimize.minimize
Options: rhobeg : float
Reasonable initial changes to the variables.
tol : float
Final accuracy in the optimization (not precisely guaranteed). This is a lower bound on the size of the trust region.
disp : bool
Set to True to print convergence messages. If False, verbosity is ignored as set to 0.
maxiter : int
Maximum number of function evaluations.
catol : float
Tolerance (absolute) for constraint violations